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In a recent ariicle Averbakh and Berman present an
O(p*V{log log p){log p} + n?) serial algorithm to solve the
distance constrained p-center location problem with mu-
tual communication on a tree network with n nodes. In this

note we suggest two simple modifications leading to the
improved (subquadratic in n}, O(p3\/(log log p)(log p) + p(n
+ pYlog?(n + p)) complexity bound, We also present a new
O(p?nlog n log(n + p)) algorithm for the discrete version of

this problem. © 2004 Wiley Periodicals, Inc. NETWORKS, Vol.
44(1), 38-40 2004

Keywords: multifacility location; p-center; tree networks

1. INTRODUCTION

Given is an undirected connected tree graph T = (V, E).
Each edge ¢ € E has a positive edge length, [,. An edge is
an image of a closed interval under a continuous bijective
mapping, that is, a Jordan arc. However, for our purposes an
edge e = (v,, v,) is identified with an interval of length I,
so that we can refer to its interior points. An interior point
is identified by its distances along the edge (interval) from
the two nodes v, and v,. Let A(T) denote the continuum set
of points on the edges of 7. We also view A(T) as a
connected set, which is the union of |E| intervals, that is, we
assume without loss of generality that A(7) is embedded in
the plane. The edge lengths induce a distance function on
A(T). For any pair of points x, y € A(T), we let d(x, y)
denote the length of P(x, y), the unique simple path in A(T)
connecting x and y. A(7T) is a metric space with respect to
the above distance function. We refer to A(T) as the tree
network induced by T and the edge lengths {I,|e € E}.

Viewing V = {v,, ..., v,} as the set of customers, or
existing facilities, we consider the problem of locating p
servers, or aew facilities, X = {x,, ..., x,} in A(T). The
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servers must satisly distance constraints (upper bounds)
with respect to each other and to customer sites. The objec-
tive is to minimize the maximum weighted distance be-
tween pairs of servers and pairs of servers and customers,
subject to the above distance constraints. This problem is
called the distance-constrained p-center problem with mu-
tual communication on A(T), and it is formally defined in
[1, 6, 7, 13] as follows.

Given are four sets of nonnegative reals, {a

i,j:l

=1, ...,mj=1...,phia;:i=1...,n}j
=1L....ph{b:j=1,...,psk=1,...,p} and
{bjy:j=1,....p;k=1,...,p}

1.1. The Constrained p-Center Problem with Mutual
Communication

Minimize A, subject to,

aidlv, xy<1, i=1,...,n j=1,...,p,
adlv,x)=A i=1,....,n j=1,...,p,
bidlx,xy=1, j=1,...,p5 k=1,...,p,
bud(x, x)=<\, j=1,...,p; k=1,...,p.

The unconstrained version, studied in [7, 13], corre-
sponds to the case where

fori=1,...,n

jl.k = O’

a;; =0, j=1,....p, and

forj=1,...,p; k=1,...,p.

Polynomial serial algorithms for the unconstrained ver-
sion are presented in [7, 13]. The first polynomial algorithm
for the constrained model is given in [6]. Its complexity is
O(pn(n + p log n) + p’log p). An improved serial
algorithm of O(n* + p*V/(loglog p)(log p)) complexity
has been recently presented in [1]. Its complexity reduces
further to O[n? + p*V/(log log p/log p)}, when applied to



the unconstrained version. Parallel NC-algorithms are also
presented in [1].

In comparison, consider the classical weighted p-center
problem, where there is no mutual communication between
the p servers, and each customer is served by its respective
nearest server. (All servers are identical and provide the
same services.) The complexity of the best known algo-
rithms to solve the classical model on tree networks is
subquadratic in n [16, 17].

Motivated by the cases where the number of existing
facilities, (customers), is significantly larger than the num-
ber of new facilities, (servers), our goal is to obtain algo-
rithms for the above model with mutual communication,
whose complexity is also subquadratic in n.

In this short technical note we observe that the prepro-
cessing phase of the algorithm in [I] can be modified to
improve the complexity of this algorithm to O(p(n
+ plog*n + p) + p*V(oglog p)(log p)). We also
present a new algorithm that solves the discrete version of
the constrained model in O(p*n log n log(n + p)) time.

2. THE MODIFIED ALGORITHM

The algorithm in [1] is a serial parametric implementa-
tion of a parallel location scheme (PLS), following the
general ideas in [14, 15]. The algorithm consists of a two-
step auxiliary stage, and a three-step main procedure.

Step 0.1, the first step of the auxiliary stage, is based on
computing distances on a general graph with p nodes. (The
data of the graph is unrelated to the edge lengths and
topology of the underlying tree T.) The total effort spent in
executing Step 0.1 in [1] is O(p*V(log log p)(log p) +
p(n + p)log’p). (This bound is attained by implementing
the sophisticated methods in [20]; see the Remark on page
11 in [1].)

In Step 0.2, the second step of the auxiliary stage, the
matrix of the distances between the nodes of T is computed
in O(n?) time.

Finally, based on the assumption that the distance be-
tween any pair of nodes of T is now available in O(1) time,
the implementation of the main procedure takes O(p(n
+ pylog’(n + p)) time. (We do not suggest any changes in
the three-step main procedure. Therefore, for the sake of
brevity, we see no reason to introduce the notation and
terminology required for the presentation of the main pro-
cedure. Instead, we refer the reader to [1] for the long and
detailed description of the implementation of this proce-
dure.)

To improve the total complexity, we suggest two modi-
fications.

First, we note that the complexity of Step 0.1 can be
improved to O(p*V/(log log p)(log p) + p(n + p)log*p),
by implementing the idea in Application (4) in [5].

Second, Step 0.2 is replaced by the following step:

Without loss of generality suppose that the underlying
tree T is rooted at the node v,. In O(n) time compute the
distances {d(v,, v;) : i = |, ..., n}. Then use the O(n)

algorithm in [11, 12] to preprocess the rooted tree 7 and
build the data structure to compute nearest common ances-
tors. (See also the more recent algorithms in [2—4, 10, 18§,
19].) With this structure, given a pair of nodes, v;, v;, we
can find their nearest common ancestor, say v, in O(1)
time. We then have d(v;, v) = d(v;, v;) + d(v;, vp)
— 2d(vy, vp).

Because the distance between any pair of nodes of T is
now available in O(1) time, the implementation of the main
procedure will still take O(p{(n + p)logz(n + p)) time.

To conclude, the total complexity of the modified algo-
rithm is O(p*V/(log log p)(log p) + p(n + p)log’p + n
+ pn + plog’n + p)), which amounts to
O(p*V/(loglog p)(log p) + p(n + p)log’(n + p)). The
complexity reduces to O[p*V(log log p/log p) + p(n
+ p)logz(n + p)] for the unconstrained version. (We note
that the modification in Step 0.1 was mentioned already in
[1]. However, the authors did not use it there because it
would not improve the overall complexity bound of their
algorithm. We have demonstrated above that this modifica-
tion is quite useful when coupled together with our modified
version of Step 0.2. Note that if we apply only the modifi-
cation in Step 0.2, but not the one suggested for Step 0.1, the
total complexity will be O(p*V(log log p)(log p) + p(n
+ p)log’p + p(n + p)log?(n + p)). The latter complexity
bound is strictly inferior, for example, when ¢ = p
= ¢,n"'? for some appropriate constants ¢, c,, and «.)

3. THE DISCRETE MODEL

In the constrained p-center problem with mutual com-
munication defined above, the new facilities X = {xy, ...,
x,} can be established anywhere in A(T). By the discrete
version of the model we refer to the case where X must be
a multisubset of nodes. We note that the results in [1], as
well as the modifications presented above, can easily be
adapted to the discrete version without affecting the com-
plexity bounds. Specifically, the discrete model can also be
solved in O(p>V(loglog p)logp) + p(n + p)login
+ p)) time.

We now present a new solution approach that is appli-
cable only to the discrete case.

In the discrete case we can easily identify a set of
polynomial cardinality containing A*, the optimal value of
the parameter A. Specifically, A* is an element of the set A
= A; U A,, where

Av={ad(v, v): i, j=1,...,mk=1,...,p}
and
A, = {bk,ld(viv 'Uj) :

Lj=1,...,mkl=1,...,p}

From the definition, A* is the smallest value of A € A, such
that there exists a multiset of nodes X = (x, ..., x,}
satisfying all the constraints,
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ajd{v, x) =1, i=1,....n j=1,...,p,
a,d(v, x) <A, i=1, ,n, j=1,...,p,
bid(x,x) =<1, j=1,...,p; k=1,...,p,
bud(x,x)=A, j=1,...,p; k=1,...,p.

To test the feasibility of a given value of A, we can use
the O(p(n + p)) procedure in [7], adapted to the discrete
case.

The cardinality of A is clearly O(p2n?), but there is an
efficient way to search over A without explicitly generating
it. First, from the results in [9, 17] we conclude that the set
A can be represented as the union of O(prn log n) subsets,
(monotone columns), such that for each value of ¢, the
t-largest element in each one of these subsets can be ob-
tained in O(1) time. The total time to obtain this compact
representation is O(pn log n), [9].

Let D = {d(v;, v) : i, j = 1,..., n}. For k, |
=1,..., p, define the set b; ,D by
byD ={bd(v, v):i,j=1,...,n}

Thus, the set A, can now be represented as the union of
O(p?) sets, where each one of them is obtained from D by
multiplying all its elements by a fixed scalar. Moreover,
from the results in [9, 17] we conclude that for each value
of ¢, the -largest element in b, ;D can be found in O(n log
n) time.

Finally, to search A* in A, we apply the search procedure
in [8), using the above representation of A as the union of
O(p* + pn log n) subsets.

This search procedure has O(log|Al) iterations. The ef-
fort in each iteration is dominated by the time to compute
some ¢-largest element in each one of the above O(p* + pn
log n) subsets, and the O(p(n + p)) time needed to
implement the feasibility test algorithm in [7]. Thus, the
total effort spent in each iteration is O(p?n log n + pn log
n + pn + p)).

Because |A| = O(n®p®) the number of iterations is
O(log(n + p)). We conclude that A* can be identified in
O(p*n log n log(n + p)) time,

To summarize, we have presented two solution methods
for the discrete model, with O(p*V/(log log p)(log p) +
p(n + p)log’(n + p)), and O(p?n log n log(n + p))
complexity bounds, respectively. Note that the second
method (associated with the latter bound) should be pre-
ferred when n, the number of customers, is relatively
smaller than p, the number of servers, for example, when

pV(log log p/log p) = c3n log n for some constant ¢.
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