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Given an n X n matrix 4 and an n-dimensional vector g let N(4, q) be the cardinality
of the set of solutions to the linear complementarity problem defined by A and q. It is
shown that if 4 is nondegenerate then N(A4, q) + N(A4, —q) < 2", which in turn implies
N(A4, q) <2 — 1 if 4 is also a 0-matrix.

It is then demonstrated that min, ., N(4, q) < 27-1 _ |, which concludes that
the complementary cones cannot spaan” more than 2”2”1 — | times around. For any n,
an example of an n X n nondegenerate @-matrix spanning all R”, but a subset of empty
interior, 2[77/3] times around is given.

Given a square real matrix A of order » and an n-dimensional vector
q, the Linear Complementarity Problem, (LCP), denoted by (g, A), is to
find n-dimensional vectors x and y satisfying

v=Ax+q, x>=0,y> 0; x'y=0. (D

(See [3,5,6,7] for the bibliography and history of the LCP.)

Letting N(A, g) be the cardinality of the set of solutions to (g, 4) we
study the quantities N*(A4)=max, c gn N(A, q) and N (A4)= ming . , <R~
N(A4, g) and establish bounds on both. The latter quantity has the fol-
lowing geometrical interpretation. If we consider the 2" complementary
coneés generated by the columns of [/, —A4], (see [8]), then N, (A) is the
number of times R” is spanned around by these cones.

This study shows that this (spanning) number is bounded above by
2n=1 __ 1 if the matrix 4 is nondegenerate, i.e. all its principal minors
are nonzero. For any 7, an example of an # X n nondegenerate matrix
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spanning all R”, but a subset of empty interior, 27/31 times around is
given. |

It is also demonstrated that the nondegeneracy of A implies
N(A4,q) +N(A, —q) < 2" for all g. Thus, if 4 is a Q-matrix (i.e.
N(A, g)> 1 for all g) then N*(4) < 2" — 1.

This work was motivated by a conjecture due to Ingleton [4] and
Censor [1]. Studying nondegenerate matrices Ingleton showed that if
for some g* (q*, A) has a unique solution (x*, y*) and x* + y*is
strictly positive, then 4 is a O-matrix. (Extensions of this result appear
in [5,8,9,10]). Ingleton conjectured that under the above conditions
the maximal number of solutions to (g, A) is 2" — 1, provided that
N(A, g) > 1 for some g.

The conjecture was studied and partially resolved by Censor, [1],
who also raised the following general question: Given an n X »n nonde-
generate Q-matrix A and supposing that N(4, ¢) > 1 for some ¢, is the
maximal number of solutions to (1) 2" — 1 for all ¢ in R"?

The following result demonstrates that 2" — 1 is indeed a valid bound.
(We later show that the bound is not necessarily attained.)

Lemma 1. Let A be an n X n matrix such that N(A, q) = 1 for all ¢ < O.
Then for any q, N(A, q) < = implies N(A4, q) < 2" — 1.

Proof. For any I € {1, 2, ..., n} consider the (complementary) cone gen-
erated by the n columns —A.;, i €I and ¢;, i € I, where A, is the i'®
column of A and e; is the i™ unit vector. Note that the correspondence
between subsets of {1, 2, ..., n} and the complementary cones is not
necessarily one to one.

It is obvious that if there are two different solutions to (2)

y=Ax+tgqg, x=0, y=0, x'y=0,
x;>0i€l and x;=0 ie¢l, 2)

for some I € {1, ..., n} then N(A, q) is not finite. (Consider convex com-
binations of these two solutions.)

Hence, if N(A, q) is finite each set 1< {1, 2, ..., n} contributes at
most one solution to (g, A) and N(A4, q) < 2". If ¢ # 0, then the cone
defined by I =0 does not contribute a solution and N(A4, ¢) < 2" — 1.
Note that N(A, 0) is finite only if N(A4,0) = 1. Consider now a nonzero,
nonnegative q. By the lemma’s assumption (—q, 4) has a solution.
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Defining a cone to be nondcgenerate if it has a nonempty interior,
we observe that the union of all the degenerate complementary cones
and the (proper) faces of the nondegenerate cones is closed and no
where dense in R”. Thus there exists a sequence {¢*}, converging to ¢
where Vk qk < 0 and ¢* belongs to a nondegenerate cone. Since there
is a finite number of complementary cones we can assume without loss
of generality (choose a subsequence if necessary) that Vi qk belongs to
the same nondegenerate cone. Hence —q¢ is in that cone. It is then clear
that g is not contained in this nondegenerate cone, since otherwise we
would have that the n generators are linearly dependent -- a contradic-
tion to the nondegeneracy assumption. Hence N(4, ¢) < 2" — 1.

From Lemma 1, N*(4) < 2" — 1 for any nondegenerate Q-matrix 4.
Censor, [1], provided an example of an n X n nondegenerate Q-matrix,
(which we denote by 4,)), such that N*(4,) = 2" — 1. Murty, [8], illus-
trated that the matrix

M= 2 -1 2 (3)
2 2 -1

is a nondegenerate Q-matrix and N*(M) = 4. Combining the above two
illustrations and using the direct sum operation we show that for each n
2" — 1 is not always a sharp bound.

Recalling that the direct sum of the square matrices A and B, 4 ® B,
is given by

A O
AOB=
0 B
we notice that
N(A @B, ) =N(A, ¢")NB, ¢*), (4)

where (g!, ¢?) is the corresponding partition of q.

Lemma 2. Given nonnegative integers n, r, t, such that 3t +r < n there
exists an n X n nondegenerate Q-matrix A such that
N*(A) = 4"max{1, 2" — 1}.

Proof. Define

A=Meo. . oMo A 0l _,
t
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where M is given by (3), A, is the above mentioned matrix due to Censor
[1] and /,_5,_, is the identity of order n — 37 — r.

Having established an upper bound on N(A4, ¢), we next turn to the
lower bound question and prove that if 4 is an » X n nondegenerate
Q-matrix then min, , g N(4, ) < 271 _ 1, provided n > 2.

Lemma 3. Let A be an n X n matrix and q in R" If N(A4, q¢) + N(A, —q) < oo,
then N(A, q) + N4, —q) < 2",

Proof. If ¢ = 0, then N(A4,0) < « implies N(A4,0) = 1. Thus consider
q# 0. Let /€ {1, 2, ..., n}, then we show that the complementary cone
corresponding to / does not contain both ¢ and —¢. This will prove the
lemma. Observe first that if the cone corresponding to / is nondegen-
erate, i.e. has an interior, then g # O implies that the cone cannot con-
tain both ¢ and —¢. Suppose that there exists a cone C containing ¢ and
—¢. Let B be an n X n matrix corresponding to the n generators of C,
then Bx'=¢ and B: ‘2 =—¢q for some x!>0 and x> 0. Hence
Vi = 0, B[(1 + )x1 +1x2] = ¢ and there exists a (complementary) ray
of solutions — a contradiction to N(A4, ¢) < .

Note that Lemma 3, which has been proved independently of Lemma
1, also implies that N(A4, ¢) < 2" — 1 for any nondegenerate n X n Q-
matrix. Another consequence is that minq LoN(A, g)< 2"~ 1

We now refine this bound to 27~! — 1, applying a result due to Murty

[8].

Theorem 4. Let A be an n X n nondegenerate matrix. Then
min, , o N(A4, ) < 2"~ — 1 when n > 2.

Proof. From Lemma 3 it follows that min, , o N(A4, q) < 2"~ I Suppose
that for all ¢ # 0 N(A4, q) = 2"~1. We then apply Theorem (7.2) of [8]
to have N(A, ¢) =1 for all g. Hence the proof is complete.

Theorem 4 concludes that the complementary cones cannot span the
space R” more than 2771 — 1 times around. This bound is trivially at-
tained for 2 X 2 (-matrices.

Finally we show that for any n > 3 there exists an n X n nondegen-
erate Q-matrix A such that the complementary cones defined by the
columns of [/, —A] span R" — R(A) 207/31 times around, where R(A)
is a subset of R” with empty interior.
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To define R(A) precisely, we recall that g in R" is said to be nonde-
generate with respect to the » X n matrix A if for any (x, y) solving
(g, A), x +y is a strictly positive vector (i.e. g is neither contained in a
complementary cone with no interior nor in a proper face of a nonde-
generate cone). g is degenerate if it is not nondegenerate. R(A) is de-

fined as the set of vectors in R” that are degenerate with respect to 4.
We need the following lemma for our discussion.

Lemma 5. Let A be an n X n nondegenerate matrix and consider q in
R"” which is not contained in any face of dimension less than n — 1 of a
complementary cone defined by the columns of |1, —A]. Then, Ve > 0
there exist nondegenerate vectors Pl and P? such that

HP' — gl <, 1P — gl < e,
N(A, ¢) =L IN(A, Py + N(4, P?)] .

Proof. If g itself is nondegenerate choose P! = P2 = 4.

Suppose that g is contained in the intersection of k different (n — 1)-
dimensional faces Cy, ..., C;, of complementary cones but not in any
face of a lower dimension. Choose € > 0 such that S(g, €) =
{x1llx -- qll < €} is contained in any complementary cone having ¢ in
its interior, and such that each complementary cone having one of
Cy, ..., Cy as its (n — 1)-dimensional face contains the corresponding
“half” ball chopped off by that face. € is well defined since each com-
plementary cone is nondegenerate and ¢ is not in any face of dimension
less thann — 1.

Let u € R”, |lull <€, such that g + u and ¢ — u are nondegenerate
vectors. We then have that P! =g+ u and P? =g — u are on opposite
sides of each C;, i =1, ..., k. Also, P! and P? are contained in any com-
plementary cone having ¢ in its interior.

Consider the i face C;, and let ¢; be the number of different com-
plementary cones having C; as their face. Using the assumption that g is
not on a face of dimension less than n — 1 we may suppose, without
loss of generality, that #; cones, 0 < f; < ¢; contain P! and ¢, — f; con-
tain P?.

Let T;(T; — T;) be the cardinality of the set of solutions to (P!, 4)
((P?, A)) corresponding to the above #;(¢; — t;) cones. (Note that we in-
troduce 7T; and Ti since the correspondence of subsets of {1, 2, ..., n} to
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the different complementary cones is not injective.) Note that 7; is even
by tne nondegeneracy assumption. Thus the ¢; cones contribute 77/2
solutions to (g, 4), T; solutions to (P!, A) and T; — T; solutions to
(P?, A). Noting that Pl and P? are on opposite sides of each G;,
i =1, .., k and denoting by r the number of nondegenerate solutions to

(g, A) we have

k
N(A, P)=r+ _El (T; - Ty,
P

non

i}
—

N(A, PY=r+

i

w]*ﬂ

k
N @) =r+ 23
Hence N(4, g)=1 [N, PY) + N(4, P?)] and the proof is complete.

Dealing with the 3 X 3 matrix M defined in (3), Murty [&8] claims
that N(M, q) is positive and even for all nondegenerate g. Lemma 5 and
a simple inspection of the six generators of [/, —M] show that
N(M, q) = 2 for all g # 0. Clearly N(M,0) = 1.

Let M be given by (3) and define

MD=Me. . .oM.
\,‘___/
]

If ¢ is in R3/, then we have g = (¢!, ¢ ¥ g, whereq 1 <1<y, 18 in
R*. We then observe that for ¢ € R3/ such that ¢’ # 0, t—]
N(MD, q)=> 2, and that {g|q’ = 0 for some 1 < ¢ <} is (strlctly) con-
tained in R(MY), the set of degenerate vectors corresponding to M),
Thus the following theorem is implied.

Theorem 6. For any n > 3 there exists an n X n nondegenerate Q-ma-
trix A such that N(A, q) > 2[n/3] for any g in R" — B, where B is a
subset of R(A), the set of degenerate vectors corresponding to A.

Finally, while noting that for j> 2, N(M (f), ey) =12, where ¢| =
(1, 0, ..., 0)' we conclude that Lemma 5 does not hold for all g # 0.
In fact, the above illustrates that if ¢ is contained in a face of dimension
less than n — 1, where » is the order of the matrix 4, the existence of
nondegenerate vectors P! and P? such that N, PH< N, q) < N(A, P2)
is not guaranteed.
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