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Abstract

We consider maximum b-matching problems where the nodes of the graph represent points in a
metric space, and the weight of an edge is the distance between the respective pair of points. We
show that if the space is either the rectilinear plane, or the metric space induced by a tree network,
then the b-matching problem is the dual of the (single) median location problem with respect
to the given set of points. This result does not hold for the Euclidean plane. However, we show
that in this case the d-matching problem is the dual of a median location problem with respect to
the given set of points, in some extended metric space. We then extend this latter result to any
geodesic metric in the plane. The above results imply that the respective fractional b-matching
problems have integer optimal solutions. We use these duality results to prove the nonemptiness
of the core of a cooperative game defined on the roommate problem corresponding to the above
matching model. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier
Science B.V.

Keywords: The b-matching problem; Median location problems; The roommates problem

1. Introduction

Let G = (VE) be an undirected graph with a node set V and an edge set E. A
matching in G is a subset of E such that each node of G is met by at most one edge
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in the subset. In 1965 Edmonds discovered a strongly polynomial algorithm for the
weighted matching problem, as well as a characterization of a linear system that defines
the convex hull of the incidence vectors of all the matchings of a graph. The concept
of a matching was generalized by Edmonds to b-matchings, defined as follows: For
each node v € V let §(v) denote the set of edges in E which meet v, For each vector
x=(x,:e€E)andasubset E/ of E, let x(E') =3 {x.:e € E'}.

Let b= (b, : v € V) be a positive integer vector. A b-matching of G is a nonnegative
integer vector x = (x, : e € E), satisfying the following degree constraints,

x(8(v)) <b, WeEV (1)

(A b-matching of G with b, = 1 for all v € V is a matching.) A b-matching is
perfect if all the degree constraints are satisfied as equalities. Given a vector of weights
¢ =(c.: e € E), the weighted b-matching problem is

Maximize Z CoXe
e€E
s, x(8(v)) £b, YveVy (2)

x 2 0 and integer.

The linear relaxation of (2), called the fractional b-matching problem, is

Maximize chxg
e€E
st x(6(w))Lb, YweY 3)

x 2 0.

A characterization of a linear system of the convex hull of the b-matchings of a
graph was given by Edmonds and Pulleyblank and appeared in [23]. Pulleyblank has
also provided a pseudopolynomial algorithm to find a maximum weighted b-matching.
Cunningham and Marsh [5], found the first polynomial time algorithm for finding an
optimal b-matching, and several years later Anstee [2], presented the first strongly
polynomial algorithm for this problem. The reader is referred to [20] and [4] for
additional results on general matchings, b-matchings and capacitated b-matchings.

In this paper we study a special case of (2), where the nodes of the graph represent
points in a metric space, and the weight of an edge is the distance between the respective
pair of points. We first consider, in Section 2.1, the case in which the metric space is
induced by a tree network. Specifically, let T = (VE’) be an undirected tree with
positive edge lengths. For each pair of nodes v,u € V let d(v,u) denote the length of
the unique simple path on T connecting v and 1. We consider the special instance of the
weighted b-matching problem on the complete graph G = (V E), where for each edge
e=(v,u) € E, ¢, =d(v,u). (Note that G and T have the same node set.) We prove
that for this case the fractional b-matching problem (3) has an integer optimal solution
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where the number of positive components is at most |V|. The proof is based on a duality
argument, showing that the dual of (3) is the problem of locating a weighted median
on the given tree 7. In Section 3 we extend the duality result to a restricted weighted
median problem.

We demonstrate that the above integrality property might not hold for the capacitated
b-matching version of (2), where positive upper bounds are imposed on the x variables,
even if the tree T is a simple path.

In Section 2.2 we consider the case where the nodes of the graph represent points in
the rectilinear plane. Assuming that Y {b, : v € V} is even, we prove that the above
integrality result holds for this case as well. Again, the proof is based on showing that
the dual of the linear relaxation of (2) is the problem of finding a weighted median of
the given set of points in the rectilinear plane.

In Section 2.3 we consider the Euclidean plane. The linear relaxation of (2) is not the
dual of the problem of finding the weighted median of the given points in the Euclidean
plane. However, using a different argument, we prove that if > {b, : v € V} is even the
linear relaxation of (2) has the integrality property for this case as well. This integrality
property implies that the b-matching problem for the Euclidean plane is the dual of
a weighted median problem in some metric space extension of the Euclidean space.
We then extend these results to general geodesic metrics in the plane (Section 2.4). In
Section 2.5 we give counterexamples to the duality and integrality properties in three
dimensions.

In Section 3, we consider an extended b-matching problem, for a metric induced by a
tree. Finally, in Section 4, we apply our results to the roommates model introduced by
Gale and Shapley [7]. In the roommates problem there is a group of an even number
of boys who wish to divide up into pairs of roommates. Each boy ranks all other
boys in accordance with his preference for a roommate. A matching of the group of
boys to pairs is said to be srable if under it there does not exist a pair of boys who
would prefer to room with each other rather than with their assigned roommates. Using a
simple example, Gale and Shapley demonstrated that, in general, the roommates problem
may have no stable matching. The reader is referred to [11] for recent structural and
algorithmic results on this problem. Bartholdi and Trick [3] studied the special case
where preferences are single peaked and narcissistic, and proved the existence of a
unique stable matching. (Roughly speaking this corresponds to the case where there is
a one-dimensional frame of reference, e.g., temperature scale or highway distance map,
that is common to all boys, and alternatives are preferred less as they are “farther” from
each boy’s ideal.) In contrast, we consider the case where alternatives are preferred more
as they are farther from each boy’s location. We discuss a cooperative game with side
payments based on this roommates problem, and show that the core is nonempty for the
metric spaces discussed in Section 2. This is to be compared with the result of Granot
[10], who showed that, in general, the core of the roommates problem cooperative game
with side payments may be empty.



174 A. Tamir, J.5.B. Mitchell/Mathematical Programming 80 (1998) 171-194

2. Maximum b-matchings and median location
2.1. The tree metric space problem

Given is an undirected tree T = (V E’) with positive edge lengths. For each pair of
nodes v,u € V we let d(v,u) be the length of the unique simple path connecting v
and u on T. d(v,u) is called the distance between v and u. Let G = (V E) denote the
complete undirected graph having V as its node set. Consider the maximum b-matching
problem (2), and assume that for each edge e = (v,u) € E, ¢, = d(v,u). The linear
programming dual of (3) is

Minimize Z b, 7,
vEV
s.t. 7z, + 2z, =2 d(v,u) for all pairs (v, u), 4)

z 20

We now interpret the dual problem as a median location problem on the given tree
T = (V E"). Suppose that the edges of the tree are rectifiable, and the tree is embedded
in the plane. Each edge is a line segment of the appropriate length. We refer to interior
points on an edge by their distance (on the line segment) from the two nodes of the
edge. The continuum set of all points of these segments is a metric space that we
denote by A(T). Suppose that each node v of the tree is associated with a nonnegative
weight b,, and consider the problem of finding a point in A(T) that will minimize the
sum of weighted distances from the point to all nodes. It is well known that if b, is a
positive real for all v € V, then the set of optimal points (known as weighted medians
of T), is either a single node or the set of points on a single edge of T. In particular,
there is always one weighted median which is a node. The next theorem follows from
the general results in [6] on monotonic tree location problems. It states that (4) is a
reformulation of the above weighted median problem.

Theorem 1. Suppose that b, is nonnegative for each v € V. Let z* =(z; :v € V) be
an optimal solution to problem (4). Then there exists a weighted median of T, v* € Y,
with respect to the weights {b,}, such that 7} = d(v,v*) forallv e V.

We will need the following characterization of weighted medians due to Sabidussi
[24], Zelinka [26], Kang and Ault [13] and Kariv and Hakimi [14].

Theorem 2. Let v* be a node of T. Then v* is a weighted median with respect
to the nonnegative weights {b,} if and only if the sum of the weights of the nodes
in each connected component of T, obtained by the removal of v*, does not exceed

(1/2) (b, :v € V).

We are now ready to prove the main result of this section.
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Theorem 3. Suppose that b, is a positive integer for each v € V. The linear program
(3) has an integer optimal solution, x*, where the number of its positive components
is at most |V/|.

Proof. It is sufficient to show that there is an integer feasible solution to (3) with at
most |V| pesitive components, whose objective value is equal to the optimal value of
the linear program (4). Let v* be a weighted median of T. Consider the connected
components of the tree obtained by the deletion of v*. From Theorem 2, the total nade
weights in each component does not exceed B/2, where B = 3 {b, : v € V}. By
aggregating components we can obtain a partition of the node subset V — {uv*} into three
subsets {V!, V2, V3} satisfying the following properties:
(i) B/ =3 {b,: v € V/I} < B/2, for j=1,2,3.
(ii) Every simple path connecting a pair of nodes v, u, where v is in some V/ and
u is in V — V/ must contain the median v*.

We will now construct a b-matching x*, of the complete graph G = (W E), with the
following two properties:

(iii) No pair of nodes belonging to the same subset V/ are matched together.

(iv) For each node v # v*, > {x} :ec 8(v)}=b,.

Therefore, if the edge e connects the pair of nodes v and u € G, then the contribution
of the variable x] to the objective is x}d(v,u) = x] (d(u,u"‘) + d(v*,u)). Moreover,
from (iv) it follows that the objective value of any b-matching satisfying (iii) and (iv)
is Y {b,d(v,v*) : v € V}, which is exactly the objective value of the weighted median
problem (4). To construct the above b-matching suppose without loss of generality that
B' > B? > B, For convenience denote V* = {v*} and B* = b,-. Next we replicate each
node v, and replace it by b, copies (quasi-nodes). Thus, we assume that V/ contains
B’ quasi-nodes, j = 1,2,3,4. By saying that we match p pairs from [V', V/], we will
mean that a subset of p quasi-nodes from V' are paired with a subset of p quasi-nodes
from V7.

Consider the following cases:

Case 1. B' > B? and B! > B* + B>,
Match B? pairs from [V!, V2],
B3 pairs from [Vl,V3] and
B! ~B*— B3 pairs from v, v4y.
Case II: B! > B, B! < B2+ B? and B? + B3 — B! is even.
Match (B' 4+ B?— B*)/2  pairs from [V',V?],
(B' —B*+B% /2  pairs from [V',V?] and
(—B' + B? + B*)/2 pairs from [V2 V3],
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Case III: B! > B%, B' < B2 4+ B? and B% + B3 — B! is odd.
Match (B'+B*>—B*—1)/2  pairs from [V}, V2],
(B' -~ B*+B*—1)/2  pairs from [V!,V?],
(—B'+ B>+ B*+1)/2 pairs from [V?,V?] and
1 pair from  [V', V*].
Case IV: B! = B? and B? is even.
Match B' — B3/2 pairs from [V, V?)],
B*/2 pairs from [V',V?] and
B3/2 pairs from [VZ,V3].
Case V: B! = B? and B3 is odd.

Match B'~B3/2—1/2 pairs from [V, V?],

B*/2-1/2 pairs from [V' V?],
B}/2+1/2 pairs from  [V2,V3] and
1 pair from  [V', V*].

It is easy to check that each one of the five cases constructs a b-matching satisfying
properties (iii) and (iv) above. For example consider Case I. Each matched pair involves
a node from V!. The only questionable matching is from [V!,V*]. However, this
matching is feasible if B' — B? — B? is between 0 and B*. Since we focus on Case I,
the nonnegativity of B! — B?2 — B? is ensured. The second constraint is equivalent
to 2 B! < B! + B? + B® + B*, which follows from property (i) above. (Note that
B'+ B+ B*+B*=B.)

It remains to prove that in each one of the five cases the b-matching can be imple-
mented using at most |V| edges. Consider for example Case 1. (Similar arguments can
be applied to the other cases.) Let V| be a minimal subset of Vvt (with respect to con-
tainment), such that °{b, : v € V{} 2 B*+ B> Match B2+ B3 pairs from [V;, V2UV3].
Using a basic solution argument, (e.g., the classical North-West corner rule applied to
the transportation problem), we conclude that this matching can be implemented using
at most |Vi| + |V?| + |V?| — 1 edges. From the minimality of V;, all nodes in Vi, but
possibly one, say v”/, are perfectly matched (i.e. they satisfy the equality in property
(iv) above). Next we match B! — B* — B3 from [(V' — V;) U {v"'}, V*]. Again this
matching can be implemented using at most |V!| —|W|+1+|V4| -1 edges. To conclude
VY + V2 4 |V3] = |V| — 1 edges will suffice to implement the b-matching in Case I.
As noted above similar arguments can be used for the other four cases. This completes
the proof. U

We note that recently Gerstel and Zaks [8] considered the case where all edges are
of unit length and b, = 1 for each v € V. They did not discuss the fractional matching
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problem (3). However, they did prove that the optimal value of the respective integer
program (2) is equal to the optimal value of the (unweighted) median problem. It is
clear that if b, = 1 for each v € V, there is an optimal integer solution where the number
of positive variables is at most |V|/2.

Theorem 3 and the duality of problems (3) and (4) imply that in our case an optimal
integer b-matching can be found in O(]V|) time. The complexity bound is dominated
by the effort to find a weighted median of a tree. The latter task can be performed in
linear time, (see [9,14]). For comparison purposes recall that the best complexity bound
known for the general maximum weighted b-matching problem is super cubic in |V| [2].
The bound is cubic when b, =1 for all v € V [19]. If, in addition, the edge weights
{c.} equal to the Buclidean distances between points in the plane which represent the
nodes of the graph, then some subcubic algorithms are known. Vaidya [25] presented
such an algorithm for finding a minimum-weight geometric perfect matching. Marcotte
and Suri [21] considered the case where the representing points are on the boundary
of a simple polygon in the plane. They gave an O(|V|log®|V|) time algorithm for the
minimum-weight perfect matching problem (which has been improved to O(|V|log|V]),
by Hershberger and Suri [12]), and an O(|V|log|V|) time algorithm for the maximum-
weight perfect matching problem. They also presented improved bounds for the case
where the polygon is convex.

We point out another interesting property of our model. From Theorem 2 it follows
that an optimal weighted median depends only on the topology of the tree and the node
weights {b,} but not on the edge lengths. Due to the above duality we conclude that an
optimal b-matching is also independent of the tree distances {d{v,u)}.

Remark 4. Theorem 3 shows that there is an optimal solution x* to the b-matching
problem considered above, where the number of edges e with a positive variable x} is at
most |V|. We note that the respective bound for general b-matching problems is higher
than |V/|. It is shown in [23] that there is an optimal solution to the general b-matching
problem, where the subset of edges with a positive variable contains no even cycles
{simple or nonsimple). Therefore, all cycles are odd and node disjoint. In particular,
there are at most |V|/3 such cycles in the subgraph induced by the above subset of
edges. By removing one edge from each cycle, this subgraph reduces to a forest. Thus,
the total number of edges in the subgraph is at most (4/3)|V| — 1. Simple examples
demonstrate that this bound is tight.

Remark 5. From the proof of Theorem 3 we observe that the strict positivity assump-
tion on the {b,} coefficients can be weakened. Generally, it is not possible to replace
the inequality with equality in the degree constraints since the problem with equality
constraints might be infeasible. Indeed, in the optimal solution constructed in the above
proof the degree of the median v* is equal to zero in Cases II and IV, and it is equal to
one in Cases ITI and V. (In Case I the median degree is guaranteed to be bounded above
by b,-.) Thus, the only cases of the proof where the positivity is required are III and V.
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Furthermore, even in these two cases we only need the positivity of b,.. Therefore,
the positivity assumption can be replaced by the assumption that all the coefficients
are nonnegative, and the coefficient of a weighted median is positive. Alternatively, it
suffices to require that the sum of all the coefficients is even, since this will exclude
cases III and V. The integrality result of Theorem 3 may not hold if neither of the two
assumptions is satisfied. Consider the example of a 4-node tree, where one of the nodes,
the center, is connected by an edge to each one of the other nodes, leaves. Suppose that
each edge is of length one. Finally, set the b coefficient of each leaf to be equal to 1,
and let the respective coefficient of the center be equal to 0. Generally, to find the best
integral solution when the sum of the {b,} coefficients is odd and the coefficient of
the weighted median is zero, we first subtract 1 from the positive coefficient of a node
which is closest to the weighted median amongst all nodes with positive coefficients,
and then solve the modified problem as above. We also note that if the given tree is a
general path, then Theorem 3 holds even if the b coefficients are allowed to take on a
zero value.

If we impose positive integer upper bounds on the x variables in problem (3), the
integrality result may not hold even if the tree is a path.

Example 6. Consider the path defined by the following 5 points (nodes) on the real
line: vy =0, 1y =2, v13 =3, v4 =4 and v5s = 6. Let b, = b,, =3, by, = by, =2 and
b,, = 1. Suppose that the ten x variables corresponding to the edges of the complete
graph with the node set V = {01,02,03,04,1)5} are all bounded above by 1. The best
integer solution satisfying the constraints of (3) and the above upper bound yields the
objective value 19. However, the following fractional solution, specified by its nonzero
components, yields the value 20:

X(oi,0s) = X(oi,04) = X(upus) = 1,

and
Xy = X(opwe) = X(vaws) = X(ugwn) = X(upen) = 1/2.

We note that Theorem 3 cannot be extended to general distance functions, where
we replace the assumption that the numbers {d(v,u)} represent tree distances by the
weaker assumption that they only satisfy the triangle inequality. This is obvious when
the number of nodes is odd and b, = 1 for each v, since no perfect matching is feasible.
(Consider a 3-node triangle with unit length edges.) More interestingly, assuming b, = 1
for each v € V, the result does not hold for the even case, for which a perfect matching
is feasible, even when |V| = 6, as demonstrated by the next example.

Example 7. Consider the complete graph with V = {v),02,03,04,05,06}. Suppose
that b, =1 for i = 1,...,6. Let d(vi,v;), i # J, be equal to 2 if (4, j) is in
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{(1,2),(1,3),(2,3)} and be equal to 1 otherwise. The optimal objective value of
problem (3) is 4.5, while the best integer solution satisfying the constraints of (3)
yields the value 4.

2.2. The rectilinear planar b-matching problem

The duality result between the weighted median problem in the tree metric space
A(T) and the respective b-matching problem, does not hold for general metric spaces
(see the next section). We now prove that it does hold for the rectilinear plane.

Let V={v1,...,vn}, vi= (v},v?), i=1,...,n, be a collection of points in R2. Let
by, i=1,...,n, be a positive integer weight. The rectilinear weighted median problem
in the plane is to find a point x* = (x*!, x*2) which minimizes the function

by, (Ix' — o] + |x* = v}]).

i=1,...n

The rectilinear integer b-matching problem on the complete graph G = (K E) is the
version of problem (2), where for each edge e = (v;,v;),

ce = d(vi,v5) = v} = v} + |0} = v]l. (4a)
Theorem 8. Consider the rectilinear weighted median problem in the plane and sup-
pose that Y _{b,, : v; € V} is even. Then the optimal solution value of this problem is
equal to the optimal solution value of the respective rectilinear integer b-matching prob-
lem. Moreover, the former is equal to the optimal objective value of problem (4), while
the latter is equal to the objective value of problem (3), where {c.} and {d(vi,v;)}
are defined above in (4a).

Proof. Using continuity and perturbation arguments it is sufficient to prove the theorem
for the case when the n points {vy,...,v,} are distinct, b, =1 for i = 1,...,n, and
"no pair {v;,v;}, i # j, lie on a vertical or horizontal line in R, The supposition in the
theorem implies that n is even. An optimal solution to the rectilinear problem is given by
the point x = (x', x?), where x! is a median of the set {v!} and x? is a median of the set
{v?}. Due to the above assumptions the median point x = (x!, x?) can be selected such
that no point v; lies on the vertical and horizontal lines passing through x. Consider the
four quadrants defined by this pair of lines and let ny, k = 1,2,3,4, denote the number
of points in the set {v;} that lie in the kth quadrant. We have ny + ny = n3 + nq = n/2
and ny + n3 = ny + ng = n/2. Thus, n; = n3 and ny = ny. Consider a pair of points v;
and vj;, where v; is in the 1st quadrant (2nd quadrant) and v; is in the 3rd quadrant
(4th quadrant). Then d(v;,v;) = d(vi, x) + d(vj, x). Therefore, if we now match the
ny (n2) points in the 1st (2nd) quadrant with the n3 = n; (ng = nz)'points in the 3rd
(4th) quadrant, we obtain a perfect matching with an objective value of Y _ d(v;, x).
To complete the proof we now show that the matching constructed is optimal. Consider
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the pair of linear programs (3) and (4), where d(v;,v;) is the rectilinear distance
defined above. Problem (3) is certainly a relaxation of the integer matching problem.
Problem (4) can be viewed as the following relaxation of the rectilinear median problem:
Consider the complete undirected graph with node set {vy,...,0,} U {u} Each edge
(vi,vj) is associated with a length which is equal to the rectilinear distance d(v;,v;).
The problem is to assign lengths {z,} to the edges {(vi,v)}, such that the triangle
inequality is satisfied for all edges of the graph, and > {z, : v; € V} is minimized.
The rectilinear median problem in the plane corresponds to the special case where the
lengths {z,,} are the rectilinear distances from some point in the plane to the points
{U,‘}.

The perfect matching constructed above and the rectilinear median x correspond
respectively to feasible solutions to problems (3) and (4). Moreover, as noted above,
they yield the same objective value to both problems. Therefore, from duality theory,
both are optimal solutions to the respective problems. This concludes the proof of the
theorem. [

2.3. The Euclidean planar b-matching problem

In the previous sections we proved that the problem of finding a weighted median
of a set of points {v1,...,v,} in a tree metric space (or in the rectilinear plane), is
the dual of the respective b-matching problem when > {b,, : v; € V} is even. We used
this result to conclude that the respective fractional b-matching problem (3), has an
integer solution. Example 9 demonstrates that this duality result does not hold even in
the Euclidean plane.

Example 9. Consider the 3 vertices {v1,v2, 03} of an equilateral triangle with unit edge
lengths, in the Euclidean plane. Let b, = 2 for { = 1,2,3. The optimal solution value
to the b-matching problem is 3. The weighted median problem in this case is to find
a point in the plane that minimizes the sum of weighted Euclidean distances to the 3
vertices. The optimal value is 2v/3, which is greater than 3.

Note, however, that for any metric space the optimal value of the weighted median
problem is greater than or equal to the optimal value of the respective b-matching
problem.

In spite of the lack of duality in the Euclidean planar case, we prove in this section that
the respective fractional b-matching problem (3) has an integer solution. We will then
demonstrate in Section 2.5 that the integrality property of the rectilinear and Euclidean
planar cases does not hold for higher dimensions.

We will need the following lemma dealing with the general b-matching problem.

Lemma 10. Let G = (V E) denote the complete undirected graph having V as its node
set. Each edge e = (v,u) € E is associated with a nonnegative real c,, and each node
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v € V is associated with a positive integer b,. Consider the b-matching problem (2),
and its linear relaxation, the fractional b-matching problem (3).
(1) There exists an optimal solution x* to (2) ((3)), such that all nodes, but possibly
one, are saturated, i.e., there exists a node vy, and x*(8(v)) = by, foreachv € V—{uv}.
(ii) Suppose that the edge weights {c.} satisfy the triangle inequality. If (3) has no
integer optimal solution, then (3) has an optimal solution x*, such that all nodes are
saturated, and each component of x* is an integer multiple of 1/2.

Proof. The first property follows directly from the nonnegativity of the edge weights
{c.}. To prove the second property consider a basic optimal solution of (3), x*, It is
well known (see [23]), that each component of x* is an integer multiple of 1/2. If all
nodes are not saturated we assume that node vg is the only unsaturated node in V. We
also assume that x* has the smallest saturation gap amongst all optimal solutions, that
are integer multiples of 1/2. If x* =0, for all edges e = (v,u), v # vo, u # vp, then
x* is integer, since x} = b,, for each edge e = (v, vp). Thus, suppose that there exists a
pair of nodes v,u, (v # vo, 4 # Ug), and x}, e = (v, u), is positive. The saturation gap
at vp is a positive integer, since it is equal to Y {b, ;v € V} —23 {x} :e € E}.

Finally consider the solution of (3), obtained from x* by subtracting 1/2 from x},
e = (v,u), and adding 1/2 to both x}, e = (v,v) and x}, e = (u,v0). (Since the
saturation gap at vy is at least one, this solution is feasible.) Since the edge weights
satisfy the triangle inequality the new solution is certainly optimal. Moreover, all nodes,
but possibly vy, are saturated, and the saturation gap at vg has decreased. This contradicts
the fact that x* has the smallest possible gap. [

While the duality result does not, in general, hold for the Euclidean plane, we now
show that an integrality result does hold.
We will need a few definitions. Let ab denote the directed closed line segment joining

two distinct points, @ and b, in the plane. A closed polygonal walk, P = (vy,...,v,),
is the union of the line segments (edges) viv2, V33, ..., Us—Un, UpU], joining n distinct
points v;.

If I, is the line containing ab, then the two rays that comprise the set [y \ ab are
called the extension rays (or, simply, extensions) of ab. We say that two line segments,
ab and cd, are in convex position if the lines containing these two segments intersect
at a point that is not contained in the interior of either of the two segments (i.e., the
closure of an extension of ab intersects the closure of an extension of cd).

We will need the following lemma, which may have independent interest.

Lemma 11. Let P and Q be closed polygonal walks in the plane, each having an odd
number of vertices. Then there exists an edge of P and an edge of Q such that the two
edges are in convex position.
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Proof. For simplicity, we assume that no three vertices of P U Q are colinear (in
particular, then, the vertices of P U Q are distinct), and that no edge of P is parallel to
an edge of Q; the lemma remains true in degenerate cases, but the details are tedious.

Let us begin with some notation. The lines of Q are simply the lines through edges
of Q. For a polygonal walk P = (vy,...,v,), we say that vertex v; induces the closed
convex cone C; whose boundary consists of the two rays (with apex v;) that are the
extensions of (directed) edges v;_1v; and v v;. If a line intersects a cone in a ray, then
we say that the line and the cone are incident.

The proof of the lemma is based on two simple claims:

Claim 1. Let P be a closed polygonal walk having an odd number of vertices. Then,
any line | that is not parallel to an edge of P must be incident on an odd number of
cones induced by P. (In particular, this implies that any line | must be incident on
some induced cone of P.)

Proof. Without loss of generality, assume that [ is the y-axis. Since [ is not parallel to
any edge of P, a vertex of P can be classified as one of three types, according to the
local geometry of the two incident edges: left (both incident edges are to the right of
the vertex), right (vice versa), or middle (otherwise). There must be an even number
of left/right vertices, since between any 2 left (resp., right) vertices there is a right
(resp., left) vertex. Thus, since P is odd, there are an odd number of middle vertices.
But, for any middle vertex, the induced cone necessarily includes the vertical direction,
so the y-axis will intersect such a cone in a ray. U]

Claim 2. Let C; be a cone induced by P. If C; is incident on an odd number of lines
of Q, then one of the two rays bounding C; must intersect an extension ray of Q.

Proof. Assume that there are an odd number of lines of Q incident on C;. Consider a
line [ of Q that is incident on C;. Consider the two vertices of Q that are on [. If neither
vertex lies in C; or if both vertices lie in C;, then an extension ray of Q (namely, one
of the two on /) must cross the boundary of C;, and we are done. Thus, we can assume
that, for any line [ of Q that is incident on C;, there is exactly one vertex, v, of Q on [
that lies within C;. Each vertex of Q has exactly two lines through it; thus, there is a
second line, I, of Q through v. If I is not incident on C;, then the extension ray of Q
that has apex v and lies on line I’ must intersect the boundary of C;, and we are done.
Thus, we can assume that each vertex of Q that lies within C; has both of its lines
incident on C;. But since each line of Q that is incident on C; must have exactly one
of its two vertices within C;, this implies that there are an even number of lines of Q
incident on C; — a contradiction. [J

Now, by Claim 1, each line of Q is incident on an odd number of cones induced by
P. Since there are an odd number of lines of 0, this implies that the total number of
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line-cone incidences is odd.

This implies that some cone, C;, of P is incident on an odd number of lines of Q.
But then, by Claim 2, a ray bounding C; must intersect an extension ray of @, implying
that there is a crossing of extensions. This concludes the proof of the lemma. [J

Remark 12. Janos Pach has suggested to us an alternate (but logically equivalent)
proof of this lemma; this same proof was previously discovered (but not published) by
M. Perles.! The problem arises in the study of “geometric graphs”, where the following
Turén-type question arises: What is the smallest number k(n) such that in any geometric
graph on n points in the plane that has at least k(n) edges, there must exist a pair of
edges in convex position? A simple construction shows that k(n) > 2n — 1. Kupitz
[16,17] conjectured that k(n) = 2n— 1. Recently, Katchalski and Last [ 15] have shown
that k(n) < 2n.

Theorem 13. Let V be a finite set of points in R%. Each point v in V is associated
with a positive integer b,. Suppose that 3y {b, : v € V} is even. Let G = (V. E) denote
the complete undirected graph having V as its node set. For each edge (pair of points)
e = (v,u), let c, denote the Euclidean distance between v and u. Then, the fractional b-
matching problem (3) has an integer optimal solution, where the number of its positive
components is at most |V|.

Proef. We assume, without loss of generality, that the points in V are distinct. (Other-
wise, identical points can be aggregated without affecting the evenness assumption on
the sum of the node weights.)

Moreover, for the sake of brevity, in order to avoid complicated and messy perturba-
tion arguments, we assume that the points in V satisfy the following general position
assumption: no three points of V are colinear.

If problem (3) has no integer solution, then by Lemma 10 there exists an optimal
solution to (3), which is an integer multiple of 1/2, and all nodes are saturated.

We will now prove the claim that if problem (3) has a saturated optimal solution,
then every basic optimal solution that is saturated is integer.

Let x* be a saturated basic optimal solution. Suppose that x* is not integer. x* is an
integer multiple of 1/2.

Let E* be the subset of edges associated with integer components of x*. Since x* is
not integer, E* is a proper subset of E. For each node v € V, let §*(v) be the subset
of edges of E* that are incident to v. Consider the instance of problem (3), obtained
by subtracting x*(6*(v)) from b, for each v € V. Refer to this instance as the reduced
problem. Let y* be the vector obtained from x* by equating to zero each component
x, such that e € E*. Then, y* is an optimal solution to the reduced problem, and all

1'We thank Noga Alon for pointing out the existence of Perles’ unpublished result and for acquainting us
with the relevant literature.
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its nonzero components are odd integer multiples of 1/2. To prove the claim it is now
sufficient to contradict the optimality of y*.

Consider the subset £’ of edges associated with positive components of y*. Since x*
is a basic solution, it follows from Pulleyblank [23] that the subgraph G’ = (V E’) has
no even cycles. In particular, all cycles are odd, and they are node disjoint. If G’ has
no cycles, it is a forest. Since all nodes are saturated, y* is integer. If G’ has exactly
one cycle, say C, then all edges which are not on C must be associated with integer
components of y*. But y* has no positive integer components. Therefore, all edges of
G’ are on C. Since C is an odd cycle, 2 > {y* : e € C} is odd. This is not possible,
since 2 3 {x;:e€ E—C} is even, and

Z{bU:UGV}=ZZ{y;‘:e€C}+ZZ{x::e€E~-C},

Thus, G’ contains two odd cycles C; and C,, which are node disjoint. The two cycles
correspond to two closed polygonal walks P; and P in the plane, each having an odd
number of vertices. From Lemma 11 there exist an edge of P; and an edge of P, such
that the two edges are in convex position.

To simplify the notation, suppose that V = {v1,v,...,0,}, and that P, = (v, 0, ...,
vg) and Py = (Ugqr,...,0p). Also, assume that the edges (v1,02) and (vpti,Uk42)
are in convex position. This implies that the four points {v, 2, Uky1, Uky2} are on the
boundary of their convex hull polygon, where v, is adjacent to vy, and vy is adjacent to
vr+1. Without loss of generality, suppose that their order along the boundary is given by
U1, U2, Uky1> Uks2. Consider the solution, z*, obtained from y* by subtracting 1/2 from
Yoywpy @nd from yg, . and adding 1/2 to the components Yioreryy a0d Yionioer2)*

Then, z* is a saturated feasible solution that is an integer multiple of 1/2. From the
assumption that the points in V are in general position, it follows that the convex hull
of the above four points is not a line segment. Therefore, it is easy to see that the
objective value at z* is larger than that of y*- contradicting the optimality of y*. This
completes the proof of the claim. From the above claim it follows that problem (3) has
an integer optimal solution. We can also use the above claim to show that there is an
integer optimal solution, where the number of its positive components is at most |V/.

If there is a saturated optimal solution, it follows directly from the above claim
that every saturated basic optimal solution is integer. If there is no saturated integer
optimal solution, then there is an integer optimal solution x* and a node vg, such that
all nodes but vy are saturated. Moreover, the saturation gap at vg is even. Consider
the problem obtained from (3) by reducing the (even) saturation gap from b,,. This
modified problem is a saturated optimal solution. Therefore, by the above claim each
one of its saturated basic optimal solutions is integer. This completes the proof of the
theorem. [

Remark 14. The proof above applies not only to the Euclidean metric, but to any
metric that obeys the simple property that a straight path between p and g is an instance
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of a shortest path in the metric. In particular, this geometric proof gives an alternative
method of proof for the integrality result of Theorem 8.

Remark 15. We have already noted above that the planar Euclidean median problem
is not the dual of the respective matching problem. However, we can use the integrality
result of Theorem 13. to define an appropriate dual. Problem (4) can be viewed as
the following relaxation of the weighted planar Euclidean median problem: Consider a
metric space extension of the Euclidean plane, which preserves the Euclidean distances
between the points in V. The extended weighted median problem is to find a point w in
such a space so that the sum of the weighted distances (with respect to the new metric),
of w from all points in V is minimized. For each v € V, z, will denote the distance from
w to v. The duality of (3) and (4), and the integrality result of Theorem 13, imply that
the extended weighted median problem is the dual of the b-matching problem for the
Euclidean planar case.

2.4. Geodesic metrics in the plane

We will next show that the integrality result of Theorem 13 holds if we replace the
Euclidean metric with the geodesic metric induced by a set of polygonal “obstacles” in
the plane. More formally, let F denote a bounded, closed, (multiply) connected region in
R?, whose boundary consists of a union of a finite number of (bounded) line segments.
(Such a set F is commonly called a polygonal domain.) We refer to the set F as the
free space; the complement, R?\ F, is a finite set S of (connected) polygonal obstacles.
Since F is bounded and connected, the obstacle set S consists of one unbounded (open)
polygon, and h bounded (open) simple polygons, where 4 is the number of holes in F.
Note that we consider the free space F to be closed (it includes its boundary). Let W
denote the (finite) vertex set for F (and, hence, for S)..

The geodesic distance with respect to F, dr(p,q), between point p € F and point
q € F is defined to be the (Euclidean) length of a shortest obstacle-free path from
p to g (i.e., the length of a shortest path joining p to g within the free space F). A
shortest path within F is called a geodesic(F) path. It is well known (see [1]) that
a geodesic(F) path between any two points of the free space is a simple (non-self-
intersecting) polygonal path, whose vertices (bend points) are among the set W of
obstacle vertices. In general, there may be many shortest paths between two points; in
the special case that F is a simple polygon (without holes), there is a unique shortest
path.

Theorem 16. Let F be a polygonal domain (free space) in the plane, having vertex
set W. Let U = {up,...,ux_1} and V = {uvg,...,v;_1} be finite sets of points in the
free space, having odd cardinalities k and |. Let P (resp., Q) be a closed polygonal
walk linking up the points U (resp., V) using geodesic(F) paths m(u;,uiz1) (resp.,
(v, Uj41)). Then there exists a closed polygonal walk R linking up the points U UV
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using geodesic(F) paths, such that the length of R is greater than or equal to the sum
of the lengths of P and of Q.

Proof. We make the following four nondegeneracy assumptions about the input: (1) F
equals the closure of the interior of F. (2) No three points of V = UUVUW are colinear.
(3) There is a unique geodesic( F') path between any pair of points V =UUVUW. (4)
No point w € UUYV lies on some geodesic path between a pair of points wi,w, € UUV
(w # wy,wy). (This is analogous to the assumption in the Euclidean plane (without
obstacles) that no three points are colinear.) By a perturbation argument, the proof can
be extended to handle the cases when these assumptions do not hold, but the details are
tedious and omitted here.

Let VG denote the visibility graph whose node set is V = UUV U W and whose edges
(called VG-edges) connect two nodes if and only if the straight line segment joining
the two nodes is contained in the free space F. By our nondegeneracy assumption (2),
a VG-edge intersects no points of V other than at its endpoints. Since F is closed, the
VG-edges include each edge (line segment) of the boundary of F. Any geodesic path
between two nodes in V must lie on the visibility graph (i.e., consist of a union of
segments that are VG-edges); see [1]. In particular, the geodesic paths 7 (u;, u;r1) and
m(vj,v;41) that constitute the “edges” (call them g-edges) of the walks P and @ must
lie on the visibility graph.

For a set of three distinct points z;,2,23 € U UV, let ¥(z1,22,23) denote the
closed (oriented) Jordan cycle going from z; to z along 7(zy,22), from 2 to z3
along 7(22,23), and then from z3 back to z; along 7(z3,z1). The fact that the three
paths, 7m(2y,22), 7(22,23), and 7(z3, z1) form a closed Jordan curve follows from our
nondegeneracy assumption, which ensures that any two geodesic(F') paths that intersect
do so in a connected set (i.e., a single subpath).

From our assumptions, we know that y(z;, 22, z3) separates R? into two regions - a
bounded region, which we call a geodesic triangle, and an unbounded region. We say
that z3 € U U V lies to the left of (z1,22) if the region to the left of y(z1,22,23) is
bounded (a geodesic triangle). (The region will necessarily have nonempty interior,
from our nondegeneracy assumptions (1) and (4).) We let L(z;,z2) denote the set of
all such points z3 € UUV. Similarly, we say that z; € UUV lies to the right of (21, 22)
if the region to the right of y(z, 22, 23) Is bounded, and we let R(z;, z2) denote the set
of such points z3 € UU V.

The following definitions apply to distinct points z;, 22, 23,24 € UU V. We say that
(21, 22) points at w(z3,24) if 73 € L(z1,22) and z4 € R(z1,22), or z3 € R(z;,22)
and z4 € L(z(, 7).

We say that 7(z;,22) and 7 (z3,24) cross each other if they intersect (in a con-
nected subpath) and the ordering of the points about the union 7 (21, 22) Um(23,24) is
21,23, 22, 24 (in either clockwise or counterclockwise traversal of the union). Note that
(21, 22) and (23, 24) cross if and only if 7 (2, z2) points at 77(23, 24) and 7 (23, 24)
points at 7(z;, 22).

We say that g-edge 7(z1, z2) and g-edge (23, z4) are in convex position if w(z;, 22)
does not point at 7(z3, 24) and 7(z3,24) does not point at 7(z1,2z2). (To motivate
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this definition, note that it is equivalent to saying that the g-edges do not cross and
the “geodesic convex hull” of the endpoints A = {z1,22, 23,24}, CH(A), has all four
endpoints on it. CH(A) is the simply-connected closed region having minimum-length
perimeter, such that A C CH(A) C F.)

Consider a g-edge ¢ = m(u;, u;41) of P and a g-edge f = m(v;,vj41) of Q. There
are four cases for any pair (e, f):

(1) e points at f and f points at e, implying that e and f cross; or

(2) e points at f and f does not point at e;

(3) f points at e and e does not point at f;

(4) e does not point at f and f does not point at e, implying that e and f are in

convex position.

Now, if P and Q are both odd cycles, then there are an odd number of pairs (e, f).
Our goal is to prove that the number of pairs (e, f) corresponding to case 4 above
is odd, which, in particular, will show that there is at least one such pair in convex
position. Thus, it suffices to show that each of the cases 1-3 arise an even number of
times. This is done in the following two claims.

Claim 1. There are an even number of pairs of crossing g-edges, e = w(u;,u;y) of P
and f=m(v;,vj41) of Q.

Proof. Since any pair of g-edges intersect in a connected set (or not at all), we can
perturb the g-edges of P and of @ so that in the arrangement of perturbed g-edges of
P and Q, any pair of crossing g-edges share exactly one point, any pair of adjacent
g-edges along P (Q) share exactly one point, while all other pairs are disjoint. (In
particular, two non-adjacent g-edges that coincide along a subpath, but do not cross, can
be perturbed so that they are disjoint.) Since P is a closed walk, the above perturbation
implies that the planar arrangement of P is a planar graph, with all of its nodes having
an even degree. Thus, the planar dual of this arrangement (with nodes corresponding to
the 2-faces) is bipartite, and hence can be 2-colored. Now, if we start at the vertex vg
of O and walk along the closed curve Q until we return to vg, we will cross from face
to face in the arrangement of P. If we cross from a face of one color to a face of the
same color, then the total number of g-edges of P that are crossed is even. We call such
a crossing an even crossing. (This can happen only if the two faces share a common
vertex of the arrangement of P, but do not share a common 1-face.) If we cross from
a face of one color to a face of the other color, then the number of g-edges of P that
are crossed is odd. Such a crossing is called an odd crossing. The total number of odd
crossings must be even, since we will end up back in the cell where we started (namely,
the 2-face containing vg). Thus, the total number of crossings of g-edges of P by the
curve Q is even. Now, the claim follows directly from the fact that a g-edge of QO can
intersect a g-edge of P in at most one point. [

Claim 2. A g-edge f = w(vj,v;1,) of Q points at an even number of g-edges m(u;, u;y1)
of P. Similarly, a g-edge e = w(u;,uiy1) of P points at an even number of g-edges

7 (vj,vj+1) of Q.
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Proof. A vertex u; of P is either left of f = 7 (v;,v;,)) or right of f = 7(v},v;41).
(Here, we are invoking the nondegeneracy assumptions (3) and (4).) Starting with
vertex ug of P, consider walking along P until we return to ug. Each time that we go
from a vertex that is left (resp., right) of 7(v;,v;11) to a vertex that is right (resp.,
left) of 7 (v;,vj41), the corresponding g-edge of P is pointed at by 7 (v;,v11). Since
P is a closed walk, it is easy to see that the number of such transitions is even, implying
the claim. O

This allows us to conclude that:

Lemma 17. There exist g-edges e = w(u;,u;11) of P and f = mw(v;,vj.1) of @ that
are in convex position.

Finally, we claim that

Claim 3. If e = w(u;,u;21) and f =7 (vj,vj11) are in convex position, then either
(a) r(u;,vjq1) intersects w(vj, uip1), or
(b) m(uy,v;) intersects w(uiry, vj41).

Proof. Since ¢ and f are in convex position, we know that e does not point at f, and
S does not point at e. Assume, without loss of generality, that v;, v, € L{u;,uip1).
If (a) and (b) both fail to hold, then we must have a planar embedding of the two
geodesic triangles, y(u;, iy 1,0;11) and y(u;, uir1,v;). Since they share the g-edge e =
7r(ug, ui11 ), we must have either v; contained in the region bounded by y(u;, uiz1, vj41)
or v+ contained in the region bounded by ¥ (1, ui11, v;). But, in either case, this implies
that u; and u;;; do not lie on the same side of f =7 (v;,vj41) (bothin L(v;,vj41), or
both in R(v;,vj41)), contradicting the fact that f does not point at e. [

From the above claim, and the lemma, we know that there exist g-edges e € P
and f € @ such that either (a) or (b) holds; in particular, we may assume that
e = w(uj,uiy1) and f = w(vj,v541) exist such that 7(u;, v, ) intersects 7w (v, uip()
at some point ¢ € P N Q. By performing an “exchange” at point ¢, we can construct a
new closed walk, R, as follows: Starting at ug, follow P to u;, then follow 7(u;, vj4))
to v;11, then follow Q to vj, then follow 7 (v;, ui41) to ui.y, then follow P back to ug.
The fact that R is longer than or equal to the sum of the lengths of P and of Q follows
from the triangle inequality. In particular, the exchange has saved length

d(ui uivy) +d(vj,0541),
while adding length
d(ui,vjy1) + d(vj, 1) = d(ui, ¢) +d(c,v41) +d(vj,¢) +d(c,up1)
Zd(upuipr) +dj, 0501). al

Theorem 16 can be used to generalize Theorem 13 to the case where for each edge
(pair of points) e = (v,u), ¢, is the Buclidean length of a geodesic path connecting v
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and u. Following the proof of Theorem 13, we observe that in the case of the geodesic
metric Theorem 16 enables us to (successively) replace a pair of odd cycles by an
even cycle whose length is equal to or greater than the sum of the lengths of the two
odd cycles. A solution with no odd cycles can be represented as a convex combination
of integer solutions. For the sake of brevity we skip the formal technical details. For
completeness we state the generalized theorem.

Theorem 18. Let F be a polygonal domain (free space) in R?, and let V be a finite
set of points in F. Each point v in V is associated with a positive integer b,. Suppose
that Y {b, : v € V} is even. Let G = (V E) denote the complete undirected graph having
V as its node set. For each edge (pair of points) e = (v,u), let ¢, denote the Euclidean
length of a geodesic(F) path between v and u. Then, the fractional b-matching problem
(3) has an integer optimal solution, where the number of its positive components is at
most |V|.

2.5. Higher dimensions

We now consider the higher dimensional versions of the problems discussed above.
First, we note that the duality result of Theorem 8 does not extend to the case where
the points {v;} are in R and the metric is rectilinear. This is demonstrated by the next
example.

Example 19. Consider the four points vy = (—1,1,-1), v, = (1,1, 1), v3 = (1,1,
—1)and v4 = (—1,—1,1). Let b,, = 1,i=1,2,3,4. The solution value to the b-matching
problem is 8, while the optimal solution value to the respective median problem is 12.

Furthermore, we also show that the integrality property does not hold in R3, even if
there are an even number of nodes and the weights {b,} are all 1 (i.e., even for the case
of maximum weight perfect matching on an even set of nodes). Example 20 considers
the Euclidean case, while Example 21 considers the rectilinear case.

Example 20. Consider the following six points in R3: v; = (0,1,0), vy = (1.4,0,0),
vy =(0,—-1,0), v4 = (0,0,0), v5 = (1.4,0,—-1), vg = (1.4,0, 1). Then, each of the two
odd cycles, P = (vy,v2,v3) and Q = (v4,0s,Ug), has Euclidean length 2(1 + V2.96),
implying that the fractional solution having x, = 1/2 for edges e in P or , and x, =0
otherwise, has objective value 2(1 + v/2.96). On the other hand, it is easy to check that
every perfect matching on these six points has length less than 2(1 + v2.96).

Example 21. Consider the following six points in R%: v = (0,0,2), vp = (1,1,1),
vz = (2,0,0), vg = (1,0,1), vs = (2,1,2), vg = (0,1,0). Then, each of the two odd
cycles, P = (v(,v;,03) and Q = (v4,0s,06), has rectilinear length 10, implying that the
fractional solution having x, = 1/2 for edges ¢ in P or Q, and x, = 0 otherwise, has
objective value 10. On the other hand, it is easy to check that every perfect matching
on these six points has length at most 9.
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3. An extended b-matching problem

In this section we generalize the results of Section 2.1, and consider the following
extended model.

Referring to problem (3) above, where ¢, is defined as the respective tree distance
d(v,u), suppose that the degree coefficient b, of each node v can be increased linearly
provided that a certain nonnegative penalty p, is paid. The objective is now to maximize
the net reward obtained by subtracting the total penalty from the weighted matching.
Specifically, consider the following problem:

Maximize Z CoXe — Zpu)’u

e€E vev
st. x(8w))<b,+y, YeY (6)
x20, y=20

We will extend Theorem 3 and show that problem (6) has an integer optimal solution.
The dual linear program of (6) is given by

Minimize Z b,z,
vev
st.  z,+2z, 2d(v,u) for all pairs v, u, 7

z, € p, for all nodes v,

z 2 0.

Again, using the general results in [6], we note that problem (7) is a reformulation of
the following restricted weighted median problem. Find a point in A(T) whose distance
from each node v is at most p,, and such that the sum of weighted distances of all nodes
to the point is minimized. The optimal solution is called a restricted weighted median. If
an unrestricted median satisfies the distance constraints it is optimal. Otherwise, suppose
that the set of all points on the tree which satisfy the distance constraints is nonempty.
It is easily observed that this feasible set is a connected set (closed subtree) of A(T).
The optimal restricted weighted median is the closest point to the unrestricted weighted
median in the feasible set.

Theorem 22. Suppose that b, is a positive integer for each v € V. If problem (6) has
a finite optimal value, then there is an optimal integer solution x*,y* to problem (6),
where the number of positive variables {x*} is at most |V|, and the number of positive
variables {y;} is at most 1.

Proof. Let ¢ be a point on the tree where the optimal restricted weighted median is
located. In particular, using the above duality the optimal value of (6) and (7) is
> {b,d(v,t) : v € V}. Suppose without loss of generality that ¢ is a point on some
edge (v,u) of T and ¢ is not the unrestricted weighted median v*. Let v’ be such that
d(v',t) = p,» and the point ¢ is on the unique path connecting v* and v'. Let V/ denote
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the set of nodes in V having the point ¢ on the unique simple path connecting them to
v*. Define

B =Z{b" cve VL

By definition we have B’ < B/2. Next define y,r = B —2B’. Add y, to the weight b,..
It then follows from Theorem 2 that each point on the edge (v, #) which contains ¢, is
an optimal unrestricted median with respect to the modified set of weights {b,}, v # v/,
{by + y,+}. Using Theorem 3 for the modified weights we conclude that there exists an
integer matching x*, with at most |V| positive components such that

() Kb, Yv =+,
x*(8(v")) <by +B —2B',

and
D cexi =Y bd(v,0) + (B—2B"Yd(',1). (8)
ecE vev
Define y* by
. B —2B' ifv=1,
= {O otherwise.

Then (x*,y”) is a feasible solution to problem (6) with objective value of

Zcex: — (B =2B"Yd(/ ,1) = Zcex: ~ (B —2B")p,.

e€EE eEE
From (8) this objective value is equal to the optimal value of the restricted weighted
median problem, problem (7). Using the duality of problems (6) and (7), we conclude
that (x*, y*) satisfies the statement of the theorem, [

4. The roommates problem

Consider the roommates problem defined in the Introduction. Let V indicates the group
of n boys. The boys’ preferences are defined according to the following scheme, Each
boy is represented by some point v of a given metric space X. For each pair of boys v, u
let d(v,u) denote the distance between them. For simplicity suppose that the n(n—1)/2
distances between all pairs of boys v, u, v # u, are distinct. We consider the case where
alternatives are preferred more as they are farther from each boy’s location. Each boy
ranks all other boys by their distances from him, where the highest preference is given
to the farthest one. The roommate problem with these preferences is easily observed to
have a unique stable matching: First match the unique pair of boys whose distance is
the diameter of the set of n representing points, i.e., the pair v, u corresponding to the
largest distance. Remove this pair of points from the set, and repeat the process with the
remaining set. Having established the existence of a stable matching, we follow Granot
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[10} and analyze a cooperative game associated with the roommates problem. (We con-
sider the multiple version of this roommates problem.) This game with side payments,
(V; f), is defined by its characteristic function f : 2V — R. Suppose that G = (VE) is
the complete undirected graph with node set V. Each node v € V represents a boy.

For each nonempty subset S of V (coalition), let

£(S) =Max{Zcexe sst. x(8(v)) < b, for each v € S,
ecE

x(6(v)) < Oforeachv e V-3,
x >0 and integer}.

The core of the cooperative roommates problem game, C[(V; f)], is defined by
ClviNl= {y= (yo:v€V) :Z{y,, cveSH> f(S) vYScy

and 3 {y,:v€V}= f(V)}.

Granot [10] considered the cooperative game corresponding to the classical matching
model, where each player (boy) v is to be paired with a single roommate, i.e. b, = 1 for
each v € V, and demonstrated that the core might be empty when the {c,} coefficients
are arbitrary nonnegative reals. The games corresponding to Example 7 and Example 21
show that the core might be empty even when these coefficients satisfy the triangle
inequality and |V| = 6. (The core of any game with |V| =4 is nonempty if the triangle
inequality holds.) We now use the above integrality results to prove that the core is
nonempty if the {c,} coefficients are defined by any of the distance functions discussed
in Section 2.

Theorem 23. Let G = (VE) be the complete undirected graph with node set V. Each
edge e € E is associated with a nonnegative weight c,, and each node v € V is
associated with a positive integer b,. Suppose that the fractional b-matching problem
(3) has an integer optimal solution. Let z* = (g} : v € V) be an optimal solution to
problem (4). Then the vector y = (y, = byz) : v € V), is in the core C{(V; f)] of the
respective roommates problem game.

Proof. Given the game (V; f) defined above we consider the fractional roommates
problem game, (V; f*), where for each S C V,

S =Max{Zcexe ;s x(8(v)) £ b, for each v € §,
e€E

x(6(v)) <0foreachv eV —S§,
X 20}.

Since we have dropped the requirement that x should be integer, we have f*(S) >
F(S) forall § C V. Moreover, since (3) has an integer optimal solution f*(V) = f(V).
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Therefore, C[(V; f*)] C C[(V; f)]. Since the game (V; f*) can be viewed as a linear
production game, it follows from [22] that if z* is an optimal solution to problem (4),
the vector y = (y, = b,z : v € V) is in the core of the game (V; f*). This completes
the proof of the theorem. U

Remark 24, If b, is not constant for all v € V, the core C[(V; f)] may contain vectors
that cannot be generated from the solutions to problem (4) by the above process. As
an example consider the case of a 3-node tree, V = {v1,v2,03}, where b, = b,, = 1,
b, =2, and d(v1,v2) =d(v;,v3) = 1. The vector (0,1,2) is in the core, but there is no
optimal solution z to problem (4) with z,, = 0. The example given in Remark 5 shows
that the core C[(V; f)] may be empty if the sum of all {bu} coefficients is odd and
the b coefficient of the weighted median is zero.

Theorem 25. Let G = (VE) be the complete undirected graph with node set V.
Each edge e € E is associated with a nonnegative weight c., and each node v € V is
associated with a positive integer b,. Assume that b, = V', for all.v € V, for some positive
integer b'. Suppose that the fractional b-matching problem (3) has an integer solution.
If y is a vector in C[(V; f)], then the vector y/b is an optimal solution of (4).

Proof. We prove that if b, = &' for each v € V, then for each vector y € C[(V; )],
the vector z = y/b’ is an optimal solution to problem (4). If y is in the core, then it
follows from the duality of (3)-(4) that 5 _{y, : v € V} is equal to the optimal objective
value of problem (4). But S {0z, : v € V} = 3 {y, : v € V}. Thus, it is sufficient
to prove that z satisfies the constraints of problem (4). The monotonicity of f implies
that y is nonnegative. Therefore, by definition, z is nonnegative. We have to prove that
2y + zu = d(v,u) for each pair of nodes v, u. Indeed, consider the coalition S = {v, u}.
Since bz is in the core we have bz, + bz, = f(S). But f(S) is easily observed to be
equal to b'd(v,u). [

It may happen that the set of optimal matchings corresponding to the game discussed
in Theorem 23 has no stable matching with respect to the preferences defined above.
This is demonstrated by the next example.

Example 26. Consider a 6-node path, with d(v;,v;) =5, d(vi,viy1) = 1,1=2,3,4,5.
Then add a new node, v7, and connect it to v; with an edge of length 5. The node v3
is the unique median of this tree. The nodes v; and v; should be matched in any stable
matching. However this is not the case in any optimal matching to problem (3).
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