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Abstract

In a recent series of papers a new type of objective function in location theory, called ordered median function, has been
introduced and analyzed. This objective function unifies and generalizes most common objective functions used in location
theory. In this paper we identify finite dominating sets for these models and develop polynomial time algorithms together
with a detailed complexity analysis. (© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a recent series of papers a new type of objec-
tive function in location theory, called ordered me-
dian function, has been introduced and analyzed, see
Francis et al. [8], Nickel [18], Nickel and Puerto [19],
Puerto and Fernandez [21,22] and Rodriguez-Chia et
al. [23]. In this paper we develop algorithms for mod-
els using this objective function which is a general-
ization of the most popular objective functions: me-
dian, center, centdian, k-centrum, amongst many oth-
ers (see Mirchandani and Francis [17] and Slater [24]
for a description of these functions). We study the or-
dered median problem on several metric spaces: net-
works with positive and negative node weights, tree
networks and the rectilinear space R¢, d > 2. More-
over, we discuss the discrete versions and also the
problem defined on directed networks.

* Corresponding author,
E-mail address: atamir@math.tau.ac.il (A. Tamir).

Formally, the problem is defined as follows. Let X
be a metric space equipped with a metric d(.,.). De-
note by ¥V = {v1,...,v.}, ¥V C X, the set of exist-
ing facilities (demand points). Each v; is associated
with a weight w;, i = 1,...,n. Note that we do not
require w; to be positive. In those cases where w; is
negative we speak of obnoxious facilities [3]. Also
given is a vector A = (4y,...,4,) with non-negative
entries.

For each xe€X define d;(x)=wid(x,v;), i =
1,...,n, d(x):=(d|(x),...,dn(x)) and

d<@x)=(dayx),...,dwx)),

where d)(x) is the ith smallest element in the
multi-set {wid(x,v;)}5,.
The objective is to find x € X minimizing

MA(X)izz )u,-d(i)(x).

i=1
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Table 1
Summary of complexity results for ordered median problems

Complexity bounds

Networks
Undirected Directed Rectilinear R? Discrete
General Trees
General® O(mn?logn) O(n3logn) O(mnlogn) O(n¥+'1ogn) O(n?logn)
ordered median
Concave O(n*logn) On*)d O(n? log n)
ordered median
Convex O(mn*logn) O(nlog? n) O(n? logn) O(nlog® n) O(nlog? n)f
ordered median
k-centrum?® O(mnlogn)° O(nlogn) O(n? logn) O(n)® O(nlog?n)8

2 Arbitrary node-weights.
®Non-negative node-weights.
°Unweighted. See [25].
dUnweighted.

¢See [20].

fDiscrete tree.

gUnweighted rectilinear planar case.

An optimal solution to this problem is called an
ordered median. 1f w; 20, for j = 1,...,n, and
Ay €< 4, (A = 2 4,), we will call the model
convex (concave). Notice that the classical center
and median problems correspond, respectively, to the
cases where 4 =(0,...,0,1), and 4 =(1,...,1,1).
The centdian and the k-centrum models are derived
by setting A=(y, ..., 1, 1),and A=(0,...,0,1,.%,1),
respectively, (u is a positive number bounded by 1.)
Note that the four special cases are convex when
w; 20, forj=1,...,n

The rest of the paper is organized as follows.
In Section 2 we study the single facility ordered
median problem in general undirected and directed
networks and present O(mn? logn) and O(mn logn)
algorithms, respectively. For (undirected) trees the
induced bound is O(n*logn). We show how to im-
prove this bound to O(n log2 n) in the convex case.
Section 3 deals with the rectilinear ordered me-
dian problem in R?, for a fixed d. We present an
O(n log2dn) algorithm for the convex case. Finally,
in Section 4, we develop some polynomial results
on the discrete version of the ordered median model.
Table | summarizes the results presented in this

paper.

2. Finding the single facility ordered median ¢f a
general network

Let G = (V,E) be an undirected graph with node
set ¥V = {v1,...,0,} and edge set E = {ey,...,en}.
Each edge ¢;, j = 1,2,...,m, has a positive length
{;, and is assumed to be rectifiable. In particular,
an edge ¢;:=[v,,v,] is identified with an interval of
length [; so that we can refer to its interior points.
Let A(G) denote the continuum set of points on the
edges of G. We view A(G) as a connected and closed
set which is the union of m intervals. Let P[v;, ;]
denote a simple path in 4(G) connecting v; and v;.
We refer to interior points on an edge by their dis-
tances along the edge from the two nodes of the
edge. The edge lengths induce a distance function on
A(G). For any pair of points x, y € 4(G), we denote
by d(x, y) the length of a shortest path P[x, y], con-
necting x and y. A(G) is a metric space with respect
to the above distance function. We refer to A(G)
as the network induced by G and the edge lengths
{l;}, j=1,...,m. A closed and connected subset of
A(G) which does not contain cycles is called a sub-
tree. If a subtree is contained in an edge it is called a
sub-edyge.
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In this section we deal with the case where X =
A(G). However, the definition below applies for any
metric space X

For all v;,v; €X, v; # vy, wiw; #0 define

EQ,-j::{x EXI Wid(U,',X) = wjd(vj,x)}

and let EQj; be the relative boundary of EQ;;. Define
EQ:= y EQ;;. The points in EQ are called equilib-
i#]

rium points of X . Note, for example, that in the planar
rectilinear case the equilibrium set coincides with the
boundary of the concept of a bisector. The properties
of these sets are well-known. The interested reader is
referred to [12,19,23].

A point x on an edge e = [v;, v;] € E is called a
bottleneck point of node vy, if wy # 0, and

d(x, vy = d(x,v;:) + d(v, v ) = d(x, v7) + d vy, 1),

Let BN; denote the set of all bottleneck points of a
node v; € ¥ and let BN:=|J7_, BN; be the set of all
bottleneck points of the graph.

Define NBN:=\J" | BN, A point in NBN is

w,lO
called a negative bottleneck point.

To introduce our algorithmic results we first iden-
tify finite sets of points containing an ordered median.
Such sets are called finite dominating sets (FDS) [11].

Nickel and Puerto [19] proved that VUEQ is an FDS
for the ordered median problem with non-negative
weights. When some of the node weights are nega-
tive the results in [19] may not hold. However, it is
possible to extend the result as follows:

Theorem 1. The set VUEQ UNBN is a finite domi-
nating set for the single facility ordered median prob-
lem with general node weights.

Proof. Let G be an undirected graph. Augment G by
inserting the equilibria in £Q and negative bottleneck
points from NBN as new nodes. A(G) is now decom-
posed into sub-edges where each sub-edge connects
two adjacent elements of V' U EQ U NBN.

From the definition of equilibrium points, it follows
that there exists a permutation of the weighted dis-
tance functions in {d;(x)}}_; which is fixed for all the
points x on every sub-edge. Therefore, the ordered me-
dian function reduces to the classical median function

on every sub-edge. Since we include the negative bot-
tleneck points NBN in the decomposition of the net-
work, the distance functions are now piecewise linear
and concave on every sub-edge. Therefore the desired
result follows. O

We next show how to solve the ordered median
problem on a general network. We solve the problem
independently on each one of the edges, in O(n? log )
time. Restricting ourselves to a given edge e; =[vy, v,],
from the above theorem we know that there exists a
best point x' with respect to the objective function,
such that x* is either a node, an equilibrium point
or a negative bottleneck point. Hence, it is sufficient
to calculate the objective at the two nodes of e;, the
set K; of O(n*) equilibrium points, and the set L;
of O(n) negative bottleneck points on e;. (Note that
if w; 20, j=1,...,n, we can ignore the bottleneck
points.)

Generating the bottleneck and equilibrium points
on e;: Let x denote a point on ¢;. (For convenience
x will also denote the distance, along e;, of the point
from vy.) For each v; € V, d(x,v;) is a piecewise lin-
ear concave function with at most one breakpoint.
(If the maximum of d(v;,x) is attained at an interior
point, this is a bottleneck point.) Assuming that all
internodal distances have already been computed, it
clearly takes constant time to construct d;(x) and the
respective bottleneck point. If w; > 0, d;(x) is con-
cave and otherwise d;(x) is convex. To compute all
the equilibrium points on e;, we calculate in O(n?) to-
tal time the solutions to the equations d;{x) = di(x),
where v;,v; € V, v;# k. To conclude, in O(n?) to-
tal time we identify the set L} of O(n) bottleneck
points and the set K; of O(n*) equilibrium points. Let
Ny ={v,n}ULF UK.

Computing the objective function at all points in
N;: First we sort in O(|N;| log |N;|) time the points in
N;. For any x in the interior of the sub-edge connecting
x, and xz,, where x,,x,,| are two consecutive ele-
ments in the sorted list of N;, the order of {d;(x)}}_,
does not change. In particular, the objective value at
Xg41 can be obtained from the objective value at x4 in
constant time. The first point in the sorted list is x = v,
and the objective value can be obtained in O(n logn)
time. Therefore, the time needed to compute the ob-
jective for all points in N, is O(nlog n + |N;| log |N;)).
To summarize the total effort needed to compute a best
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solution on g; is
O(n® + nlogn + [Ny log |N;|) = O(n* + |N;| log [Ni]).

The time to find a single facility ordered median
of a network is therefore O(mn® + mn®logn) =
O(mn? logn).

The above complexity can be improved for some
important special cases discussed in the literature.
For example, if w; = 0 for all v; €V, then we can
disregard the bottleneck points although this does
not improve the complexity. Moreover, if in addition
Al = Ay = -+ = Ay, then an optimal solution on ¢; is
attained either at v, or v, [19]. The objective at each
node can be computed in O(nlogn) and therefore, in
this case, the optimal single facility ordered median
point is obtained in O(n? log n) time.

The ordered median problem on a directed graph
can be treated similarly to the undirected case as
the following analysis shows. Let Gp = (V,E) be
a (strongly connected) directed graph. Following
Handler and Mirchandani [9], the weighted dis-
tance between a point x € A(Gp) and v; € V' is given
by d(x,v;) = wi(d(x, ;) + d(v;,x)). Denote d; i(x) =
d(x,v;), fori=1,...,n,and d(x) := (d\(x),...,dx(x)).
The definitions of the other concepts carry over from
the undirected case.

The ordered median problem on a directed network
can be written as

min Ma(x):=)_ Jidp)(x). (1)
i=1

xEA(Gp)

First, we make some observations on the above dis-
tance functions.

Let e = [v;,1;] € E be an edge of the directed graph
Gp, directed from v; to v, and x a point in the interior
of this edge. Then for a node v, € V, the distance
function dy(-) is constant on the interior (v, v7) of
the edge [v;,v;]. Moreover, if wy > 0 (respectively,
wy < 0) then dk(v ), dk(vj) di(x) (respectively,
di(v)), di(v)) = dy(x)) for all x € (v;,v;). With this
observation we can derive a finite dominating set for
this problem as in the undirected network case.

Theorem 2. The ordered median problem on directed
networks with non-negative node weights always has
an optimal salution in the node-set V. If in addition

AM>0and w; >0, Vi=1,...,
solution isin V.

n, then any optimal

Proof. Let e=[v;,v;] € E and let x be an interior point
of the edge [v;, v;]. It is sufficient to show that

max {Ma (), Ma())} < Ma(x) =Y Medy(x). (2)
k=1

Without loss of generality, we prove M (v;) < M4(x).
Let us consider v; and let vy €V be an arbitrary
node. From the observation above, we know that
di(vi) <di(x), k=1,...,n. Therefore, d(v;) < d(x),
and by Theorem | in [8] also d<(v;) <d<(x). Eq.
(2) follows by taking the scalar product with A.

Next, suppose that 4; >0, and w; > 0, for j =
l,...,n. Therefore, we obtain 0 < d(;(v;) < d(;(x),
for j = 1,...,n, and 0 = d(;)(v;) < d)(x). Hence,
since 4; > 0, we get M4(v;) < M4(x) and the result
follows. O

From this result, the case of non-negative node
weights can be solved in O(n? logn) time by evaluat-
ing the function at each node of the network.

The case with positive and negative weights can
also be solved by evaluating at most O(m +n)= O(m)
points in A(Gp). (Since for strongly connected graphs
m = n.) Indeed, since the functions dj(x) are constant
in the interior of an edge we only need to evaluate
the objective function at an arbitrary interior point x,
of each edge e€ E. Based on the previous analysis
we can solve the problem with positive and negative
weights in O(mn logn) time.

We summarize the above results in the following
Theorem.

Theorem 3. An ordered median of an undirected
(directed) network can be found in O(mn®logn)
(O(mnlogn)) time. Moreover, if w; =0, for all
vy €V, and in addition for the undirected case
M =2 Ay =0, then the complexity bounds re-
duce to O(n? logn).

2.1. Finding the single facility ordered median of a
tree

Throughout this section we will use the concept of
convexity on trees as defined in Dearing et al. [6].
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Rodriguez-Chia et al. [23] showed that when w; = 0,
fori=1,...,n, the ordered median function is convex
on the plane with respect to any metric generated by
norms, if the A-vector satisfies 4 <A, <-+- € 4,.
Next we prove an analogous result for trees.

Lemma 4. Let T = (V,E) be a tree network and
w20, i=1,...n If i <l < - <4, then the
Sfunction M4(-) is convex on T.

Proof. Let A satisfy 4, <4, <--- < 4,. By [6],
wid(x,v;) i1s convex for x€ A(T) and i = 1,...,n.
Denote by I1(n) the set of all permutations of the
set {1,...,n}. Let 6 € [1(n) be a fixed permutation
of the set {1,2,...,n} and x € A(T). The function
Fox) =31 Aiwayd(x, v5()) is convex. Therefore,
the function

n
X)= max Aiwgnd (X, Uy
g(x) TEHW{ZI We(yd (x r(:))}

=

is also convex as maximum of convex functions,

Since the 1;’s are non-decreasing, the permutation
o € I1(n), which sorts the weighted distance functions
w;d(x,v;) in the vector d ¢ (x) for a given x € A(T), is
identical to the permutation t*, which maximizes g(x)
for this x (see e.g. Theorem 368 in Hardy et al. [10]).
Therefore, we obtain

n
M) = {Z ot ”““)}

and hence the desired result follows. O

For trees the same discretization results as for gen-
eral networks hold with the additional simplification
that we have no bottleneck points on trees and there-
fore V' UEQ is a finite dominating set for the problem
with arbitrary weights.

From the analysis in the previous section (since
m=n — 1), we can conclude that a best solution on a
tree can be found in O(n* logn) time. Improvements
are possible for some important cases.

2.1.1. The unweighted case: w; =w for all v, € V
In this case, each pair of distinct nodes, vj, v con-

tributes one equilibrium point. Moreover, such a point

is the midpoint of the path P[v;, v;], connecting v; and

v Thus, 37, p [Ni| = O(n?). Let T(n) denote the
total time needed to find all the equilibrium points
on the tree network. Then from the discussion on a
general network we can conclude that the total time
needed to solve the problem is O(T(n) + n?logn +
Yo e INillog |Ni|) = O(T(n) + n*logn).

We next show that T(n) = O(n?logn). More
specifically, we show that with the centroid decom-
position approach, in O(logn) time we can locate
the equilibrium point defined by any pair of nodes
{U,‘, Dj}.

In the preprocessing phase we obtain in O(nlogn)
total time a centroid decomposition of the tree T' [16].
In a typical step of this process we are given a subtree
T’ with g nodes, and we find, in O(g) time an un-
weighted centroid, say v/, of T/, We also compute in
O(g) time the distances from ¢/ to all nodes in T”. v’
has the property that each one of the connected com-
ponents obtained from the removal of v/ from T’ con-
tains at most ¢/2 nodes.

Consider now a pair of nodes v; and v; and let
be a positive number satisfying » < d(v;, v;). The goal
is to find a point x on the path P[v;,v;] whose dis-
tance from v; is ». (The equilibrium point is defined
by r =d(v;,v;)/2.) We use the above centroid decom-
position recursively. First, we consider the centroid,
say vy, of the original tree T. Suppose that v; is in a
component 7 and v; is in a component 77, If T/ =T"
we proceed recursively with 7’. Otherwise, vy is on
Plvg, v;]. 1fd(v;,vr) 2 7, xisin T’. We proceed recur-
sively with T’ where the goal now is to find a point
on the path P[v;,v;] whose distance from v; is r. If
d(vi,vp) < r, xis in T” and now recursively we pro-
ceed with T looking for a point on P[vy,v;] whose
distance from v, is d(v;, v;)—r. This process terminates
after O(logn) steps, each consuming constant effort.
At the end we locate an edge containing the point x on
P[v;, v;] whose distance from v; is exactly r. The point
x is found in constant time solving the linear equation
di(x) =r.

A further improvement is possible if we assume
wi=w>0forallyycVanddy 24, 2 22,20
From the previous section we know that in this case
it is sufficient to compute the objective function at the
nodes only, since there is an optimal solution which is
a node. Then, we need to compute and sort, for each
node v;, the set of distances {d(v;, vx )}y, er. The total
effort needed to obtain the n sorted lists of the distances



154 J. Kalcsics et al. | Operations Research Letters 30 (2002) 149158

is O(n?) [13]. Therefore, in this case the problem is
solvable in O(n?) time.

2.1.2. The convex case. w; 2 0 for all v; €V, and
Osh<h<s <

We first solve this case on a path graph in
O(n log? n) time. For a path graph we assume that the
nodes in V' are points on the real line. Using the con-
vexity of the objective, we first apply a binary search
on V to identify an edge (a pair of adjacent nodes),
[vi, v;+1], containing an ordered median x. Since it
takes O(nlogn) time to evaluate the objective at any
point v;, the edge [v;, v;4(] is identified in O(n log® n)
time. Restricting ourselves to this edge we note that
for j =1,...,n, wj|x — v;| is a linear function of the
parameter x.

To find an optimum, x*, we use the general para-
metric procedure of Megiddo [15], with the modi-
fication in Cole [5]. The reader is referred to these
references for a detailed discussion of the paramet-
ric approach. We only note that the master program
that we apply is the sorting of the n linear functions,
{wjlx — ]}, j=1,...,n (using x as the parameter).
The test for determining the location of a given point
x’ w.r.t. x* is based on calculating the objective M 4(x)
and determining its one-sided derivatives at x’. This
can clearly be done in O(nlogn) time. We now con-
clude that with the above test, the parametric approach
in [15,5] will find x* in O(nlog? n) time.

We now turn to the case of a general tree. As shown
above, in this case the objective function is convex
on any path of the tree network. We will use a binary
search (based on centroid decomposition) to identify
an edge containing an optimal solution in O(logn)
phases.

In the first phase of the algorithm we find, in O(n)
time, an unweighted centroid of the tree, say v;. Each
one of the connected components obtained by the re-
moval of v, contains at most n/2 nodes. If vy is not
an optimal ordered median, then due to the convex-
ity of the objective, there is exactly one component,
say T/, such that any optimal solution is either in that
component or on the edge connecting the component
to v,. We proceed to search in the subtree induced by
vr and T/, Since T/ contains at most 7/2 nodes, this
search process will have O(log n) phases, when at the
end an edge containing an optimal solution is identi-

fied. To locate the ordered median on an edge we use
the above O(nlog? n) for path trees.

To evaluate the total complexity of the above al-
gorithm we now analyze the effort spent in each one
of the O(log n) phases. At each such iteration a node
(centroid) v is given and the goal is to check the op-
timality of vy and identify the (unique) direction of
improvement if vy is not optimal. To facilitate the dis-
cussion, let {vy(1),... vk} be the set of neighbors of
vr. To test optimality it is sufficient to check the signs
of the derivatives of the objective at vy in each one of
the 7 directions. (There is at most one negative deriva-
tive.)

We first compute and sort in O(nlogn) time the
multi-set {w;d(v;,v)} of weighted distances of all
nodes of the tree from v;. Let L* denote this sorted
list. (We also assume that the weights {w;};,,_, have
already been sorted in a list #.)

Suppose first that all the elements in L* are distinct.
We refer to this case as the non-degenerate case. Let
o denote the permutation of the nodes corresponding
to the ordering of L*, i.c.,

Woyd(Vs(1), k) <+ < Wonyd(Vs(n), Uk )-

Then the derivative of the objective at v, in the
direction of its neighbor vy is given by

= > Aweny kY

Vo ETHO vy EV\THO

l,‘w(,—(,').

Equivalently, the derivative is equal to

n
Z ;Liwa([) -2 Z l,‘wo—(,‘).
i=1

vp() ETHO

It is therefore clear that after the O(nlogn) effort
needed to find ¢, we can compute all / directional
derivatives in O(n) time.

Next we consider the case where the elements in
L¥ are not distinct. Assume without loss of general-
ity that w; > 0, for j = 1,...,n. In this case we parti-
tion the node set into equality classes, {U1,..., U?},
such that for each g = 1,..., p, w;d(v;,vx) = c? for
ally;e U4, and ¢! < * < -+ < cP. (Note that ¢! =0
and v, € U')

Consider an arbitrary perturbation where we add
¢ to the length of edge ¢;, j = 1,...,m. Let d’
denote the distance function on the perturbed tree
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network. If ¢ is sufficiently small all the elements in
the set {w;d’(v;, )} are distinct, and for each pair
of nodes, v, v; with v, € U? and v, € U, g=1,...,
p — 1, wed'(vg,0) < wid'(v;,vp). Therefore, as dis-
cussed above, in O(nlogn) time we can test whether
vk 1s optimal with respect to the perturbed problem,
and if not find the (only) neighbor of vy, say vy, such
that the derivative in the direction of vy, is negative.

In the next lemma, we will prove that if v, is optimal
for the perturbed problem it is also optimal for the
original problem. Moreover, if vy is not optimal for the
original problem and v; = viy is a neighbor defining
a (unique) direction of improvement for the original
problem, then it also defines the (unique) improving
direction for the perturbed problem.

This result will imply that in O(n log n) time we can
test the optimality of v, for the original problem, and
identify an improving direction if v, is not optimal.

Lemma 5. Let v; = vyyy be a neighbor of v, and
let A; and Ai(&) denote the derivatives of the objec-
tive M4(x) at vy in the direction of v; for the orig-
inal and the perturbed problems, respectively. Then
Ai(e) < A4;.

Proof. Because of the additivity property of direc-
tional derivatives it is sufficient to prove the result
for the case where I/ is partitioned into exactly two
equality classes, U!, U?, where U' ={v; }, ¢! =0, and
w;d(v;, v ) = ¢ for all v; # vy

Consider an arbitrary neighbor v; = vy of vy, and
let T? be the component of T, obtained by removing vy,
which contains v;. Let n; denote the number of nodes in
T'. Let T denote the permutation arranging the n; nodes
in 7% in a non-increasing order of their weights, and
the remaining n—n; nodes in a non-decreasing order of
their weights. We have vy € T, 1=1,...,1;, vy &
Ti, t=n;+1,...,n, Wi(1) 2 Wi2) 2+ 2 Wiy, and
Win+1) < Wen42) <+ < Wy, Then, it is easy to
verify that

n; n
A= —Z AWy + Z AWy
P

t=n;+1

Next, to compute 4;(g), consider the perturbed
problem and the permutation ¢ arranging the nodes in
an increasing order of their distances {w;d’(v;,v¢)}.
Specifically, 0 = wid'(ve, ve) = We1)d' (Vs(1), Vi )s

and

Wo1yd' (Vo(1y, Uk ) <+ < Wanyd' (Vg(ny, Vk ).

With the above notation it is easy to see that

A== Y IWen+ D Ao

JlvehET Hoen €T

We are now ready to prove that 4,(¢) < 4;.

We will successively bound A4;(¢) from above as
follows: suppose that there is an index j such that
ve(jy € T', and j > ny, i.e., there exists a node v, € T*
such that in the expression defining 4,(¢), w, is mul-
tiplied by —4; for some j > n;. Since |T?| = n;, there
exists a node v, & T* such that w, is multiplied by 4,
for some index b < ny, in this expression. Thus, from
b < n; <j, we have 4y < 4;, which in turn yields

—Aiw + pwy < — 4w, + 4w

The last inequality implies that if we swap w; and
wy, multiplying the first by 4; and the second by —4;
we obtain an upper bound on A;(e). Applying this
argument successively and swapping pairs of nodes,
as long as possible, we conclude that there is a per-
mutation ¢’ of the nodes in ¥, such that each node
ver(jy € T' is matched with —4;, for some 1 < j < n;;
cach node vg(;y & T' is matched with 4;, for some
n; < j < n,and

n; n
Ai(e) < — z:;ijwawhL Z AjWar (j)-
j=1 J=n;+1

Denote the right-hand side of the last inequality by
B7 (¢).

To conclude the proof consider the entire collection
of all permutations ¢”, which assign every node in 7*
to a (unique) index 1 < j < n;, and every node which
is not in T* to a (unique) index n; < j < n. For each
such permutation consider the respective expression

n; n
B (&)=—=> Iwory+ D AjWer(j).

Jj=1 J=ni+1

From Theorem 368 in Hardy et al. [10], mentioned
above, the maximum of the above expression over all
such permutations is achieved for the permutation t,
which arranges the 7; nodes in T? in a non-increasing
order of their weights, and the remaining n — »; nodes
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not in 7" in a non-decreasing order of their weights.
We note that this maximizing permutation is exactly
the one defining A4;. Therefore, ‘

A(e) <BY(5) < Bi(e)=4,. O

To summarize, to check the optimality of a node
vy in the original problem, we can use the following
procedure:

Compute and sort elements in set {w;d(v;, ve)}.
From the sorted sequence define the equality classes
{UL,...,UP}. Arbitrarily select an ordering (permu-
tation) of the nodes in ¥, such that for any g =1,.. .,
p—1, and any pair of nodes v; € UY, v, € Uit y
precedes v;. Let o denote such a selected permutation.
The permutation defines a perturbed problem, which
in turn corresponds to a non-degenerate case. There-
fore, as noted above, in O(nlogn) time we can check
whether vy is optimal for the perturbed problem. If v,
is optimal for the perturbed problem, i.e., 4;(¢) = 0
for each neighbor v;, by the above lemma it is also
optimal for the original problem. Otherwise, there is
a unique neighbor of vy, say v; = vy such that the
derivative of the perturbed problem at vy in the direc-
tion of v; is negative. From Lemma 5 to test optimality
of v, for the original problem, it is sufficient to check
only the sign of the derivative of the original problem
at v in the direction of v;. The latter step can be done
in O(n) time.

To summarize, the algorithm has O(logn) phases,
where in each phase we spend O(nlogn) time to test
the optimality of some node, and identify the unique
direction of improvement if the node is not optimal.
At the end of this process an edge of the given tree
which contains an optimal solution is identified. As
explained above, the time needed to find an optimal
solution on an edge is O(n log? n) time. Therefore, the
total time to solve the problem is O(nlog® n).

We note in passing that the above approach is ap-
plicable to the special case of the k-centrum problem.
Since testing optimality of a node for this model will
take only O(n) time, the total time for solving the
k-centrum problem will be O(n log n). This bound im-
proves upon the complexity given in Tamir [25] by a
factor of O(logn).

The next theorem summarizes the complexity re-
sults for tree graphs we have obtained above.

Theorem 6. An ordered median of an undirected tree
can be computed in O(n® logn) time.

1. In the unweighted case, i.e., w;=w for all v, € V,
the time is O(n* logn). If, in addition, w > 0, and
M= -2 A =0, the time is further reduced to
o(n?).

2. If w20, forall eV, and 0 < 2y < -+ < Ay,
the ordered median can be found in O(nlog® n)
time.

3. Finding the ordered median in the rectilinear
space

In this case the metric space is X = R? equipped
with the rectilinear metric, where d(x, y) = ||x — ¥/
= Z?:I % — il

Suppose that d is fixed, and consider first the general
case of the ordered median. The collection consisting
of the O(n*) (piecewise linear) bisectors {w;d(x, v;)—
wid(x,v;) = 0}, i,j = 1,...,n, and the O(n) hyper-
planes, which are parallel to the axes and pass through
{v1,...,v,} induces a cell partition of R?. This par-
tition can be computed in O(n?*?) time for any fixed
d = 2 (see Edelsbrunner [7]). If there is a finite or-
dered median, then at least one of the O(n*?) vertices
of the partition is an ordered median. (Notice that only
if there are some negative weights finite ordered medi-
ans may not exist.) Hence, by evaluating the objective
at each vertex and each infinite ray of the partition we
solve the problem in O(n***!logn) time.

In the convex case in RY we can directly use the
approach of Cohen and Megiddo [4] to get a complex-
ity of O(nlog®™ n). This approach relies only on the
fact that the objective function can be evaluated at any
point just using additions, multiplications by a scalar
and comparisons. Clearly, the ordered median objec-
tive function in this case falls into this class. More pre-
cisely, the complexity analysis involves several com-
ponents which we now discuss. First, we have to give
abound 7' on the number of operations needed to eval-
uate the objective function at a given point. In the case
of ordered median functions this is O(nlogn). The
number of comparisons to be performed is O(n logn)
and this can be done in r=0(log n) parallel phases us-~
ing C; = O(n) effort in each phase [1]. Then the result
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by [4] states that the bound to find an optimal solution
is O(d*T(3";_, Nog ;1)) for a fixed dimension d. In
our case we achieve the bound O(nlog®?™! n). (The
same bound can also be achieved by using the results
in Tokuyama [26].) The bound in [4] is achieved by
(recursively) solving O(log® n) recursive calls to in-
stances of lower dimension. For d = | the above gen-
eral bound (applied to our problem) gives O(n log® n).
However, note that for our problem we actually solve
the case d = 1 in Section 2.1.2 in O(nlog® n) time, an
improvement by a factor of logn. Therefore, for any
fixed d = 2, the bound will be reduced by a factor of
log n, and we have,

Theorem 7. Suppose that w; = 0, for all v; €V, and
0 A €+ € Ay Then for any fixed d, the (convex)
rectilinear ordered median problem can be solved in
O(nlog® n) time.

For comparison purposes, we note that the im-
portant special case of the k-centrum functions
(4 =(0,...,0,1,...,1)) has been recently solved in
O(n) time for any fixed d, in Ogryczak and Tamir
[20].
~ We briefly mention that the results on the rectilinear
model presented above can be extended to the more
general case where the rectilinear norm is replaced by
any polyhedral norm where the number of extreme
points of the unit ball is constant,

4. The discrete model

We have considered above the case where the or-
dered median can be located anywhere in the metric
space. Such a location model is referred to as a con-
tinuous model. In a discrete version of the problem,
the ordered median is restricted to some discrete set,
commonly the set ¥ consisting of the existing facili-
ties. Clearly, these discrete problems can be solved by
evaluating the objective function at each one of the
points in the discrete set. If the discrete set is /" and the
distances between the points in ¥ are given, the total
effort to solve the problem is O(n?logn). For some
special cases this bound can be improved. For exam-
ple, the solution to the discrete convex tree case dis-
cussed above is attained at one of the nodes of an edge
containing the continuous solution. Therefore, the

continuous and the discrete solutions are derived using
the same computational effort, namely O(nlog? n).

It is not yet known whether we can get sub-quadratic
time even for the discrete version of the contin-
uous convex rectilinear planar problem discussed
above. For the special case of the discrete un-
weighted k-centrum problem (w; = w, j=1,...,n),
an O(nlog?n) algorithm can be obtained as follows.

If w < 0 we use the results of Bespamyatnikh et al.
[2] to compute in O(nlog® n) the sum of the closest
k points in ¥ to each one of the n points. The opti-
mal value for the discrete problem is attained at that
point where the sum is largest. If w > 0, first compute
in O(nlogn) total time, for each point the sum of its
distances to all other points [14]. Next using [2], com-
pute in O(nlog® n) for p=n — k, the sum of the clos-
est p points in ¥ to each one of the n points. Then,
by subtracting we have for each point in V, the sum
of its distances to the furthest £ points. The optimal
value for the discrete problem is attained at that point
where the sum is smallest.
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