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The Fermat-Weber location problem is to find a point in R” that mintmizes the sum of the
(weighted) Euclidean distances from m given points in R". In this work we discuss some relevant
complexity and algorithmic issues. First, using Tarski's theory on solvability over real closed fields
we argue that there is an infinite scheme to solve the problem, where the rate of convergence is
equal to the rate of the best method to locate a real algebraic root of a one-dimensional polynomial.
Secondly, we exhibit an explicit solution to the strong separation problem associated with the
Fermat-Weber model. This separation result shows that an e-approximation solution can be
constructed in polynomial time using the standard Ellipsoid Method.
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Let a',..., a™ be m distinct points in R". Suppose that each point a', 1<i<m, is
associated with a positive weight w;. The Fermat-Weber location problem [11, 17]
is to find a point in R” that will minimize the sum of the (weighted) Euclidean
distances from the m given points:

m

Min f(x)= ¥ willx—-a'l. (1)

i=t

It is well known that if the data points are not collinear the objective is strictly
convex, and therefore has a unique optimum. (In the collinear case at least one of

the points @', ..., a™ is optimal and it can be found in linear time by the algorithm
in 3].)
Suppose that the input is rational and that the pointslal, ..., a™ are not collinear.

n+m,

(1) can be formulated as the following algebraic program in R"""™:

Minimize Y w;s;

i=1

subjectto Y. (x;—aj)’<si, i=1,...,m, (2)
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rom the general theory developed by Tarski [16] on solvability over real closeq |
fields, it follows that (2) has an optimal solution which is algebraic. Let /* and x*
denote the optimal objective value and an optimal solution to (2) respectively, f*
and each component of x* can be associated with their respective characteristjc
polynomials. (Recall that if ¢ 1s algebraic its characteristic polynomial is the poly.
nomial of minimum degree which has ¢ as one of its roots, and all its coefficients
are integer with 1 as their greatest common divisor. The degree of ¢ is the degree
of its characteristic polynomial and the height of ¢ is the largest of the absolute
values of the coefficients of this polynomial.)

It follows from Tarski [16] and the more recent algorithms of [2,4, 10] that one
can obtain the characteristic polynomials of f*, and the components of x*, using
only a finite number of elementary rational operations, i.e., +, —, X, /, and com- 5
parisons between rational numbers. Furthermore, each such polynomial will be
associated with an interval where the respective algebraic number, /™ or x* is its
only root. Thus, these polynomials with their respective intervals are used to
characterize and represent the solution to (2).

In general the algorithms in [2, 4, 10, 16] are not efficient. In the worst case they
are at least exponential. However, in our opinion, the finiteness of these procedures
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questions the appropriateness of using concepts like rate of convergence and average
rate [ 14] to measure the effectiveness of solution procedures. These terms measure
the local rapidity of the convergence of an infinite sequence of iterates to the optimal
solution. They refer only to the tail of the sequence. Also, the convergence rate
concepts do not take into consideration the computational effort per iteration as
well as the sizes of the iterates, 1.e., their lengths in binary encoding. Indeed, suppose
that one is allowed to ignore both aspects, i.e., a finite initial computational effort,
and the sizes. Using Tarski's approach we can claim that there is an infinite scheme
to solve (2), where the rate of convergence is equal to the rate of the best method
to locate a real algebraic root of a one-dimensional polynomial, and one cannot
hope to do better because of the nature of the solution. First find the characteristic
polynomials of /™ and x*, with their respective intervals. Secondly, apply an efficient
(infinite) scheme (e.g., Newton’s) to locate the unique root of each polynomial in
its respective interval.

Finding the degree and the height of the solution to (2) has become a challenging
problem since it is related to classical problems in algebraic number theory [1, 3,
6]. The best bound known on the degree is still the exponential (in m) bound which
can be obtained by elementary methods. There are a couple of theoretical results
on the algebraic nature of the solution. Melzak [13] proved that even for the
unweighted case, w; =1 for all i, this solution cannot in general be obtained by a
straight edge and compass when n =2 and m =5. Recently Bajaj [1] extended this
result and proved that the solution point cannot be expressed in radicals when n =2
and m=5.

We have already mentioned above that when the algebraic characterization of
the optimal solution is available e-approximation solutions can be obtained
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fiiciently by standard and traditional root finding procedures. Thus, it is most
esirable to find this characterization. However, in view of the above complexity
esults, the task of characterizing f*, the optimal objective value to (2), seems to
e very difficult.

Suppose that k and M denote some upper bounds on the degree and height of
* respectively. Let L be the length in binary encoding of the input to (2). From
1e results in [9] we conclude the following. The characteristic polynomial of f*
an be obtained in time which is polynomial in k, log M and L, provided that for
ny given rational ¢ > 0 it takes polynomial time (in L and the length of ¢) to find
point x in R" with f(x) < f*+ ¢. Indeed, we will demonstrate that e-approximation
olutions can be constructed by polynomial schemes. Unfortunately, as stated above,
he best known bounds on k and M are still exponential in m. (Note, however, that
/hen m is fixed the characteristic polynomial can be constructed in polynomial
ime in L.)

The existence of polynomial e-approximation algorithms follows, for example,
rom [12, Theorem 2.2.15]. We can easily verify that the oracles there can be made
olvnomial when applied to the Fermat-Weber problem. In particular, since the
jptimal solution is in the convex hull of the points a', ..., a™ we can restrict the
earch to some well defined box A <x < B which contains the convex hull. (A and
3 are easily computable integer vectors with A < B). 4

The polynomial scheme in [12] uses the Shallow Cut Ellipsoid Method which is
rased on ‘‘very weak separation’. This very weak separation condition was not
ufficient to ensure the applicability of the simpler and standard Ellipsoid Method
as described in [7]). We will next show that for the Fermat-Weber problem, as
ormulated by (2), there is an explicit form solution for the (e-independent) strong
eparation problem. With that result we can then use the standard Ellipsoid Method
7, Theorem 3.1] to obtain an g-approximation in polynomial time. (Because of its
elative simplicity it seems that the standard method is more efficient than the
vhallow Cut Ellipsoid Method.)

We now assume that the x variables in (2) are confined to the box A< x < B,
vhich contains the convex hull of the points a',...,a™ (A and B are explicitly
mown integer vectors with A < B.) It then follows that the variables s = (s, ..., 5,.)
an be restricted to the box 0<s,<||B-A||+2=C, i=1,...,m

Reformulate the location model (2) as:

m
Minimize Y ws

subject to  ||x—a'll<s;, i=1,...,m, (3)
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Let X = R""™ denote the feasible set in (3). To solve the strong separation problem
with respect to X it will suffice to consider the separation with respect to the

n+1

following cone S, in R"",
S,={(x,t)|xeR", t=]|x|}. (4)

Lemma 1. Let p=1. Consider the cone
n t/p
sz{(x,t)]xeR",t2<Zlxj|p> }
j=1
Suppose that (x°, t°), (°=0, is not in S,. Then,

n n ~
t Y x>0 % %97 (sign x))x; (5)
j=1 j=1

forany (x, t) in S, with t>0.

Proof. Clearly x°# 0. Therefore, (5) is certainly satisfied when its right-hand side
is nonpositive. Thus, suppose that the right-hand side of (5) is positive.
Let (x, t) be in §,. Then we have
)

n /p n
() 3 R sien <y
j=1 =1

j=

n

E () (0

j=

>0 3 []7 sign ),
j=1
where the first inequality is obtained from the fact that (x, t) is in §,, the second
inequality is implied by Holder’s inequality [8], and the strict inequality follows
from the positivity of the right-hand side of (5) and the supposition that (x", ") is
not in S,. This completes the proof. [J

Replacing the strict inequality in (5) by equality we obtain an hyperplane H in
R"*" which contains (x° ¢°) and supports S, at the origin only. To separate the
origin as well we have the following.

Theorem 2. Consider the cone S, in (4). Suppose that (x°,t°), 1°=0, is not in S-.
(i) If °=0, the hyperplane H,={(x, t)|Max(1, ||x°|]>) t=x"(x—x°)} strongly
separates (x°, t°) from S,.
(it) If (°>0, the hyperplane H,={(x, t)]t(]|x°
21°x%x} strongly separates (x°, t°) from S,.

-

OO - () =

Proof. Consider the point (x°, [|x°||) in S,. Since x°# 0, a supporting hyperplane
of S, at (x°, |x°]) is given by the equation

= %)+ X0k = x0)/ |x°). (6)
Let (x, t) be in S,. Then

t= || x° +x°(x = x°)/ || x°) > t°+ x°(x = x%/1x°l.
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Therefore, the hyperplane given by (7) strongly separates (x°, t°) from S,:
xf e =1x°) ¢+ x°(x — x°). (7)

To obtain a strongly separating hyperplane with rational (with respect to (x°, t°))
coefficients we rotate (7) as follows. (Recall that Ellipsoid algorithms require rational
data.)

(i) Suppose that t°=0. Consider a point (x, t) in S,. Then

Max(1, [ x") =[xl 1> [x*[1°+x(x = x°) = x"(x = x7),

and the hyperplane H, ={(x, t)|Max(1, ||x°]*)t =x°x ~x°)} strongly separates S,
from (x°, t°). '

(ii) Suppose that 1°>0. Any hyperplane which is a strict convex combination
of the hyperplanes given by (7) and (5) (for p=2), strongly separates S, from
(x°, r"). Specifically, for each 0<A <1 the following hyperplane separates S,
from (x°, t%):

LA () = 1) ) + |

rO

xOH IO)

+ (=) (Ix°)7 = =) %) = x°x. (8)

From (||x°]| =1°)°>0 we obtain [|x°|> = [|x°t°>3(|x°|* = (¢°)?) > 0. Defining A by
(=X =110 %) =3(1x"|17 = (+°)7), and substituting in (8) yield the following
rational equation for a strongly separating hyperplane:

(X + G0 AP =GN
20 + 5 =X X. (9)

This completes the proof. [

With the strong separation result of Theorem 2 one can directly apply the standard
~ Ellipsoid Method [7] to generate an e-approximation solution to (1). This approach
- can be extended to some generalizations of (1) involving Euclidean distances. For
. example, the separation results can be modified to solve the model in [15] with the
. additional restriction that the point x 1s restricted to some polyhedral set. Also, we
can obtain e-approximations to the point that minimizes the sum of weighted
: distances from m given polyhedral sets or ellipsoids.

:
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