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Abstract

We study continuous partitioning problems on tree network spaces whose edges and nodes are
points in Euclidean spaces. A continuous partition of this space into p connected components is
a collection of p subtrees, such that no pair of them intersect at more than one point, and their
union is the tree space. An edge-partition is a continuous partition defined by selecting p — 1
cut points along the edges of the underlying tree, which is assumed to have s nodes. These
cut points induce a partition into p subtrees (connected components). The objective is to mini-
mize (maximize) the maximum (minimum) “size” of the components (the min—max (max—min)
problem). When the size is the length of a subtree, the min—-max and the max—min partitioning
problems are NP-hard. We present O(n” log(min( p, n))) algorithms for the edge-partitioning ver-
sions of the problem. When the size is the diameter, the min—max problems coincide with the
continuous p-center problem. We describe O(nlog® n) and O(r log® n) algorithms for the max—
min partitioning and edge-partitioning problems, respectively, where the size is the diameter of
a component.
© 2003 Elsevier B.V. All rights reserved,
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1. Introduction

There are numerous papers in the literature studying discrete bottleneck tree partition-
ing problems, defined by deleting p — 1 edges from a given trce graph and looking at
the set of p discrete subtrees induced by the partition. (Of course, in the discrete cases
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p < n.) For example the reader is referred to [2,3,11-14,17,22,23] for the most recent
studies. In this paper we focus on continuous partitioning problems on the metric space
of the continuum set of points on the edges of a tree in Euclidean space, induced by
the edge lengths. The objective is to partition this space (a tree network space) into p
connected components (closed subtrees), optimizing the maximum or minimum “size”
of the components. Typically, the size will refer to the length or the diameter of the
component. (Informally, the length of a component is the sum of the lengths of its
edges, and its diameter is the length of a longest simple path of the component.) In
a continuous partition we require that no pair of components intersect at more than
one point, and the union of the components is the tree network space. We are aware
of only a few papers dealing with continuous tree partitioning problems. For example,
in the continuous p-center problem on a tree the objective is to split the above space
into p connected components, minimizing the maximum of the diameter (radius) of
the components. Polynomial algorithms solving this problem appear in [8,9,20]. On
the other hand, if we wish to minimize (maximize) the maximum (minimum) length
of the components the problem is NP-hard, since the Partition problem is a special
case [16]. (Consider the case of a tree consisting of n — 1 leaves, each one of them
connected by an edge to a central node, and let p = 2.) The recent paper by Agnetis
et al. [1] considers the model of partitioning a tree space into p subsets, not necessarily
connected, of equal length, while minimizing the maximum diameter of the subsets.
They provide polynomial algorithms only for the cases where p =2 and 3.

In view of the above NP-hardness result, in this paper we focus mainly on a class
of continuous partitions, where the p — 1 cut points, splitting the space into p com-
ponents are restricted to be on the edges of the tree. (See the next section for an
exact definition of a cut.) We call such partitions continuous edge-partitions. As it will
be clear from the definition, not every partition is an edge-partition. (For example,
splitting a five node star tree, with one center node connected to four leaves, into two
components, each having exactly two leaves can be achieved by a continuous partition,
but not by a continuous edge-partition. See Fig. 1 at the end of Section 3.) Such a
model has been recently discussed by Becker et al. [4-6]. They study the continu-
ous max-min tree edge-partitioning problem, where the objective is to maximize the
minimum length of the components. Assuming rational data, the authors present an
O(n? p* + np*) algorithm to solve the model. We are unaware of papers dealing with
the continuous min—max tree partitioning problem. We adapt the general approach in
[8,9], to improve upon the above results. Specifically, for any real data we present
O(n? log(min( p,n))) algorithms to solve both the continuous max-min and min-max
tree length edge-partitioning problems.

We also consider partitioning and edge-partitioning bottleneck problems involving
the diameters of the components. The min—max model, where the goal is to mini-
mize the maximum of the diameters of the p components is the continuous p-center
problem, for which an O(xnlog? n) algorithm is already known, [10,20]. For the max—
min problems where the goal is to maximize the minimum of the diameters of the
p components, we obtain the following results. For the edge-partitioning version we
derive an O(nlog®n) algorithm, while the partitioning version is solved in O(n log® n)
time.
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2. Formulation of the continuous bottleneck tree edge-partitioning problems

Let T = (V,E) be an undirected tree with node set V' = {v,,...,v,} and edge set
E = {es,...,e,}. Each edge e;, j=2,3,...,n, has a positive length [;, We assume
that T is embedded in the Euclidean plane. Each edge e; is considered to be a closed
interval of length /; so that we can (uniquely) refer to its interior points by their
distances (along the edge) from the two nodes of e;. Let A(T) denotc the continuum
set of points on the edges of T. We view A(7') as a connected and closed set which
is the union of n — 1 intervals. (A pair of intervals may intersect only at a common
node.) Let P[v;,v;] denote the unique simple closed path in 4(T) connecting v; and v;.
Suppose that the tree T is rooted at some distinguished node, say v;. For each node
v, j=2,3,...,n, let p(v;), the parent of v;, be the node v€ V, v # v;, which is closest
to v; on Plvy,v]. vy is a child of p(v;). e; is the edge connecting v; with its parent
p(v;). A node v; is a descendant of v; if v; is on P[y;,v;]. ¥; will denote the set of all
descendants of vy, and C; will denote the set of all children of v;. T(V;) will denote
the subtree induced by V.

As noted above we refer to interior points on an edge by their distances along the
edge from the two nodes of the edge. The edge lengths induce a distance function on
A(T). For any pair of points x, y € A(T), we let d(x, y) denote the length of Plx, y],
the unique simple path in A(T') connecting x and y. If x and y arc on the same edge,
P[x, y] is called a sub-edge or a partial edge, and its length is d(x, y). Generally, the
path P[x, y] is also viewed as a collection of edges and at most two sub-edges (partial
edges), which are not edges. P(x, y) will denote the open path obtained from P[x, y]
by deleting the points x, y, and P(x, y] will denote the half open path obtained from
P[x, y] by deleting the point x.

Also, for any subset ¥ € A(T), and x in A(T) we define d(x,7V) = d(¥,x) =
Infimum {d(x, y)|y € Y}. A(T) is a metric space with respect to the above distance
function.

A subsct ¥ C A(T) is called a subtree if it is closed and connccted. A subtree Y
is also viewed as a finite (connected) collection of partial edges (closed subintervals),
such that the intersection of any pair of distinct partial edges is empty or is a point in
V. We call a subtree discrete when all its leaves, (relative boundary points), are nodes
of T. If Y is a subtrece we define the Jength of Y, I(Y), to be the sum of the lengths
of its partial edges. We define the diameter of Y, d(Y), to be the length of a longest
(simple) path in Y.

A continuous partition of A(T) into p components is a set of p closed subtrees,
such that no pair of them intersect at more than one point, and their union is A(7").
We now define an edge-partition.

A cut or a break of the tree T is defined by a point, called a cut point, as follows:
Supposc first that x is an interior point along some edge (v;,v;), i.e., its distances from
both v;, and v; are positive. An interior cut at x is a splitting of the edge into two
closed partial edges, P[v;,x] and Plx,v;]. (Note that x is in both partial cdges.) Such
an Interior cut divides the tree into two closed subtrees of positive length, intersect-
ing at x only. We also define two boundary cuts or node cuts along this edge: The
[v, vj]-cut ([v,v;]-cut) is the splitting of the edge into two parts, one consisting of the
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node v; (v;) only, and the other consisting of the (closed) edge (v;,v;). (Again, note
that v; (v;) is in both parts of the split.) v; (v;) is called the marker of the cut, and the
edge (v;,v;) is its direction. If the marker of the node cut is not at a leaf of
the tree it also partitions the tree into two subtrees of positive length, intersecting
at the marker only. Note that an interior cut is uniquely defined by an interior point
of an edge, while a node cut is characterized by a node and an edge which is incident
to that node. In particular, therc arc at most deg(v;) distinct cuts associated with a
node v;. (deg(v;) is the number of edges incident to v;.) To illustrate consider the
cxample in Fig. 1. A continuous 2-partition splitting the tree into two subtrees, each
having exactly two leaves is defined by the two subtrees induced respectively by the
node sets {vy,v;,03} and {v;,vs,0s5}. No edge-partition can achieve this splitting. To
split the tree into the two subtrees induced by the node sets {v;, v, 03,04} and {vy,vs},
consider the edge-partition defined by the boundary cut [vy,vs]-cut. (Here v; is the
marker and es = (v, vs) is the direction.)

Since p—1 distinct cuts induce a partition of T into p subtrees, it is more convenient
to add an artificial cut so that the number of cuts will be equal to the number of
subtrees. Thus, we augment the original tree T by an artificial node vy, a super root, by
connecting it to v; with an artificial edge of unit length. We will assume without loss of
generality that we select p cut points and one of the cuts must be the [vy, vg]-cut. These
p cuts induce p subtrees on the original tree 7. (The artificial edge takes no part in the
partition of the original tree T.) Let p be a positive integer, and let X, be a set of p
distinct cut points, such that no node v; is the marker of more than deg(v;)— 1 boundary
cuts in X,,. X, is called a p-cut. It defines a continuous edge-partition of A(T) into
p closed connected components (subtrees) of positive length, {71(X,),...,T,(X,)}.
The intersection of each pair of components is either empty or consists of exactly one
point, which is either a marker or an interior point of an edge. For convenience we
will define a one-to-one correspondence between the cut points and the subtrees. Each

subtree T;(X,), j=1,..., p, will correspond to the (unique) closest point to the root v
in Ty(X,)NX,. We will also say that this cut point determines or induces the subtree
Ty(Xp).

Note that an edge-partition is a partition with the additional following property. If
two distinct subtrees of the partition have a common node, then this node is a leaf of
at least one of the subtrees.

In this paper we study bottleneck optimization problems defined by p-cuts. Specif-
ically, for each p-cut X, we consider the lengths of the components, {/(71(X,)),...,
Ty(Xp))}

In the continuous max—min tree length edge-partitioning problem, the objective is
to find a p-cut X, maximizing

IMin(X,) = min{I[(Ty(X,)),..., KT,(X,))}.

In the continuous min—max tree length edge-partitioning problem, the objective is
to find a p-cut X, minimizing

IMax(X,) = max{{(Ty(X,)), .., (T p(X,))}.
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As mentioned above, the continuous max—min tree length edge-partitioning problem
has been recently discussed by Becker et al. [4-6]. Assuming rational data, the authors
present O(n? p*> 4+ np*) algorithm to solve the model. We are unaware of papers dealing
with the continuous min—-max tree length edge-partitioning problem.

We now define the related problems involving the diameters of the subtrees in the
partition, {d(T1(X})),...,d(Tx(Xp))}.

In the continuous min—max tree diameter edge-partitioning problem, the objective
is to find a p-cut X, minimizing

d Max(X,) = max{d(T1(X})),...,d(Ty(X,))}.

This is the continuous p-center problem on a tree. (Using location theory terminology it
corresponds to the case where both the demand set and the supply set are equal to A(7)
[9].) Polynomial algorithms solving this problem appear in [8,9,20]. The algorithm with
the lowest known complexity is the O(n log® n) procedure by Megiddo and Tamir [20].
The complexity can be further improved to O(nlog® n) by using the modification in
Cole (1987) [10]. Note that the continuous p-center problem is actually defined as the
partitioning (not necessarily edge-partitioning) problem, minimizing the maximum of
the diameters of the components. However, it can easily be shown that for this model
the two versions coincide.

In the continuous max—min tree diameter edge-partitioning problem, the objective
is to find a p-cut X, maximizing

d Min(X,,) = min{d(Ty(X,)),...,d(T,(X,))}.

We also consider the partitioning version of the model, the continuous min—max
tree diameter partitioning problem, where we look for a partition (not necessarily
edge-partition) maximizing the minimum of the diameters. The two versions are not
identical. We present O(n log? n) and O(nlog3 n) algorithms for the edge-partitioning
and the partitioning versions respectively.

Remark. We note that due to the nature of the above four bottleneck objective func-
tions, the maxima of /Min(X,) and d Min(X,), as well as the minima of [/ Max(X,)
and d Max(X,) do exist. (This follows from the fact that even if we allow X, to be
a multiset, or contain a node v; which is a marker of deg(v;) boundary cuts, there is
always a p-cut X, which dominates X,.)

For convenience we summarize the notation introduced above that will be used
throughout the paper.

Notation

A(T) The embedding of the tree in the Euclidean plane
U] The root of T

p(v;) The parent of v;

e; The edge (v;, p(v;)) connecting v; with p(v;)
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[; The length of ¢;

C; The set of children of v

Vi The set of descendants of v;

(V) The subtree induced by V;

Plx, y] The unique simple path connecting x and y

I(Y) The length of a subtree ¥

dy) The diameter of a subtree Y

X, A p-cut, a set of p cut points

IMin(X,) Minimum length of the p subtrees induced by X,

[ Max(X,) Maximum length of the p subtrees induced by X,
dMin(X,) Minimum diameter of the p subtrees induced by X,
d Max(X,) Maximum diameter of the p subtrees induced by X,

3. The continucus max—min tree length edge-partitioning problem

To solve this max—min edge-partitioning problem, we use a parametric approach.

For a positive real [, I < [(T), we define M(!) to be the maximum number of cuts
possible, such that there exists an edge-partition with M (7} cuts for which the length
of each one of the induced M (/) subtrees is greater than or equal to /. Tt follows that
if I} <[y, then M(ly) < M(l;). Therefore, l';, the solution value to the continuous
max-min tree length edge-partitioning problem into p components is the largest value
of [ such that M({) = p.

We will present two approaches to compute . Both approaches yield polynomial
algorithms, based on the following linear time algorithm to compute M(/) for a given
real /.

3.1. Algorithm 1: Computation of M(I)

Given a positive real I, [ < I(T'), our objective is to compute M (/) = max{g|3X,,
[Min(X,) = [}. (Recall our supposition that one of the cuts is the artificial cut, the
[v, vg]-cut.)

For any real z, |z], will denote the largest integer bounded above by z.

We use a bottom-up approach, starting with the leaves of the rooted tree. Recall
that for each node v;, C; (V;) denote the set of all children (descendants) of v; and
T'(V;) denotes the subtree of T induced by V;. Define V' =V'({)={v,] (T(V;)) = | >
I(T(v;)), Yo € Ci}. (Since I < I(T), V' is nonempty, and if v; is in V', then there is
no cut point in 7(¥;) for v; € C;.) To initiate the algorithm consider 7, the subtree
of the original tree, induced by the root v; and all the children of the nodes in V.
(These children will be the leaves of T, and v; will be its root.) A node v; is called a
cluster node of a rooted tree, if all its children are leaves of this tree. For each cluster
node of 7", v;, and v; € C; add [(T(V;)) to the current length of the (leaf) edge (v;, v;)
of T,
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Algorithm 1

To compute M(l) we start with the rooted tree T”. In a generic iteration of the
algorithm we select a cluster node v; of the (current) tree. (Initially we start with 77,
and set M(1)=10.) Let {v;q),...,0in} be the set of children of v;.

Step 12 Trimming a cluster.
from the current tree, and go to Step 3. If v; £ v; go to Step 2.

Otherwise, for each &k = 1,...,¢, define ny = |l;4y/!], and add ng to M(Il). Reduce
the length of the edge (vj, viy) from gy to ap = iy — mel. (This accounts for adding
np cut points on the edge, where the distance between adjacent points is exactly 1.)
If ljuy = nil delete the edge (v;,vi)), from the current tree. Let x; denotc a cut
point closcst to v;, amongst all M (/) cut points that have been added so far. Define
A= Ziq ay. 1f all child edges are deleted, i.e., A =0, and v; = vy, go to Step 3. If
all edges are deleted and v; # vy, repeat starting with a cluster of the updated tree.

Step 2. Deleting a cluster.

Delete all remaining edges of the type (v;, o)), kK =1,...,t, from the current tree.
If v; =v; goto Step 3. If v; # v; and 4 = [, add 1 to M(]), (corresponding to the
[vi, p(v;)]-cut). Repeat starting with a cluster of the updated tree. If v; # v; and A4 < [,
increase the length of the edge (v;, p(v;)) from /; to I; + A4, and repeat starting with a
cluster of the updated tree.

Step 3: Termination at the root v;.

If A=/ add 1 to M(!), (corresponding to the [v1,u9]-cut). Stop and return the
current value of M(/). If A <[ consider the cut point x; which is the closest to v,
amongst all M (/) cut points that have been established. Replace x; by the [v1, vp]-cut.
Stop and return the current value of M (/). (The last case corresponds to replacing the
subtree previously determined by x; by its union with the current remaining subtree
(cluster) rooted at v;.)

End of Algorithm 1.

In the next lemma we prove the validity of the above procedure to compute M (/).
Lemma 3.1. Algorithm 1 correctly computes M(1).

Proof. Using the (inductive) nature of the algorithm, it is sufficient to prove its validity
for a tree consisting of a single cluster, rooted at v;.

Consider such a cluster with leaves {viq),..., Uiy} Since ! < I(T), the sum of the
lengths of the edges is at lcast /. If the length of cach edge is smaller than /, there is
only one cut, (the [v;,vo]-cut). Indeed, this is the cut generated by the algorithm.

Suppose that there is at least one edge of length greater than or equal to /. For
each such edge (v;, viry) compute ap = k) — ngl, where ny = [ /iy/1]. Without loss of
generality suppose that the edge (v;,v;1y) is one of these edges and «; is the smallest
of all these coefficients. Then it is easy to see that there is a set of M (/) cuts, such that
for each k # 1, n,=nx={lix)/!] of them are equally spaced on the edge (vi,vixy), and
ny=n —1=|l;1y/!| -1, of them are equally spaced on the edge (v;, v;1y). (The first cut
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on each edge is at a distance / from the leaf, and the distance between consecutive cuts
on the same edge is also [.) Therefore, if we trim the length of each edge (v;,vix)),
k=1,...,1, by n,l, the remaining cluster (whose length is at least /), will require at
least one and at most two additional cuts. One of the cuts is the [v;, vy]-cut. There is
a second cut if and only if the length of the above remaining cluster is at least 2/. If
there is a second cut point it is necessarily on the edge (v;,v;1y) at a distance of o
from v;. It is casily checked that Algorithm 1 does exactly that. [J

It is easy to verify that it takes O(n) time to compute the integer M (7), for a given
value of /. We also note that with the same complexity the algorithm also generates
the set of M(/) cuts. (The distance between consecutive interior cuts on an edge is
equal to /. Therefore, we can output this set by specifying only the location of the cut
on the edge closest to vy, and the total number of cut points on this edge.)

3.2. Characterizing the optimal value

In the next thcorem we characterize the optimal solution value /7. This charac-
terization, combined with Algorithm 1 will yield our first polynomial algorithm to
compute /7.

Theorem 3.2. Let [}, be the solution value for the continuous max-min free length
edge-partitioning problem. Then there exists a discrete subtree T' of T, and an integer
g < p, such that

I =1(T")q.

Proof. We prove the result by induction on the number of nodes in 7. The result
clearly holds if T consists of a single edge.

Let T be a general tree, and suppose that we apply the above bottom-up algorithm
to compute M(/7,), using v; as the root of 7. Consider the first node cut selected by
the algorithm. (Recall that the final cut, on the augmented edge connecting the root v
to the artificial node vg, is a node cut. Hence the first node cut is well defined.)

Suppose that this cut is the gth cut, and it is either the [v;,v;]-cut, for some child
v; of v;, or it is the [v;, p(v;)]-cut. In the first case there is an integer g’ < g such that
the length of the discrete subtree 7}*, induced by v; and V,, is equal to ¢’ 5. (All the
prior cuts are interior, and therefore the length of each subtree associated with one of
the first g cuts is equal to [7.)

Suppose that the cut is the [v;, p(v;)]-cut. Let ¢” < g denote the total number of cuts
in V;, including the [v;, p(v;)]-cut. Consider the following two cases. First, suppose that
the length of the subtree determined by this cut point is equal to /7. In this case we
have /(T(v;)) = ¢"I’, where T(v;) is the subtree induced by ;.

Next suppose that the length of the subtree defined by the gth cut is strictly greater
than 7. Since all prior cuts in ¥; are interior, we can slightly perturb all of these g'—1
cuts towards v;, ensuring that the length of each one of the respective g” subtrees is
strictly greater than /7. From the optimality of /3, for the problem defined on 7', it now
follows that v; # vy, and the optimal solution value to the continuous edge-partitioning
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problem (with p — ¢” cuts), on the subtree induced by v; and the nodes in ¥V — V;
must also be /7. The result follows from the induction hypothesis. [

Theorem 3.2, combined with the procedure to compute M (/) implies the following
polynomial (but not strongly polynomial) algorithm. Suppose that each edge length
of the tree is integer, and let K be the longest edge length. Then from the above
result it follows that l; is a rational number, where both numerator and denominator
are bounded above by p + (n — 1)K. Since [} is the largest value of / such that
M(l) = p, we can now directly apply a search over the rationals, as described in
[21,24], and find /7, in O(nlog(p +nK)) time. If we relax the integrality assumption,
and suppose that each edge length is rational, where all the integer numerators and
denominators are bounded above by an integer K, the total running time will increase
to O(n?logK +nlog p).

3.3. The parametric algorithm

We will next show how to obtain a strongly polynomial algorithm using the para-
metric approach in [18]. We start by bounding the number of cuts on each edge in an
optimal solution.

Theorem 3.3. Let X, be an optimal solution to the continuous max—min tree length
edge-partitioning problem. For each edge e; € E, let n(j) be the number of cuts in
X, which are on e;. Then,

(LT (p = =1) = 1<n() S G p+(n—1))+ 1.

Proof. Let I be a positive real. Consider an edge e; € E. Then it is casy to see that
[;/l 41 is an upper bound on the number of cuts that can be established on e,
such that the length of each partial edge (subtree) is at least /. Similarly, it is easy
to see that we can establish [(/; — /)/l] + 1 = [[;/I] cuts on each edge ¢;, such
that the length of each one of the induced subtrees will be at least /. Therefore,

M(Z) 2 ZejeE Uj/” = ZejeE (Zj/l - 1)'

Combined with the above upper bounds we obtain,
KTYl—(n=DH <M< TY!+(n—1).
In particular, for /3, we obtain, p < M(l},) < (I(T')/I},) + (n — 1). Equivalently,
(p—(n—=1)/IT) <1/, (D

Next define /' = I(T)/(p + (n — 1)). From the above we obtain M(!") = I(T)/l' —
(n—1)= p. Since I, is the largest / such that M(/) > p, it follows that

Y, <YI'=(p +(n = D))/IT). (2)
Finally, for cach edge e¢; we have

L, =1 <n(j)y< L/, + 1.
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Substituting the upper and lower bounds from (1)-(2) above yields,
(LGIUT)p—(n—1)) =1 <n(j) <GUT)Hp+(n—1))+ L. Q

We now have all the ingredients necessary to apply the general parametric approach
of Megiddo [18,19] to obtain an O(n? log(min(p,n))) algorithm for the solution of
the max—min tree length edge-partitioning model for any real data. (We note that
a similar framework is used in [8] to obtain the first polynomial algorithm for the
continuous p-center and p-dispersion problems on tree graphs. Faster algorithms for
these center/dispersion models appear in [20].)

The approach is to apply Algorithm 1 parametrically, using / as the single parameter,
to compute M (/},) without specifying the value of /7, a priori. Note that for a fixed
value of the parameter, Algorithm 1 is executed in O(n) steps. At each step we possibly
trim the lengths of some edges of the cluster by an integer multiple of the parameter
1, and perform some additions and comparisons with the updated lengths of the edges.
Imagine that we start the algorithm without specifying a value of the parameter . The
parameter is restricted to some interval which is known to contain the optimal value
I, (Initially, we may start with the interval [0,/(T)].) As we go along, at each step
of the algorithm we update and shrink the size of the interval, ensuring that it includes
the optimal value.

Before we formally present the parametric version of Algorithm 1 which com-
putes the optimal value /7, consider the preprocessing phase of Algorithm 1 above,
where the set of nodes V/(!/) is computed. Since this set depends on the value of
the parameter /, which is not specified, we need to determine what is V'(/}) with-
out knowing /7,. We first use a bottom-up approach and compute in O(n) time the set
L(TY={I(T(V))li=1,...,n}. Next, using Algorithm 1 above, we apply a binary search
on the set L(T') to identify the largest (smallest) element of the set, say /_, (/) such
that M(/_) =2 p (M(I}) < p). We conclude that /_ </}, <[,. To check whether /},
is actually bigger than /_, we continue with the hypothesis that /_ < /3, < /.. Specif-
ically, with this supposition, we know that V'’ ()= V'(ly), and we can construct the
subtree T" (for the parameter value /=/7), and turn to Step 1 of Algorithm 1 without
knowing /7,

Next, we need to compare the lengths of the cluster edges with an unspecified value
of the parameter in the open interval (/_, /). We resolve all these comparisons simulta-
neously by applying a binary search, (using Algorithm 1), to identify the largest (small-
est) element of the set, {/;1),..., Ly}, say I, (I") such that M(!") = p (M(I") < p).
We conclude that /" </, </”. We update the bounds by setting /= = max(/’,/-)
and /" =min(/",1}). I~ <1}, <I*. Again to check whether /} is actually bigger
than /=, we continue to the trimming phase with the hypothesis that [~ < < I,
and proceed along these lines. Following is a formal description of the parametric
algorithm.

Algorithm 1: Parametric version

For i = 1,...,n, define n}, = (I,/IT))(p — (n — 1)) — 1 and n/ = (I,/I(T))
(p+(n—1)+1
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In a generic iteration of the algorithm we select a cluster node v; of the (current)
tree. (lnitially we start with 7, and set [~ =1/_, I* =1, where 7", [_ and [/, are
defined above. Also set [;(1) = I(T(V;)) for any leaf v; of T'”, and I~ </ < I*.) Let
{vic1y- -, Uiy} be the set of children of v;.

Step 1: Trimming a cluster.

For k=1,...,t, let I(k) be defined by the solution to the linear equation /;x)(/)=1.
Using Algorithm 1 above, apply a binary search on the set {/(1),...,[(#)} to identify
the largest (smallest) element of the set, say I’, (I”") such that M(I') = p (M(I") < p).
(If M(I(k)) = p for all k= 1,...,¢, define [” = L(T), and if M(I(k)) < p for all
k=1,...,t, define /' = 0.) Update the bounds on [}, by setting /= = max(/’,/™) and
" =min(",I7). (I” <[5, < 1)

If Lign(17) <17 for all k=1,...,t, define A(1) ="}, Ligy(D). If v; =1, delete all
edges (v;, viy) from the current tree, and go to Step 3. If v; # vy go to Step 2.

Otherwise, (i.e., lip(/7) > [~ for some g =1,...,t), for each k =1,...,t, define

L'(ky={I]3q, g {1,...., p}, njg, <q<njgy Ln() =ql}.

Using Algorithm 1 above, apply a binary search on the set L'(k) to identify the
largest (smallest) element of the set, say /, (I”") such that M(I') = p (M(I') < p).
(If M(I(k)) = p for all k= 1,...,t, define 1" = L(T), and if M(I(k)) < p for all
k=1,...,t, define I’ =0.) Update the bounds on [}, by setting /=~ = max(/’,/~) and
I" =min(",I"). (I" < I}, < I%)

Define ny=|;xy(I*)/I" |. Reduce the length of the edge (v;, vir)) by setting ;) (1)=
Ligy(Dy — mi L I Ly (1) = O delete the edge (v;, vix)), from the current tree.

Define A(1)=>Y_, Liuy(!). If all child edges are deleted, i.c., 4(/)=0, and v; =,
go to Step 3. If all edges are deleted and v; # vy, repeat starting with a cluster of the
updated tree.

Step 2: Deleting a cluster.

Delete all remaining edges of the type (v, viwy), k=1,...,¢, from the current tree. If
v; =01 go to Step 3. Otherwise, (v; # v1), let [* be the solution to the linear equation
A(l)=1. Using Algorithm 1 compute M(/*), and determine whether /* < [}, or [* > Iy
In the former case, update the lower bound by setting /=~ = max(/~, [*), increase the
length of the edge (v;, p(v;)) by setting [;,(1)=1{;+A(!), and repeat starting with a cluster
of the updated tree. If [* > I, update the upper bound by setting I" = min(/, %),
and repeat starting with a cluster of the updated tree.

Step 3: Termination at the root vy.

Let I* be the solution to the linear equation A(/) = /. Using Algorithm 1 compute
M(I"), and determine whether /* < I3, or [* > [, In the former case, update the lower
bound by setting /=~ = max(/~,/"), and declare /% = [~. If [* > [%, update the upper

P P
bound by setting /* = min(/*,/*), and declare /}, = [~.

End of Algorithm 1: Parametric version.

The validity of the above algorithm follows directly from the general analysis in
[18]. The most important observation is that for all values of / in the interior of the
final interval ([~, "), the value of M(!) is fixed and smaller than p. Moreover, for all
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these values of /, Algorithm 1, which computes M (/), will execute exactly the same
sequence of operations, e.g., each comparison will result in the same answer, regardless
of the specific value of /.

To analyze the complexity of the above algorithm note that in a generic step of the
(parametric) version of Algorithm 1, we select a cluster node v; of the current tree.
The lengths of all the edges connecting v; to its children are linear functions of /.
(Initially, the length of each edge e; is /;, a constant independent of /.) Consider for
example, a child (leaf) vix). li)(/), the (updated) length of the edge ey = (vi, vigk))
is linear in /. Now we need to compute nqy({) = [liw)(/)/!], the number of cuts to
be used on the edge e;).

Although 7 is not specified, and the optimal value /7, is obviously unknown at
this stage, we can use Theorem 3.3 to conclude that for all relevant values of the
parameter

Mgy < migy(1) < niggy.

There are only min(p,n;Ek) — n;(k)) = O(min( p,n)) possible values that the integer
function n;4y(!) can take on. They correspond to the critical values of the parameter
!, which satisfy the linear equations /,4)(/) = g/, where ¢ is an integer between n;(k)
and njgy,.

We now apply a binary search on this set of critical values of / to identify a
consecutive pair of values bounding the optimal value /3. (Note that the binary search
amounts to computing M(7) for O(log(min( p,n))) critical values of [.) To conclude,
in O(nlog(min(p,n))) time we identify an interval, containing /7, such that either
I, is the left endpoint of the interval, or for any / in the interior of this interval
Ri)(!) = niy(17,). We can now trim the length of the edge e;x) by the linear factor
nigy(17,)]. We apply the trimming to all edges of the cluster, and downsize the updated
interval of the parameter /.

To complete the processing of the cluster, we now need to add the linear functions
corresponding to the (trimmed) lengths of its edges, and compare the sum with /. (See
Algorithm 1.) We get a critical value of /, say /*, for which the two terms are equal.
We compute M(/*) to find whether /5, < [* or [}, = [*. With this information we can
proceed with the algorithm without having to specify a value (within the current valid
interval) of the parameter.

If t = t(v;) denotes the number of children of the cluster node v;, the total effort to
process the cluster in the parametric algorithm is O(#(v;)n log(min( p,n))). Since the
total number of children of all nodes is n, the total time of the parametric algorithm
is O(n? log(min( p, n))).

Theorem 3.4. The continuous max—min tree length edge-partitioning problem can be
solved in O(n?* log(min( p,n))) time.

We note in passing that for certain tree topologies the above algorithm can be sped
up. For example, if the depth of the tree (maximum number of nodes on a simple
path) is k, then by applying the ideas in [19], the algorithm can be implemented in
O(knlogn) time.
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A possible approach to reduce the above O(x? log(min( p,#))), bound is to parallelize
Algorithm 1. Specifically, if there is a parallel algorithm which computes M (/) in
O(poly(logn)) time using O(n) processors, we can apply the ideas in [19] to design
an O(npoly(logn)) serial algorithm to compute 73,

3.4. An example

Consider the example in Fig. 1. Let / =2. To implement Algorithm 1, note that
V(1) = {v,}, and therefore 7" = T. We then trim the edges (v,v3) and (v1,vs) by
introducing two cut points at a distance of 2 from v; and vs, respectively. (The edge
(v1,v3) is deleted and v;, the marker of the [v,v3]-cut, is defined as x;.) After the
trimming we have 4=3. Since 4 > 2, we add the [v}, vg]-cut to conclude that M (2)=3.
(There is one interior cut on the edge (vi,vs) and two boundary cuts, the [v,v;]-cut
and the [v;,vg]-cut.)

To illustrate the parametric version consider the 3-edge-partitioning problem, i.e.,
p=3. We first need to determine V’(I%). Since L(T) = {0,7}, we trivially conclude
that [_=0, [.=7, 0 <1} <7, and V'(I})={v1}. We start at Step 1, and let i(k)=k+1
for k = 1,2,3,4. Initially, Z,‘(l)(l) = Z,‘(3)(Z) = 1, Zi(z)(l) =2 and Zi(4)(l) = 3. We obtain
[(1)=1[(3)=1, I(2)=2 and I(4)=3. By Algorithm 1 we compute M(1)}=7, M(2)=3
and M(3) =2. We conclude that I~ =2, I" =3 and 2 < I < 3. We observe that
Z,‘(k)(lh—) <™ for k= 1,2,3, and Zi(4)(l_): 3>2=1[".

Next we obtain L/(1) = L'(3) = {1,1/2,1/3}, L'(2) = {2,1,2/3} and L'(4) =
{3,3/2,1}. Thus, the new critical values of ! for which we need to know M(I) are
{1/3,1/2,2/3,3/2}. However, since all these values are smaller than [~ they are ig-
nored. We proceed by calculating ny =0 for £ =1,2,3, and ny = 1. The trimmed edge
lengths, (parameterized over the interval (2,3)), are now ;1 y(!) =iy (D=1, Lia)(1)=2,
and lisy({)=3 — 1. We set A({)=7 —{, and go to Step 3.

We now obtain the new critical value [* =3.5, which is the solution to the equation
A(l)=1. Since I =3 < 3.5, we can ignore this critical value, and conclude that the
optimal value is [ =17 =2.

4. The continuous min—max tree length edge-partitioning problem

First we note that the max—min and min-max tree length problems can have distinct
optimal solutions. Consider, for example, the tree in Fig. 1, and change the length
of the edge (v1,v3) to 1. Let p = 3. The unique solution to the max—min problem
is attained by selecting the [v1,v0]-cut, the [v;,vs]-cut, and the midpoint of the edge
(v1,vs) as the third cut point. This solution is not optimal for the min-max model.
The optimal solution value to the later problem is 2.5. It is attained by selecting the
[v1, vo]-cut, the [vy,vp]-cut, and the point x, on (vy, vs), satisfying d(x,v,)=0.5, as the
third cut point.

To solve the min—max model we can use exactly the same approach as in the
previous section. For the sake of brevity we only present the necessary ingredients and
results needed for the implementation, but skip the description of the algorithms. We



198

Fig. |. Example.

conclude that the time needed to solve the continuous min—max treec edge-partitioning
problem is also O(n? log(min( p,n))).

4.1. Algorithm 2. Computation of m(I)

Given a positive real I, I < I(T), our objective is to compute m(/) = min{q|3X,,
[Max(X;) < I}, the minimum number of cuts on the edges of the tree needed to ensure
that the length of each one of the subtrees induced by this partition is at most /. (Recall
our supposition that one of the cuts is the artificial cut, the [vy,v¢]-cut.) We note that
m(l) is monotone. If we let L} denote the optimal solution value to the min-max
model, then L7, is the smallest value of / such that m(/) < p.

As above we use a bottom-up approach, starting with the leaves of the rooted tree.

Algorithm 2

In a generic iteration of the algorithm we select a cluster node v; of the (current)
trec. (Initially we start with T, and set m(l/) = 0.) Let {vj1),...,vi»y} be the set of
children of v;.

Step 1: Trimming a cluster.

For each k=1,...,1t, define n, = | /;/!], and add n; to m(/). Reduce the length of
the edge (v, viky) from Ly to ap = iy — mel. (This accounts for adding », cut points
on the edge, where the distance between adjacent points is exactly [.) If [y = ngl
delete the edge (v, vyx)), from the current tree. Define 4 = Z;{Zl ar. f v; =1, go to
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Step 3. If all edges are deleted, (4 =0), and v; # v), repeat starting with a cluster of
the updated tree.

Step 2: Deleting a cluster.

If A=1, delete all remaining edges of the type (v;, vix)), k=1,...,t, from the current
tree. Add 1 to m(/), (corresponding to the [v;, p(v;)]-cut), and repeat starting with a
cluster of the updated tree.

If A < [, delete all remaining edges of the type (v;, vyk)), k=1,...,1, from the current
tree. Increase the length of the edge (v, p(v;)) from I; to [; + A, and repeat starting
with a cluster of the updated tree.

If 4 > 1, find ¢, and the subset ¥/ of children of v;, corresponding to the ¢ smallest
non-zero elements in the multiset {ax|k=1,...,1}, such that the sum of these ¢ smallest
elements, denoted by B, is at most /, and the sum of the smallest nonzero g+1 elements
is greater than /. For each node vy € ¥/, such that ax > 0, delete the edge (v, vii) )
and add 1 to m(/). (Note that the particular definition of edge-partitioning implies that
a cut must be used for each child not in ¥7.) For each node vy, € V7, delete the edge
(vi, Vigky)- Increase the length of the edge (v;, p(v;)) from /; to I;+B, and repeat starting
with a cluster of the updated tree.

Step 3: Termination at the root vy.

If A =0, stop and return the current value of m(/).

If 0 <4 <1, add 1 to m(]), (corresponding to the [v;,vg]-cut). Stop and return the
current value of m(/).

If 4> 1, find g, and the subset 7] of children of v, corresponding to the g smallest
non-zero elements in the multiset {ax|k=1,...,¢}, such that the sum of these g smallest
elements, denoted by B, is at most /, and the sum of the smallest nonzero g+1 elements
is greater than /. Let ¢’ = |{klay >0, k=1,...,¢}. Add ¥ — g+ 1 to m(!). Stop and
return the current value of m(/).

End of Algorithm 2.

We note that the running time of the above algorithm is linear, since the time to
process a cluster is proportional to its number of nodes. (We can apply the linear time
median finding algorithm in [7] successively to find the term B defined above.)

In the next lemma we prove the validity of Algorithm 2.

Lemma 4.1. Algorithm 2 correctly computes m(1).

Proof. Again, from the inductive nature of the algorithm it is sufficient to prove its
validity for a tree consisting of a cluster rooted at some node v;.

Consider such a cluster with leaves {vi1),..., vy, }. Using the notation in Algorithm
2, it is easy to verify that for each £ = 1,...,1, there will be at least n; cuts on the
edge (v;, vix)). Moreover, the cuts on a given edge are equally spaced, with the first
one being at a distance of / from the leaf. Hence, we can assume without loss of
generality that gy, the length of (v;,vi)), k=1,...,¢, is less than /.

Let 4 = 22:1 ar. If A =0, there are no more cuts. If 0 < 4 < [, there is one cut,
i.e., the [v;, v0]-cut. This is exactly what Algorithm 2 does.
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Suppose that 4> 1. (We assume without loss of generality that a, >a,_)...=2a,>0.)
Then there are m(!) cuts, m(I) > 1, and one of them is the [v|,vy]-cut. Moreover, since
the length of an edge is smaller than /, we can assume without loss of generality that
if there is a cut on an edge (v, vyr)), it is the [vy, vy ]-cut.

Finally we note that if there is no cut on the longest edge, (v;,vyy)), the optimal
solution value m(/) is not affected if we replace one of the m(/)—1 cuts on the edges of
the cluster by the [v;, viy]-cut. Thus, we can assume without loss of generality that the
m(!) cuts are: the [v;, vo]-cut, and the [v;, vyryl-cut, for all k=t —1,...,t—(m(l)—2).

It is easy to verify that Algorithm 2 sclects exactly these cuts. O

Theorem 4.2. Let L}, be the solution value for the continuous min-max tree length
edge-partitioning problem. Then there exists a discrete subtree T’ of T, and an integer
g < p, such that

* __ ’
L, =IT")/q.
Proof. The proof is very similar to that of Theorem 3.2. O

As mentioned in the previous section, using the above theorem and Algorithm 2, we
can now directly apply the search in [21,24] to find L}, in polynomial time. We can
also obtain a strongly polynomial time algorithm of complexity O(n? log(min(p,n)))
time by mimicking the approach in the previous section, and designing a parametric
version of Algorithm 2. For the sake of brevity we skip the details.

Theorem 4.3. The continuous min—max tree length edge-partitioning problem can be
solved in O(n* log(min(p,n))) time,

5. Continuous bottleneck models involving the component diameters

We have already illustrated above that the bottleneck continuous partitioning prob-
lems, involving the lengths of the components are NP-hard, while the respective
edge-partitioning problems are polynomially solvable.

We will show that if we use the diameter, instead of the length, as a measure, both
the partitioning and the edge-partitioning problems are solvable in polynomial time.

We start with the min—max models, defined as follows. Find a partition (edge-
partition) of the tree space into p subtrees minimizing the maximum diameter of
the subtrees. The partitioning version is mentioned above, and it is known as the
continuous p-center problem on a tree. An efficient O(n log? n) algorithm can be found
in [10,20]. It is known [9] that the optimal value of this problem, D3, is of the form
Dy, =d(v;,v;)/q, where v;,v; are a pair of leaf nodes, and ¢ is an integer bounded above
by p. It can easily be shown that there is an optimal solution to the p-center problem,
where the partition is actually an edge-partition. Therefore, the optimal solution values
of the two versions are identical.

Turning to the max—min models, the objective is to find a partition (edge-partition)
of the tree space into p subtrees maximizing the minimum diameter of the subtrees.
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Unlike the min-max model, simple examples illustrate that the two versions of this
max—min problem are not identical. Consider, for example, the tree in Fig. 1, and
change the length of edge (v1,vs) to 2. For p =2, the solution values to the partition
and the edge-partition problems are 3 and 2, respectively.

We claim that both versions can be solved in subquadratic time using the method
in [10,20].

5.1. Maximizing the minimum diameter using edge-partitioning

Given a positive real d, d < d(T'), our objective is to compute N(d) = max{g|3X,,
d Min(X;) > d}, the maximum number of cuts on the edges of the tree needed to ensure
that the diameter of each one of the subtrees induced by this partition is at least d.
(Recall our supposition that one of the cuts is the artificial cut, the [vy, vg]-cut.)

We use a bottom-up approach, starting with the leaves of the rooted tree.

Algorithm 3

In a generic iteration of the algorithm we select a cluster node v; of the {(current)
tree. (Initially we start with 7, and set N(d) = 0.) Let {vi),..., vy} be the set of
children of v;.

Step 1: Trimming a cluster.

For each k=1,...,t, define ny = |l;)/d], and add nx to N(d). Reduce the length of
the edge (vi, vi)) from iy to ar = Iy — med. (This accounts for adding n; cut points
on the edge, where the distance between adjacent points is exactly d.) If ;) = md
delete the edge (v;,vix)), from the current tree.

Let x; denote a cut point closest to v;, amongst all N(d) cut points that have been
added so far.

If v; = vy, go to Step 3. If all edges are deleted and v; # v), repeat starting with a
cluster of the updated tree.

Step 2: Deleting a cluster.

Let S={klk=1,...,t,a4 > 0}, and 4 = {a |k € S}. (4 is a multiset.) Define By and
B, to be the largest and the second largest elements in 4 respectively. (If [S|=1 define
By =0.) If By + B, > d, delete all remaining edges of the type (v, vi)), k=1,...,1,
from the current tree. Add 1 to N(d), (corresponding to the [v;, p(v;)]-cut). Repeat
starting with a cluster of the updated tree.

If B1+ B> < d, delete all remaining edges of the type (v;, vigry), £=1,...,¢, from the
current tree. Increase the length of the edge (v;, p(v;)) from I; to [; + By, and repeat
starting with a cluster of the updated tree.

Step 3. Termination at the root v.

Let S={klk=1,...,5,ar > 0}, and 4 = {a;|k €S}. Define By and B, to be the
largest and the second largest elements in A respectively. (If |[S|=0 define B; =B, =0
and if |S| =1 define B, =0.) If B; + B, = d, delete all remaining edges of the type
(vi,viry), k= 1,...,t, from the current tree. Add 1 to N(d), (corresponding to the
[v1,vp]-cut). Stop and return the current value of N(d).

If By 4+ B; < d, delete all remaining edges of the type (v;,viy), k=1,...,¢, from
the current tree.
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Consider the cut point x; which is the closest to v; amongst all N(d) cut points that
have been established. Replace x| by the [v;,vg]-cut. Stop and return the current value
of N(d). (The last case corresponds to replacing the subtree previously determined by
x; by its union with the current remaining subtree (cluster) rooted at vy.)

End of Algorithm 3.

The validity of Algorithm 3 follows from arguments similar to those used in the
proof of Lemma 3.1. We skip the details. It is easy to see that the running time of
Algorithm 3 is O(n).

The next result characterizes the solution value.

Theorem 5.1. Let d}, be the optimal solution value of the continuous max—min tree
diameter edge-partitioning problem. Then there exists a pair of nodes v;,v;, and an
integer q < p, such that

d; = d(U,‘,Uj)/q.

Proof. We prove the result by induction on the number of nodes in 7. The result
clearly holds if T consists of a single edge.

Let T be a general tree, and suppose that we apply the above bottom-up algo-
rithm to compute N(a”;), using vy as the root of 7. Consider the first node cut
selected by the algorithm. (Recall that the final cut, on the augmented edge connecting
the root v; to the artificial node vy, is a node cut. Hence the first node cut is well
defined.)

Suppose that this cut is the gth cut, and it is either the [v;, v;]-cut for some child
v; of v;, or it is the [v;, p(v;)]-cut. Let ¢’ denote the total number of cuts in V. In
the first case there is a leaf node vx € V; such that d(v,v;) = q”d; for some integer
q// S q/.

If the cut is the [v;, p(v;)]-cut, consider the following two cases. First, suppose that
the diameter of the subtree defined by this cut is equal to d7. In this case we have
a pair of leaves in Vi, say vy, v, such that d(vg,vs) = d(vg,v;) + d(vi, v5) = ¢'d’, for
some ¢ < ¢'.

Next suppose that the diameter of the subtree defined by the cut is strictly greater
than d7,. Since all prior cuts in V; are interior, we can slightly perturb all of these g —1
cuts towards v;, ensuring that the diameter of each one of the respective g’ subtrees is
strictly greater than d7,. From the optimality of d’, for the problem defined on 7, it now
follows that v; % vy, and the optimal solution value to the continuous edge-partitioning
problem (with p—g¢’ cuts), on the subtree induced by v; and the nodes in ¥ — V; must
also be d,. The result follows from the induction hypothesis. [

We note in passing that unlike the min-max version of the model, discussed above,
(the p-center problem), where the solution value D, satisfies D}, =d(v;,v;)/q for some
pair of leaf nodes, the pair of nodes defining o}, are not necessarily leaves of the
tree. To illustrate, consider the example of a single cluster consisting of three edges of
lengths 2,3/2,3/2 and set p =2.
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With the representation of the optimal solution value in Theorem 5.1, and the linear
time procedure to compute N(d), we can now directly apply the algorithmic framework
in [10,20], to obtain an O(nlog® n) algorithm for the problem of maximizing the min-
imum diameter of an edge-partition of p subtrees. We also note in passing that when
p is relatively small, i.e., p=o0(logn), we can improve the complexity to O(pnlogn)
by using the search procedures in [15].

Theorem 5.2. The continuous max-min tree diameter edge-partitioning problem can
be solved in O(nlog® n) time.

5.2. Maximizing the minimum diameter using partitioning

For each real d we define N’(d) to be the maximum number of subtrees defined by
a partition, such that the diameter of each one of them is at least d. The following is
a bottom-up algorithm (similar to Algorithm 3) to compute N'(d). (Since the concept
of a cut point has been defined with respect to edge-partitioning only, we now define
the concept of a root point for general partitions. Each subtree of a partition will be
associated with the closest point of the subtree to the root of the tree v;. This point is
called the root point of the subtree.)

Algorithm 4

In a generic iteration of the algorithm we select a cluster node v; of the (current)
tree. (Initially we start with T, and set N'(d)=0.) Let {vy1),...,vi)} be the set of
children of v;.

Step 1. Trimming a cluster.

For each k=1,...,¢, define n; = | l;4)/d |, and add n; to N'(d). Reduce the length of
the edge (v, viry) from Iy to ax =iy —nxd. (This accounts for adding n; toot points
on the edge, where the distance between adjacent points is exactly 1.) If /) = md
delete the edge (v;, vsx)), from the current tree.

Let x; denote a root point closest to v;, amongst all N'(d) root points that have been
added so far.

If v; = v, go to Step 3. If all edges are deleted and v; # vy, repeat starting with a
cluster of the updated tree.

Step 2. Deleting a cluster.

Let S={klk=1,....,t,ar > 0}, and 4 = {a |k €S}. (4 is a multiset.)

If S contains at least two elements, and the sum of the two largest elements in 4 is
at least d, find n*, the maximum number of disjoint pairs (j,1), j # I, of indices in
S such that for each such pair a; + a; > d. If n* =[S|/2, delete all edges of the type
(v, vigry), k =1,...,¢, from the current tree. Add n* to N'(d). Repeat starting with a
cluster of the updated tree.

If n* <|S|/2, find the index s€ S, corresponding to a largest element in 4, such
that n* is equal to the maximum number of disjoint pairs (j,[), j # I, of in-
dices in S — {s}, with the property that for each such pair a; + a; > d. Delete all
edges of the type (v;,vixy), k = 1,...,¢, from the current tree. Add nt to N'(d).
Increase the length of the edge (v;, p(v;)) from /; to I; + a;, and repeat starting
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with a cluster of the updated tree. (Note that each of the new st subtrees selected
for the partition is a path containing v;, which is also the root point of the
path.)

If § contains one element, or if the sum of the two largest elements in A is smaller
than d, delete all edges of the type (v, v;y), k=1,...,¢, from the current tree. Increase
the length of the edge (v;, p(v;)) from [; to [; + By, where By is the largest element in
A, and repeat starting with a cluster of the updated tree.

Step 3: Termination at the root v;.

Let S={klk=1,....t,ar > 0}, and 4 = {a |k €S}. (4 is a multiset.) Find n*, the
maximum number of disjoint pairs (j,1), j # {, of indices in § such that for each such
pair a; + a; 2 d. If n* 2 1, delete from the cluster the 2n* edges corresponding to
this maximum solution. Add n* to N’(d). If the remaining cluster consists of the root
only, stop and return the current value of N'(d). Otherwise, consider the root point x,
which is the closest to v, amongst all N'(d) root points that have been established.
Stop and return the current value of N'(d). (The last case corresponds to replacing the
subtree previously associated with x; by its union with the current remaining subtree
(cluster) rooted at v;. We also declare v; to be the root point of this augmented
subtree.)

End of Algorithm 4.

The validity of Algorithm 4 follows from arguments similar to those used in the
proof of Lemma 3.1. We skip the details.

To evaluate the running time of Algorithm 4, consider the time needed to process a
cluster with ¢ leaves. We first sort the elements in 4. Assume, without loss of generality
that 0 < a; < --- < a,. Consider the smallest element in the (current) sorted list, say
a;. (Initially set j = 1.) Find the smallest index £ > j such that a; + a; > d. (If there
is no such index k, set X =q;, and remove g; from the list.) Match the pair (/, k), and
remove both a; and g, from the list. If the list is empty, the index s, defined above
in Step 2, is the one corresponding to the current value of X. n' is the total number
of pairs matched. If the list is nonempty repeat.

The total time to process a cluster with ¢ leaves is clearly O(flogt). Therefore, the
total running time of Algorithm 4 is O(nlogn).

The next result characterizes the solution value.

Theorem 5.3. Let d} be the optimal solution value of the continuous max-—min tree
diameter partition problem, Then there exist a pair of nodes v, v;, and an integer
g < p, such that

d, = d(v;,v7)/q.
Proof. The proof is very similar to the proof of Theorem 5.1. We skip the details. O

With the representation of the optimal solution value in Theorem 5.3, and the
O(nlogn) algorithm to compute N'(d), we can now directly apply the algorithmic
framework in [10,20], to obtain an O(n log? n) algorithm for the problem of maxi-
mizing the minimum diameter of a partition into p subtrees. Again, if p = o(logn),
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the complexity can be further improved to O( pn log2 n) by using the search procedure
in [15].

Theorem 5.4. The continuous max—min tree diameter partitioning problem can be
solved in O(nlog’ n) time.

6. Remarks on non-crossing problems

We have shown above that the partitioning problems of a tree, minimizing (maxi-
mizing) the maximum (minimum) length of the components are both NP-hard, while
the edge-partitioning versions are polynomially solvable, Our definitions of partition-
ing and edge-partitioning are independent of the particular planar embedding of the
tree that is used. However, in many practical and real situations, we deal with physi-
cal networks, as in tree-like highway networks, where the embedding is already fixed.
In physical networks not every partition is feasible, and we may have to impose further
restrictions. For example, suppose that node vy has exactly four neighbors, {v,, v3, 04,05},
each one of them connected to v; with an edge, and the embedding induces the cyclic
ordering (v, U3, v4, 5, 2 ). It might be the case that due to traffic considerations, no two
components of a partition can “cross”, e.g., the partition of the cluster into the two
components induced by the two sets (paths) (v, vs,03), (v1,04,05) is feasible, while
the crossing partition induced by (v, v2,v4), (v1,v3,05) is infeasible or illegitimate. We
point out that tree partitioning problems requiring that the subtrees are non-crossing
(with respect to the given embedding), can be solved in polynomial time. These prob-
lems can be formulated as edge-partitioning problems on cactus graphs (or cycle trees,
as they are called in [15]).

An undirected graph is a cactus if each edge is contained in at most one cycle. Con-
sider an embedded tree network T'=(V, E). For each node v;, let (vi1y, vi2), . . -, Vige), Vic1))s
t = deg(v;), be the cyclic ordering of all the neighbors of v;, induced by the embed-
ding. Define the following cactus graph G = (¥V’,E"). Each node v; of T is replaced
by a cycle C;, with t =deg(v;) nodes {u; (1), %ii2)--->Uiie > and t = deg(v;) edges
{(uii0y wii2))s - - o5 (Ui,ie), i i1y} The length of each edge along the cycle is zero.
Next, each edge (v;,v5) of T is replaced by an edge (of the same length) connect-
ing node u; ) of C; with node u; ;) of C;, where for some indices s < deg(v;) and
g <deg(y), i(s)=j and j(g)=1.

A partition of the tree defines, for each node v;, a partition of its neighbors into
connected components. Such a partition is called non-crossing if it induces a parti-
tion of (vic1), Vi2),.--»Viry ), t = deg(v;), into consecutive segments along the cycle. It
is now ecasy to see that there is a one-to-one correspondence between non-crossing
partitions of the tree 7 and edge-partitions of the cactus G. Finally, we note that
the algorithms in Sections 3 and 4 can be extended to yield polynomial algorithms
of the same complexity for edge-partitioning problems on cactus graphs. Combined
with the above transformation, this will imply the polynomial solvability of bottle-
neck tree length, non-crossing partitioning problems on tree network
spaces.
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