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Let G=(V, E) be a connected undirected graph with positive edge lengths. Let V= {0} U N, where N = {1,...,n}. Each
node in N is identified as a customer, and 0 is the home location of a traveling salesman or repairman who serves the
customers in N. Each subset of customers S can hire the repairman to serve its members only. In that case the cost incurred
by S, ¢(S), is the minimum length of a tour traversed by the repairman who starts at node 0, visits each node in S at least
once and returns to 0. We consider the core of the cooperative cost allocation game (N; ¢) defined by the cost function ¢(S),
S € N. We show that the core can be empty even if G is series parallel by presenting the unique minimal counter example for
such graphs. We then use a recent result of Fonlupt and Naddef, and prove that the core is nonempty for a class of graphs
that properly contains the subclass of cycle trees, i.e. graphs which have no edge included in more than one simple cycle.

graph theory * traveling salesman * cost allocation problem

This paper is motivated by the following prob-
lem. A repairman is hired by several customers to
visit and serve them. He starts from his home city,
visits each customer and returns home. The total
cost of his trip must be paid by the customers. The
problem is to find a fair or a stable allocation of
the total cost among the customers.

The model is formulated as a cooperative game
and its core is discussed.

Let G = (V, E) be a finite, loopless, connected
undirected graph with node set " and edge set E.
Let N={1,...,n} and suppose that V"= {0} U N.
Each edge e in FE is associated with a nonnegative
length d,. Each node i in N is identified as a
customer, and 0 is the home location of a traveling
salesman or repairman who serves the customers
in N. Each subset of customers § C N may form a
coalition, and hire the repairman to serve its mem-
bers only. In that case the cost incurred by the
coalition S, ¢(S), is the minimum length of a tour
traversed by the repairman who starts at node O,
visits each node in S at least once and returns to
0. A tour of {0} US is a multisubset of E, (an
edge may appear more than once), which induces
a connected subgraph of G, meets each node in
{0} U S at least once, and can be partitioned into
edge disjoint cycles in G. The length of a tour is

the sum of the lengths of the edges in the multi-
subset. (From the Eulerian property no edge will
appear more than twice in a minimum tour.)

It is obvious that the cost function ¢(S), de-
fined on the power set of N is subadditive, i.e.
c(S)) +¢(S,) = c(S;U S,) for every pair of sub-
sets S;, S, in N. Thys, there is an incentive for the
customers to unite, form a grand coalition and
hire the repairman to visit all of them in a single
tour. A critical and natural question is whether
there exists a ‘stable’ allocation of the total cost,
¢(N), among the customers that gives no coalition
S C N the incentive to split off and act on its own.
Formally, we refer to the core of the cooperative
game (N; ¢) defined by the cost function ¢(S),
SCN.

A vector x = (xy,..., X,) is a core allocation of
the game (N; c¢) if

Y x,<c(S) forall SCN
ies

and

2 x;=c(N). (1)

ieN

The core is the set of all core allocations. The
existence of a core allocation for the above game
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is stated as an important open problem in [3,10].
(Note that in [3,10] the above game is equivalently
defined on the complete graph G = (V, E), ob-
tained from G by connecting each pair of nodes in
V by an edge, and letting the length of that edge
be the shortest distance between its respective end
nodes in G.) In this work we will present several
examples where the core can be empty including
one with n=6 which is minimal in a certain
respect.

If the graph G is a tree the above traveling
salesman cost allocation game coincides with the
minimum cost spanning tree game, which is known
to possess a core allocation, see [6,7,8]. In fact for
this case even the nucleolus of the core can be
computed in polynomial time; [9]. We extend this
existential result on tree graphs to a wider class of
graphs by using the recent result in [4] which
characterizes the integer polyhedron of the travel-
ing salesman problem defined on graphs in this
class.

We start by discussing games which have no
core allocation. Let G = (V, E) be such that all its
edges are of unit length. Suppose that G has a
hamiltonian cycle, i.e. a simple cycle which meets
each node in V. Then, it is easy to verify that the
vector which equally allocates the total cost, ¢(N)
= (n+ 1), among the n customers is a core alloc-
ation. Thus, suppose that G is hypohamiltonian,
i.e. G has no hamiltonian cycle but each subgraph
of G obtained by deleting any node of V has a
hamiltonian cycle. We claim that the core of G is
empty.

First we note that for each jin N, ¢(N—{/})
=n.Also ¢(N)=(n+2). If x=(x,,..., x,) were
a core allocation we would have

Y x,<n forall jin N. (2)

i=1
i+j

Summing (2) over all j € N, and equating
2": x; to c(N)
i=1
yields the following contradiction if n > 3:
w5 (n=1) % x,= (n=1)e(N)

i=1

=(n-1)(n+2).

It 1s known, [1], that a smallest hypohamiltonian
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Fig. 1. Petersen graph.

graph has 10 nodes and is isomorphic to the
Petersen graph (see Figure 1). The minimality of
the Petersen graph as a hypohamiltonian graph
might hint that this is a minimal example for an
empty core among all graphs with unit edge
lengths. This is not the case. Consider the graph in
Figure 2. Suppose that the core of the traveling
salesman game of this example was not empty.
Then due to the symmetry of the model there
would be a core allocation x = (x,, x,, X3, X4,
X5, Xg) With x; =xs=x, and x, =x;=x,. It is
easily shown that ¢(N) =8 and ¢({1, 2, 4, 5}) =5.
Hence, x should satisfy

3x, +3x,=28,

2x;+2x,<5.

The following contradiction is derived:
8=3(x,+x,)<3(2x,+2x,) < ¥.

It will later follow that the example given in
Figure 2 is minimal among all graphs with unit
edge lengths.

It has already been mentioned above that if the
graph G is a tree the core of the game is non-
empty. Is there a larger class of graphs that share
this property? An almost standard extension of
tree graphs, often used in combinatorial optimiza-

Fig. 2.
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Fig. 3.

tion, is the class of series parallel graphs. This is
the class of graphs that do not contain K,, the
complete graph on 4 nodes, as a minor, [2]. Recall
that H is a minor of a graph G if H can be
obtained from G by a sequence of node deletions,
edge deletions and edge contractions.

We will next show a series parallel graph with 8
nodes whose cost allocation game has an empty
core. (Note that the graph in Figure 2 which has 7
nodes is not series parallel.) Consider the graph in
Figure 3. Using the symmetry of the graph, if the
core of the traveling salesman game were not
empty there would be a core allocation x = (x,,
Xy, X3, X4, X5, Xg, X;) With x;=x,=x; and
x, = X5 = X¢. We easily verify that ¢(N) =10 and
c({1, 2, 4,5, 7}) = 6. Hence, x should satisfy

3(x; +x,) +x,=10,
2(x; +x,)+x,<6.

The subadditivity of the cost function implies that
x20. (x;z2c(N)—c(N—{i})>0 for each i€
N)

Therefore we obtain the following contradiction:

6>2(x;+x4)+x,>2(x,+x4)
= 2[(3(x1 +x4) + x7) - (2(x1 +x4) +x7)]
>2[10—6] = 8.

Having demonstrated several counter examples
we finally extend the existential result on tree
graphs to a wider class of graphs by using the
result in [4]. (The edges are not restricted anymore
to have a unit length.)

To facilitate the discussion we introduce the
following notation. Consider a subset of nodes
T C N. 8(T) will denote the set of edges in £ with
one endpoint in 7 and the second in {0} U (N —
T).
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Consider a coalition of customers S C N. Then
c(S) is given by

¢(S) =Minimum Y d,x,

ecE
subject to
Y x, isevenforall jEN, (3)
e€8({/}
Y x,>2 forall TCN, (4)
e€8(T) such that SN T # @,
x, is nonnegative and integer forall e€ E. (5)

Consider now a modified game ( N; ¢) with the
following cost function ¢(S), S C N:
¢(S) = Minimum Y d,x,

ecE

subject to

Y x,>2 forall TCN such that SN T =4,
e€d8(T)

x,>0 foralle€E.

It is obvious that ¢(S) < c¢(S) for all S C N. Fur-
thermore, it is shown in [5,11] that the modified
game (N; ¢) can be viewed as a network design
game and therefore it has a nonempty core. If
G=(V, E) is a graph such that ¢(N)=c(N)
then it follows that the nonempty core of the game
(N; ¢) is included in the core of the game (N; ¢).
The recent paper of Fonlupt and Naddef [4],
provides structural sufficient conditions on a graph
G which ensure the equality ¢(N) = c¢(N). These
conditions require that G contains no minor which
is isomorphic to one of three graphs: the two
given in Figures 2 and 3 and the graph of Figure
4. (For example, the conditions are satisfied if G
is a cycle tree, i.e. no edge is contained in more
than one simple cycle.) If G satisfies the above
conditions we can use the polynomial formulation
of the network design game in [11] and compute a
core allocation by solving a linear program of
polynomial (in »n) dimensions. (For a cycle tree a
core allocation is easy to compute in linear time

Fig. 4.
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by decomposing the game. For each biconnected
component (BC);, i.e. a simple cycle or a bridge
edge, consider the game restricted to the node set
of (BC), and let v;, the closest node to node 0 in
(BC),, be the home location for this subgame.
There is a core point of this subgame. There is a
core point of this subgame where at most two
nodes in (BC), are allocated positive costs.)

An immediate corollary of the above is that if
G has at most 5 nodes, (n<4), the traveling
salesman game has a core allocation for arbitrary
edge lengths. We have shown above that this game
can have an empty core if G has 7 nodes, n= 6,
and all edges have unit length. Suppose that G has
6 nodes. If it does not contain a minor isomorphic
to the graph in Figure 4 the core of its respective
game is nonempty. Hence, assume further that G
has such a minor. We were unable to show that
for such a graph the core is nonempty. However, if
all edges have unit lengths the core of this 6 node
graph is nonempty since it contains the graph of
Figure 4 as a subgraph, and hence contains a
hamiltonian cycle.

We also note that the series parallel graph of
Figure 3 constitutes a unique minimal example
among all series parallel graphs. Suppose that G is
series parallel, has at most 8 nodes, n <7, and it
does not contain the graph in Figure 3 as a minor.
Then G can not contain the graphs in Figures 2
and 4 as minors. Therefore it follows from the
above that the traveling salesman game associated
with such a graph has a nonempty core.
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