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A CLASS OF BALANCED MATRICES ARISING
FROM LOCATION PROBLEMS*

ARIE TAMIR*

Abstract. A (0, 1)-matrix is balanced if it contains no square submatrix of odd order whose row and
column sums are all two. Given two collections, § ={Ty,- -+, T,,} and Q ={T}, - -+, T}, of neighborhood
subtrees of a tree T, let A(S, Q)= (a;) be the incidence matrix with a; =1 if and only if T; intersects T:.

It is shown that A(S, Q) is balanced. This balancedness is then used to exhibit the existence of a polynomial
algorithm to certain location problems. ‘

1. Introduction. In his paper [1], Berge defined a (0, 1)-matrix to be balanced
if it contains no square submatrix of odd order whose row and column sums are all
two. He then characterized a balanced matrix in terms of the existence of integral
solutions to certain linear programs whose constraints are defined by a balanced
matrix. Berge’s results were then refined and extended by Lovasz [8] and Fulkerson,
Hoffman and Oppenheim [5].

In this work a special class of balanced matrices is presented. This class arises
from location problems on tree networks.

- Assume that an undirected tree T = (N, E), with N and E denoting the sets of
nodes and edges respectively, is embedded in the Euclidean plane, so that the edges
are line segments whose endpoints are the nodes and the edges intersect one another
only at nodes. Moreover, each edge of T has a positive Euclidean length. This
embedding enables us to talk about points, not necessarily nodes, on the edges. For
any two points x, y on T let d(x, y) denote the distance between x and y, measured
along the edges of T. P(x, y) will denote the set of points on the simple path connecting
x and y. T will also be used to denote the (infinite) set of points on T.

A subtree of T is a connected subset of the set T. A subtree, T, is called a
neighborhood subtree if there exist a point x;,€ T and =0 such that T;=
{xIx e T, d(x;, x) =r}. x; is called the center of T,.

Let §={T,,---, T} be a finite collection of subtrees of 7, and define the
intersection graph, G (5), as follows. G (§) has k nodes, corresponding to the k subtrees
in S. Two nodes of G(S) are connected by an edge if and only if the respective subtrees
intersect. Defining a clique to be a maximal complete subgraph, let A(S) be the node
clique incidence matrix of G(S), where nodes correspond to rows and cliques appear
as the columns. The graph G(S) has been shown in [2] to be chordal, i.e., for any
circuit of order at least four there exists an edge, not of the circuit, which connects
two nodes of the circuit. It is also proved in [2] that any chordal graph is realizable
as the intersection graplr of subtrees of a tree. Furthermore G(S) is known to be
perfect and its respective matrix A T(S) is therefore perfect, [10]. Perfectness is weaker
than balancedness. In fact, even matrices A (S) arising from chordal graphs G (S) are
~ hot necessarily balanced. This is illustrated by the following chordal graph.

Example 1. Let T be as in Fig. (1a) and define the collection of subtrees
' N ={T1, Tz, T3, T4, T5, T(,} as follows. T1 =P(U], Uz), T;:_ =P(Uz, V3), T3 :P(Ug,, U]),
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T,={v2}, Ts={vs} and Te ={v:1}. The respective intersection graph, G(S), is given ip
Fig. 1(b), and

11100 0
110100
AT(S)= .
(5)011010
1 010 0 1

Considering the submatrix of AT(S) defined by the first three columns and the last
three rows we observe that A7 (S) is not balanced. (We note in passing that G(S) is
also realizable as the intersection of neighborhoods in R?.)

U2

FiGc. 1

In this paper we focus on collections of neighborhood subtrees and show that
they, unlike collections of arbitrary subtrees do give rise to balanced matrices.

Let S={T,,--+, T} and Q={T), -+, T,} be two sets of neighborhood sub-
trees in 7. Define the m X n incidence matrix A(S, Q)= (a;) by a; =1 if and only if
the intersection 7; N T’} is nonempty and a; = 0, otherwise. We will prove that A(S, Q)
is balanced. (In particular, A(S) is balanced when S consists of neighborhood subtrees.)
This result is then applied to exhibit the existence of polynomial algorithms for certain
location models.

2. Balancedness and intersection graphs.
LEmMMA 1. Let {x1, -+, xx}, k =3, be a set of distinct points on T. Define xj .1 = X1.
There exist indices 1 =i,<i<i3=k such that the paths P(xi, xi,+1), P(xi,, Xi,+1) and
P(xi,, Xiy+1) Of the tree T intersect at some pointy € T.
Proof. We define the indices iy, i, i3 and the point y € T as follows. First let
x;, =x; and x;, = x,. Now y is chosen to be the closest point to x3 on the path P(x,, x2).
It remains to define /3. If £ =3 set i3 =3 and the result clearly holds. Thus let k >3.
Define

{k—l ifygP(x,x3)forall3<i=k—1,

min {i|[3=i<k—1,y € P(x;+1, x3)} otherwise.

 Suppose firstthatj =k —1.1fy € P(x, x3) theny € P(x;_1, xi),since y & P(xx—1, X3)-
Set i3 =k —1 and then the paths P(xy, x2), P(x2, x3) and P(xx_1, xx) intersect at y. If
y & P(xi, x3) then y € P(xy, x1) since y € P(xy, x3). Set iz=k and the paths P(x;, x2),
P(x,, x3) and P(xy, x1) intersect at y. ,
Now suppose j <k —1. Set {3 =j. From the definition of j it follows that the paths
P(x1, x3), P(x2, x3) and P(x;, x;.+1) intersect at y. This completes the proof.
We are now ready to present the main result.
TueoreM 1. LetS ={Ty, -+, Tnyand Q ={T4, - - -, T,} be two sets of neighbor-
hood subtrees in T. Let A(S, Q) = (ay;) be the incidence matrix satisfying a; =1 if and
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'-onl)’ if T; T} is nonempty. Then A(S, Q) does not contain a square submatrix of size
Tk =3 which has no identical columns, and its row and column sums equal to two.
_ Proof. Let T;={x|d(x,x)=r}, i=1,---,m, and T} ={x|d(ypx)Ss;}, j=
1,---,n Then a; = 1 if and only if d(x;, y;) =r; +s;. Suppose that A (S, Q) contains a
square submatrix B = (b;) of size k =3 which has no identical columns and its row
" and column sums are all equal to two. Without loss of generality suppose that this is
the submatrix defined by the first & columns and k& rows of A(S, Q). Also, suppose
that b; =1 if and only if i =j, j—1 or (i,j)=(1, k). First we note that x; #x; for
'1=i#j=k. Since, otherwise, we would have T; = T; or T; 2 T; which contradicts the
fact that no row vector of B is greater than or equal to another row vector of B.
Considering {xy, -+ +, xi}, let (x;, x;+1), j =1, 2, 3, be the three pairs obtained from
the previous lemma, and let y be the point on the path connecting x; to x;.1, j =1,
2,3.
: The matrix B expresses the intersection relations between {T;}<_; and {T}}%,.
Each column of B contains exactly two 1’s. Furthermore, these two 1’s appear
consecutively (mod k), and one of them is a diagonal element. Therefore, for j =1,
2, 3 there exist T}, intersecting T;, and T ., (exclusively). Without loss of generality
suppose that ’

sl'l—d(yv yil)ésiz—d(yv yi2)§S13—d(y, Yi3)-

Since y € P(xi,, xi,+1) it follows that y € P(z, y;,) where z is either x;, or x;,.1. Let z = x;,
then

0=r,+si,—d(xi, yi,) = ri, +5;, —d(xi, y)—d(y, yi,)
=rtsy—dxi, y)—d(y, y) =i, +s, —d(xi, yi), j=1,2,3.

Hence, we obtained the contradiction that the neighborhood subtree T, intersects
the three neighborhood subtrees T, j =1, 2, 3. This contradicts the fact that row i,
of B contains exactly two 1’s. A similar contradiction is obtained if we take z = x; 4.
Therefore the proof is now complete.

We note that since a point on T is a neighborhood subtree, Q for example may
be a collection of points on 7. Indeed, this is the special case arising from the location
model considered in the next section.

CoroLLARY 1. A(S, Q) defined as in Theorem 1 is balanced. In particular, the
node clique incidence matrix of the intersection graph corresponding to the collection of
neighborhood subtrees S is balanced.

Proof. The first part is obvious from Theorem 1. Let A(S) be the node clique
incidence matrix of the intersection graph G(S). It is shown in [3] that all the subtrees
corresponding to a clique of G(S) have a point in T contained in all of them. (The
maximality of the clique ensures that this point is contained in no other subtree of
* the collection.) Thus there exists a set of points Y in T such that A(S)=A(S, Y),
and the result follows from Theorem 1.

Theorem 1 and Example 1 present one property which is satisfied by intersection
graphs realizable by collections of neighborhood subtrees but not by chordal graphs
which are known, [2], to be realized by collections of subtrees. Next, we demonstrate
another property which is met by our class of balanced matrices but not by matrices
arising from general chordal graphs.

Given that A(S, Q) is balanced, it then follows from [5] that all the extreme
points of the polyhedron {z|A(S, Q)z Ze, z =0} are integral, (e is the vector of all
I’s). As noted in the introduction, the node clique incidence matrix of a general
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chordal graph, which is not an intersection graph of neighborhood subtrees, is nqy
necessarily balanced. Hence the results of [S] do not induce the above mtegrahty
property of the respective polyhedron defined by a general chordal graph. Indeed,
the above integrality property, which is weaker than balancedness, is not shared by
a general chordal graph. v

Example 2. Let G be the chordal graph in Fig. 2. Let A be the node chqug,
incidence matrix of G (with nodes corresponding to rows). ’

1

§

QO OrRPRO=ROR,LO
QOO R R OROO
COoOO0OR MR OOO
p'o»—aooooo»—s
OO0 O~O
P OO0 OOROO

0
0
1
1
0
0
0
L0

The polyhedron {x|Ax Ze, x =0} possesses the nonintegral extreme point, x =
2’ 2’ 210 1 1 1)

F1G.2

Chordal graphs satisfy the following weaker integrality property.

THEOREM 2. Let G be a chordal graph and let A = (a;;) be its node clique incidence
matrix with nodes corresponding to rows. If the equality constrained set covering
polyhedron, {x|Ax = e, x Z0}, is nonempty, it is a singleton consisting of a 0-1 vector.

Proof. In fact we prove that for any integer vector f the system Ax = f has at
most one solution. Furthermore, if it exists, this solution is integer.

The proof is by induction on the number of nodes in G. The result is trivial for
a graph consisting of one or two nodes.

Now, let G be a chordal graph. Using the induction hypothe51s we may assume
that G is connected. Then G contains a simplicial node, [2], i.e., a node, say /, that
belongs to exactly one clique. Therefore, i is associated with a unit row of A, and if
a; =1 we must set x; =f; if Ax =f. We can then eliminate the ith equation of the
system Ax =f. Let N (i) be the set of neighbors of i in G. N (i) is nonempty since G
is connected.

Let G' be the induced subgraph obtained by omitting node i/ and all edges
connecting it to members in N (i). The node clique incidence matrix of G’, A, is &
submatrix of A, defined as follows. If the complete subgraph induced by the nodes
in N (i) is maximal in G’, then A’ is the submatrix obtained by deleting the ith row
of A. Otherwise, A’ is obtained by deleting the ith row and the jth column of A.

Suppose first that A’ is obtained by deleting only the ith row of A. Since G’ is
an induced subgraph it is chordal. By the induction hypothesis, the system (Ax )i = fi
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vk #1, is either inconsistent or else it has a unique solution, x', which is also integer.
Thus the original system Ax = f is consistent if and only if x' exists and x| =f;. The
uniqueness of x’ as a solution to the subsystem implies its uniqueness with respect to
the system Ax =f.

Next, suppose A’ has one less column than A. The system Ax = f may be written
as (Ax)k =fi, Vk #1i, x; =fi. Substituting f; for x; in each equation (Ax), = fi, Yk #1i,
we obtain exactly the subsystem corresponding to A’. Now we use the chordality of
G', and apply the induction hypothesis on the subsystem to conclude the vahdlty of
the result for the system Ax =f.

3. The location model. Given the tree T defined in the introduction, suppose
that two finite subsets of T, £ and A are specified. £={yy, - - -, y,} is called the supply
set and A={xy," -, x,,} is the demand set. The demand points are to be served by
centers which can be located only at points of . Each demand point, x;, must have
at least a; centers established at a distance not greater than r; Z0 from it. Due to
capacity constraints at most b; centers can be located at y; The cost of establishing
any center at y; is v; 20. The problem is to find the minimum budget required for
setting centers meeting the demand constraints.

We note that if T is replaced by a general (planar) network even a special case of
the above model is known to be NP-hard, [6]. Turning back to a tree network, the
demand constraints imply that for each x;, i =1, -+, m, at least a; centers should be
set at the neighborhood subtree T; ={x|d(x, x;) =r;}. Defining S ={T}, - - -, T..}, the
location problem is formulated as

Minimize ) v;z;
j=1

(1) s.t. Az=a,

b 2z =0 and integer,

where A =A(S,3),a=(as, " ",am), b=(by, " *,b,)ande=(1, .-, 1).
Certain instances of (1) have been considered in the literature. The special case
of equal setting costs, v;, for the centersand a;=1,i=1,-++,m, bj=00,j =1, n,

can be solved in linear time by a modified version of the algorithm in [6]. A generaliz-
ation of the latter special case; allowing arbitrary integer values for a; is solved in
[3]. There, the problem is reduced to finding a minimum cover of the nodes of G(S),
§={T,, -+, T}, by cliques, and observing the chordality of G(S). The cliques are
. induced by the supply points. Applying the perfectness of G(S) a dispersion location
problem which is dual to this special case is also defined in [3]. Using only the
perfectness property of A7, the case considered in [3] was maximal in the sense that
perfectness is equivalent to the existence of an integer solution to the linear program
min {."_, z;|Az = a, z = 0} for all nonnegative integers a, [4], [10]. '
_ The results of the previous sections, where the balancedness of A =A(S, X) is
Proved, enable us to extend the class of ‘‘solvable’ cases of (1).

We start with the special case of (1), where all the setting costs, v;, are equal.
This case is called the multiple coverage problem. Using [1] we note that the balanced-
ness of A is equivalent to the existence of an integer solution to the linear program
min {}.7_, 7;,JAz =a, b =z =0}, for all nonnegative integer vectors a, b. Thus, the
* Mmultiple coverage problem can be solved polynomially using Khachian’s algorithm,
[7), for linear programs. Also, we have constructed a direct algorithm for the multiple
Coverage model. Since this algorithm is based on simple extensions of the main ideas
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embedded in the algorithms of [3], [6], we skip the description of our procedure. (The
interested reader can obtain the detailed scheme from the author.) We mention that
if, for example, the supply and demand sets consist only of nodes of the tree T, thep
the complexity of our direct algorithm is O(n %), where n is the number of nodes of T

Secondly we consider the special case of (1) where a;=1, i=1, -+ m, (The
constraints z =b can be assumed to be redundant in this case.) The results in [5]
ensure that all the extreme points of {z|Az =e, z Z 0} are integral. Thus, again the
problem can be solved polynomially using Khachian’s algorithm, provided the v; are '
rational. (Khachian’s algorithm may find an optimal solution which is not extreme-
and therefore may not be integer. However, an optimal extreme point to a linear
program can always be generated in polynomial time if some optimal solution g
available.) In the next section we will present a direct algorithm for solving this case,

We now summarize the results on the location model (1). To our knowledge ng i
efficient algorithms to solve (1) are available. Verifying whether this problem is
polynomially solvable will require a different approach than the one presented above
for the special cases. This is due to the fact that the integer solution to (1) may not
be optimal to the relaxed linear program. This is illustrated by the following.

Example 3. Let T be given by Fig. 3. Suppose that £ =A={x,, x5, x3, x4} with
dxp,x)=1,i=1,2,3. Alsolet r;,=1,i=1,2,3,4. Finally set b =¢, a;=v; =1, [ =
1,2,3, and a,=vs=2. We then have that the solution to (1) is 3 while the optimal
objective of the relaxed linear program is 2.5.

X2 X34 X1

X3

Fi1G. 3

Combining the results of the previous section with those of [1], [S], [7] our work
shows the existence of efficient algorithms when either a = ¢, or the setting costs, v;
are equal.

Finally we note another solvable case of (1), which is not implied by the above.
If the matrix A is totally unimodular the model can now be solved efficiently by [7],
if all data are rational. Total unimodularity is achieved, for example, by a tree which
is a simple path. In this case the resulting graph is an interval graph.

4. Solving the location problem. In this section we present a direct algorithm
for solving the location problem (1) described in the previous section, with a; =1,
i=1,.-,m. Tosimplify the presentation we consider here the following special case.
Given the tree T = (N, E) with N and E the sets of nodes and edges respectively,
suppose that £ =A = N, i.e., demand and supply occur at the nodes only. Given r; Z0,
i € N we wish to minimize the budget for setting centers such that each demand point
is covered by a center, i.e., each i € N is at a distance of at most r; from some center.

To present the algorithm we first assume that the tree is rooted at.some distin-
guished node, say v. For each node j € N define B(j) as the set of descendents of J;
i.e., the entire set of nodes having j on the path connecting them with v. In particular
jeB(j). Also define S(j) to be the set of “sons” of j, i.e., the nodes having j as the
immediate predecessor on the path connecting them with v. T(j) will denote the
minimal subtree containing B (j).
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Let j € N. Suppose that a center already exists at some node in N —B(j) whose
dlstance from j is t. (If more than one center exists in N —B(j) consider only the
“closest tO j.) This center may clearly cover some nodes of B(j). Suppose, further, that
q0 centers exist in B(j). Now define A(j, ¢, 5) to be the minimum budget required to
cover the nodes of T'(j), given that new centers are set at B(j) only, with the closest
_peing at a distance s from j, and the closest existing center in N — B () is at a distance
"t from j.
' Let D(j)(F(J)) be the set of distances from j to the members in B(j)(N —B(j)).
“‘Also the value s = co(t = o0) indicates that no center is set at B(j)(N —B(j)). Deﬁne
D(]) D (j)U{oo}and F(j) = F(j)U{0}. Then h(j, t, s) is defined only for s ED(]) and
. te F(j). Furthermore, we compute h(j, t, s) only for t =s since h(j, t,s)=h(j, s}, s)
forall t=s in F(j). (s¥ is the smallest element in F(j) which is not smaller than s.)
@' Defining H(j, t, s) =miny=; h(j, t,p), we obtain H(j,¢t, s)=H(j,¢, [s];), where
! [s]; is the smallest element in D(j) which is not smaller than s. The answer to the
" location problem is given by H (v, 00, 0). Our algorithm is based on a recursive
computation of A (j, ¢, s) leading to H (v, 00, 0). :
Starting with the tips of the rooted tree we obtain the following recursion for
feF(j), seD(j)and t =s.
If j is a tip, then A(j, ¢, 0) = v; and

0 ift=r
h(j.t 0 ={ =T
( ) o ift>r.
Suppose j is not a tip; then
0 ifd@,j)+t=rforallieB(j),
hie)={ TAGD v
co otherwise,
h(]a t’ O) = Ui + Z H(ia d(l, ])v O),
ieS(j)
andfor 0 #s € D(j)
o ift>r, ‘
ko= min  lhGerdGis—dan+ T Hk t+dk ), s -d0k )]
s—dlineD ) kesin

whent=r;

Simplifying the expression for t =r; we obtain

h(j,t,s)= Y H(k,t+d(k, ), [s—d(k, j)l«)

keS(j)

+ ie.ggji)r;nd {h (l, 4 +d(l7 ]), S _d(l’ ])) —H(l, t+d(l7 ])7 S ——d(i? ]))}
s—d(i. yeD(i)

Having established the recursive relations leading to the optimal solution we next

demonstrate that the complexity of the suggested algorithm is O (n %) when n is the
number of nodes of T.

In the initial phase we generate and sort each one of the sets D(j), F(j), j€N.
This will consume O(n > log n) time.

Now, given j we show that the total effort needed to compute h(j, ¢t,s) for all
teF(j)andseD()), t=s, is On’S())]).
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First, for each k € S(j) compute [s—d(k, )]« for all s e D(j). This will enabje .
us to use previously computed values of the functions A(k,, ) and H(k, -, ) for
k € S(j). Since D(j) and D(k) are already sorted this step is done in O(n) time for
each k € S(j), or in O(n|S(j)|) for all k € S(j).

Next, for each s € D(j) the set of indices with s —d (i, j)e D (i) is found. Like the
preceding step this is performed in O (n|S(f)|) time for all s e D(;).

Finally we turn to a given pair (¢, s) with t € F(j), s € D(j). Using the recursive
relations and the information acquired in the previous steps A(j, ¢, s) is computed in
O(|S(j))) time. Thus the effort for computing 4 (j, ¢, s) and H(j, ¢, s) for all pairs (¢, s)
te F(j),s e D(j)is O(n*|S(j)]), and the bound for the entire algorithm becomes O (n?),

It is easily verified that this bound is not affected if one also wishes to find the
optimal locations of the centers yleldmg the minimum budget. The space required for
implementing the algorithm is also O (n?>).

We have provided an efficient procedure to solve the location problem where it
is required to minimize the budget for covering each demand point. This procedure
can now be used to solve the following related problem.

Suppose that the total budget available for setting centers at the supply points is
B >0. Given this constraint one wishes to establish centers such that the maximum
distance from a demand point to its nearest center is minimized. :

It is clear that the minimum of the maximum distance is an element in the set

R ={d(x, y;)|x:i €A, y;eZ}.

Hence the optimal value is the minimum element r € R such that the minimum budget,
needed to ensure that each demand point is covered within a radius r does not exceed
B. The procedure described above will be used to determine for any given r whether
the respective budget exceeds B. To find the optimal value we can use the sophisticated
search on the set R which is used in [9] to find an optimal element in the case where

the setting costs, v; are equal.
Note added in proof. We note that a special case of Theorem 1 is proved in

R. Giles, A balanced hypergraph defined by certain subtrees of a tree, Ars Combinatoria,
6 (1978), pp. 179-183.
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