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The literature on location theory has dealt mainly with finding “optimal” locations for centers
which are to serve given demand points. No attention was given to the problem of allocating
the costs of establishing the centers among the users, i.e., the demand points. In this paper we
address this issue relating it to game theory concepts.

INTRODUCTION

The literature on location theory has dealt
mainly with finding “optimal” locations for centers
which are to serve given demand points. No atten-
tion was given to the problem of allocating the costs
of establishing the centers among the users, i.e.,
the demand points. In this paper we address this
issue relating it to game theory concepts.

Suppose that each user has a certain demand

requirement. To meet these demands the users will -

have to set centers and, of course, absorb the in-
curred costs. Basically, it is possible for each group
of users, a “coalition,” to cooperate and establish
centers satisfying the demand of its own members.
The nature of the problem is such that if two
disjoint coalitions unite, their total cost will not
increase. Thus, viewing only the total cost for all
users, there exists an incentive for them to act as a
grand coalition. The question thén arises as to the
allocation of the total cost. Is there an allocation
such that no group of users will have the incentive
to split from the grand coalition and act on its own?
In game theory terminology such an allocation is
called a core allocation. Namely, a core allocation is
such that no coalition can pay less than its part in
this allocation if it establishes centers to meet the
demands of its own members.

The existence of a core allocation becomes impor-
tant since it seems to be a natural necessary condi-
tion for acceptability by the users.

This work discusses a class of location problems
for which there always exists a core allocation. The
core itself is characterized by a dual linear program
to the location problem.
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The Location Model

The following is one of the most elementary mod-
els used in studying the location of centers on
networks. (The reader is referred to the vast lit-
erature on location theory, e.g. [7, 9, 14], where
motivation is provided.)

Let G = (N, E) be an undirected graph with N
and E as its sets of nodes and edges respectively.
Each edge is associated with a positive number
called the length of the edge. Given two nodes
x,y € N, d{x, y) is the length of a shortest (with
respect to the sum of edge lengths) path on G
connecting x and y. Two subsets D and C of N,
are given. D = {(p,,..., p,,) is the set of demand
points or users, while C = {q,, ..., q,) denotes the

-set of nodes where a service center can be estab-

lished. The cost of establishing a center at g, is
w; > 0.

We ignore here capacity constraints on the cen-
ters, and assume that each center can serve any
number of arriving users. The demand constraints
are formulated as follows. User p, demands that a
center will be set at a distance of at most r;, > 0
from him. Assuming that all the demand con-
straints ane to be met, the location problem 1is to
find the minimum cost needed for setting centers
fulfilling all the demands.

It is known that the above problem is NP-hard
even when G is planar with all edges having length
land w;=1; j=1,...,k, r,=1i=1,...,m"®
However, polynomially bounded algorithms for
solving the above model and some variants on a
tree graph are available.?: % 11. 13)
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THE COST ALLOCATION GAME

LET D be the set of players (users) and define a
coalition to be a nonempty subset of D. A coopera-
tive game on D is characterized by a real function
V defined on the set of coalitions. (To simplify the
notation we let D be the index set {1,..., m}, and
we identify a coalition S by a subset of {1,...,m}.)

Given the location problem described above, de-
fine the cost allocation game on D as follows. If S
is a set of users define V(S) as the minimum cost
required for setting centers meeting the demands of
the users in S. In particular, V(D) is the solution
value of the above location problem. To ensure that
V(S) is finite we assume that the location problem
is feasible, i.e. all demand constraints are met if a
center is established at each point of C.

The core of V is defined as

Core(V) = {x € R™"L,cpx, = V(D),
Liesx; < V(S) for every coalition S}.

If x € Core(V) it is called a core allocation. x,,
then, denotes that part of the total cost paid by
user p;. The above characteristic function V is
certainly monotone, i.e., for every pair of coalitions
S, and S, with S; € S,, V(S,) < V(S,). Therefore,
if x is a core allocation then x > 0. It is clear that
no coalition of users would do better by breaking
the cooperation between all users if a core alloca-
tion is used to split the total cost.

Thus, a core allocation possesses a desired stabil-
ity property which seems to be necessary for an
allocation to be acceptable by the users.

The following example illustrates that the core
may be empty.

Example 1. Consider the graph C,, the simple
cycle having 4 nodes. Suppose that each one of the
4 edges has length 1. Furthermore, let both D and
~ C be equalto N, the node set of C,, with r, = w;, = 1
for all nodes p,. Then it is easily verified that the
core is empty since the symmetric allocation is not
in the core and V(D) = 2.

Observing that cycles may yield an empty core,
let us turn to trees, i.e., graphs containing no cy-
cles. We show that the core is nonempty for tree
graphs and characterize its extreme points.

We start by a linear program formulation of the
core of a general graph, requiring only the explicit
computation of V(D). Given a graph G and the
above location model define the matrix A = (a;;)
by

L oifd(p;,q) <r
a;; = J (1)
0 otherwise

LEMMA 2. Given a graph G and its respective cost
allocation game V, then

Core(V) = {x € R™L,. px, = V(D) and
(ATx)j<w;,j=1,...,k x>0}

Proof. Let x € Core(V). Then x > 0 and ¥, px;
= V(D). Given j, j=1,...,k let S;={ila;; = 1},
ie., S; is the set of users that can be served by a
center located at g;. Thus,

(ATx)j = ):ieiji < V(Sj) < W

Conversely, given x > 0 satisfying (A"x); <
w;,1,...,k, we show that ;. gx; < V(S) for each
coalition S.

Given S, suppose without loss of generality that
V(S) is achieved by setting centers at ¢, g4, ..., q,,
Le. V(S) = £i_ w;. Then it follows that j_,a;; > 1
for each i € S. Thus,

Ties®i < Lies(Zio1ay,) % < Tjoy(ATx),
< Liow; = V(S). ‘ n

COROLLARY 3. Given a graph G and its respective
cost allocation game V, suppose that V(D) is (ex-
plicitly) known. Then, if w; is integral for all j,
there exists a strongly polynomial algorithm for
finding a core allocation or verifying that none ex-
ists. Also, for any x € R™ there exists a strongly
polynomial scheme to test whether x is a core
allocation.

Proof. Follows directly from the above lemma
and TARDOS’ recent algorithm solving linear pro-
grams.!*®! ]

As mentioned above, determining V(D) for gen-
eral graphs is NP-hard, and hence there is no
general practical implication to the above corol-
lary. For tree graphs V(D) is polynomially comput-
able!” 1] We next demonstrate that the core is
nonempty for tree graphs.

THEOREM 4. Suppose that G is a tree, with the
respective cost allocation game V. If the location
problem is feasible, i.e. V(D) < =, then the core is
the set of optimal dual variables to the linear
program

min{Tf_wyl(Ay)i > 1, i=1,...,m;y > 0}. (2

Prbof. Let y; be a 0-1 variable, taking on the
value 1 if and only if a center is established at g;.
Then,
V(D) = min {Z}. 10, 3,1( Ay): > 1,

i=1,...,m,y>0,y¢€{0,1},j=1,.. k)
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It is proved in [4, 11] that if G is a tree then all the
extreme points of the polyhedron {yl(Ay), > 1, : =
1,...,m; y > 0} are 0-1 vectors. Hence, V(D) is
the minimum value of the linear program (2). Us-
ing the duality theorem of linear programming and
Lemma 2, we obtain that the core consists of the set
of optimal dual variables to the linear program,
min(Z¢_wyl(Ay);>1,i=1,...,m,y>0}. m
It is shown in [4, 11] that when G is a tree, the
matrix A is balanced i.e., it has no square subma-
trix of odd size with row and column sums equal to
two. Thus, from [3], if w;, j =1,..., k, is integral,
then the linear program max{L[. x,|x > 0, (ATx),
<w;, j=1,...,k} has an integer solution vector
x*. Furthermore, if w;=1, j=1,...,k, then all
extreme points of {x|x > 0, (ATx)j <1l,j=1,...,k}
are integer. Combining the above with Theorem 4
yields the following corollary.

COROLLARY 5. Suppose that G is a tree and that the
respective location problem is feasible.

a. If w;, j=1,...,k is integral there exists a core
allocation with integral components.
b. If w;=a, j=1,...,k for some positive a, then

every extreme point of the core has coordinates 0
or a. Moreover, the positive coordinates corre-
spond to a subset of D of maximum cardinality
such that no pair of its nodes can be served by
one center.

It is worth mentioning the connection between
Theorem 4 and the results on linear programming
games studied by OWEN.1? Due to the integrality
results used in the proof of Theorem 4 we note that
the cost allocation game on a tree graph is in fact a
linear programming game. As such its core is
nonempty since it contains the set of optimal dual
solutions.'% It is well known that for general linear
programming games the optimal dual set might be
a proper subset of the core. AUBIN®! has introduced
the concept of the fuzzy core, and proved that it
actually coincides with the optimal dual set. Lemma
2 and Theorem 4 exhibit a class of linear program-
ming games for which the core itself coincides with
the set of optimal dual solutions.

FURTHER EXTENSIONS

IN THE above model the only requirement of user
p,, 1 =1,...,m, was that a service center would be
established within a distance of at most r; from
him. No reference was made to reliability issues.
Suppose now that each service center can be in
exactly one of two states: failure or functioning. The

probability of being in a given state, say failure, is
a for each center and is independent of the num-
ber, states and locations of the other centers. Origi-
nally, each user p, has his own requirement for the
probability that at least one service center, within a
radius of r; from him, would function. With the
above probability distribution the requirement of
p;, t=1,...,m, can be translated and stated as
follows: at least a, > 1 centers should be estab-
lished within a distance of at most r; from p,.

Again, define V(S) as the minimum cost needed
for setting centers satisfying the demand con-
straints of the coalition S. The next example shows
that the core of this extended model may be empty
even for tree graphs.

Example 6. Consider the tree 7' = (N, E) where
N = {p17 p21 P3 p4} and E = {(pl’ p2)1(pl’ p3);
(py, py)). Let D =C ={py, py, 3, Py}. Suppose
that all edges have length 1 and r; = 1, for all :.
Also let (ay,ay,ay,a,) = (w;,w,, ws,wy) = (2,1,
1, 1). We then have
3 ifS=N
2 if2<IS[<30rS={p}

1 if|S|=1and S # {p,}.

V(S) =

Using the symmetric roles played by p,, ps, and p,
it is easily verified that the core is empty.

Next we prove that if all setup costs, w;, j =
1,..., %, are identical, then the core of the extended
model is nonempty, provided the graph is a tree.
Without loss of generality we now set w; =1, j =
1,... k.

We will consider a generalized model by introduc-
ing the following exogeneous constraint. Suppose
that for each site q;, j = 1,..., k, there is an inte-
ger upper bound b, > 1 on the total number of
centers that can be established at g;. (The setup
cost per center is still one unit.) This constraint is
applicable to every coalition of users, S, regardless
of its size. It should be emphasized that the individ-
ual users are regarded as atoms that cannot be
split further into “subusers” to form “subcoalitions.”
In particular, the requirement of user p;, for q;
centers cannot be partitioned into a; subusers each
requiring one center, to avoid the effect of the
exogenous constraint. Formally we define V(S), the
minimury cost needed for setting centers satisfying
the requirements of the users in S, by

V(S) = minTt_,y,
s.t. (Ay); = a;,
j=1,...,k
j=1,...,k (3)

bj>y; >0,

¥; 1s an integer,
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In spite of the presence of the exogeneous con-
straint the above generalized model still provides
the users with the incentive to cooperate.

LEMMA 7. The set function V(S), defined in (3), is
subadditive.

Proof. Let S, and 82 be two coalitions of users
Suppose that V(S ) =Lt y},and V(S,) = lyj ,
where y! and y? are optimal solutions to (3) with

S =38, and S =8,, respectively. Define z =
(21,...,zk)by
zjzmax(yjl’yjz), jz‘—l,...,k-

Then, it is easily verified that z is feasible for (3)
with S = S, U S,. Therefore,

V(S,US,) < Tk 1z, < T_,y} + Tk_ 2

Jlj

= V(S,) + V(S,). n

We will now prove constructively that the core of
the generalized game is nonempty.

It is proved in [4, 11] that if G is a tree then A is
balanced. Therefore, if the integrality constraints in
(3) are relaxed, there is still an optimal integer
solution to the relaxed linear program.?®) Namely,

V(D) = minXt y,

s.t.(Ay); > a t=1,...,m,
b2y, >0, J=1,... k. (4)
The dual of (4) is
max(}:}",laizi - Zfﬂbjuj)
S.t.(ATZ)j'_uj<1; J=1: ’k>
z>20, u>0. (5)

LEMMA 8. Let G be a tree and suppose that (z*, u*)
is an optimal extreme point solution to (5). Then z*
ts a 0-1 vector, and u* is integral.

Proof. The p051t1v1ty of b; implies that u} =0 or
else (A7z 2*), —uf =1 Applying the balancedness
of A, (follows from [4, 11]), and Lemma 2.1 of [3]
the proof is complete. M

LEMMA 9. Let (z*,
solution to (5).

u*) be an optimal extreme point

a. If uf = 0 there exists at most one index i such
that a;;zf = 1.

b. If uf > 0 there exist exactly uj + 1 distinct in-
dices it such that a;;zf = 1.

c. Ifzf =1, then

a; > Z(]lauuj > O)bj (6)

Proof. (a) and (b) follow directly from (5) and the
fact that z* is a 0—1 vector. (¢) is implied by the
optimality of (z*, u*). If (6) does not hold for some :
the optimality is contradicted by decreasing z* and
each u¥, satisfying a,;u7 > 0,by 1. ®

The next theorem establishes the nonemptiness
of the core constructively.

THEOREM 10. Let G be a tree, and suppose that the
setup costs for the centers, w;, j=1,...,k, are
identical. If the generalized model is feasible, i.e.
all demands are satisfiable, then the core of the cost
allocation game is nonempty.

Proof. Without loss of generality we may suppose
that w; = 1,j=1,..., k. Let (2*, u*) be an optimal
extreme point solution to (5). From Lemma 8 z* is
a 0-1 vector. Let J = {jlu}f > 1}. For each j€J
choose i(j) to be some index satisfying a
1. Define

*
i, % =

x* Zin laz €; -ZjEJZi#i(j)aljzzbe (7)
where e, is the ¢th unit vector of dimension m.

It is claimed that x* is a core allocation. Lemma
8(c) ensures that x* > 0. Also,

CLigxf = Lzl - ey buy = V(D),
where the second equality follows from the duality
of (4) and (5). It remains to show that ;. gx} <
V(S) for each coalition S € {1,..., m}.

Given a coalition S define S* = S N {i|z} = 1}.
Then V(S) > V(S*) and L, gxf = L, . g«x]. Thus
it suffices to prove that V(S*) > L, g« x¥. Define

gy = Ul esea2f > 1, I = {ili € S*, and a,;z]
= 1for some j € J,}, I, = S* -1, Thefactthat z*
is a 0-1 vector implies that if a center is within the
radius, r;, of some demand point p;, i € I, then it
is not within the radius of any other member of S*.
Thus, L, 7,a; centers are needed to meet the de-
mands of the members in I,, and these centers
do not contribute to meeting the demands of the
members in ;.

Suppose that to achieve V(S*) exactly k; < b
cenfers are set at point q;, J€Jy. To satisfy a
demand of a point p;, i € I}, Wthh is not met by
the above (k;, j € J,} centers, we need max(0, a; —
Liesaijk) =t add1t10na1 centers. From the deﬁ-
nition of J, these ¢, centers will not contribute to
meeting the demand of any member of I, but p;

itself.

TN
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Summarizing, we obtain
V(S*) =Licra; + Zje sk + Lic 1t

>Lieri t+t Ljcgk;

+Lier(a; = Ljcyaik))

Lie Jy .j((zie L,@ij) = 1)
Zje Jlbj((zie 11‘1;'1') - 1)-
Using the definition of x*, recall that for each
J € J, the quantity b; is subtracted from the pay-

ments of all p,, i €I;, (but possibly one), with
a;;z¥ = 1. Thus,

ij=i

V(S*)

= ZiES"a‘i -

> Liese@;

- ZjeJlbj((Eiellaij) - 1)
> EieS"x?‘7

and the proof is complete. [ |

>Lies+qy

The above proof provides a scheme, (7), to gener-
ate core allocations for the generalized cost alloca-
tion game. The next example shows that this
scheme might not exhaust all core allocations. For
comparison purposes recall that Theorem 4 fully
characterizes the core of the regular game as the
set of optimal dual variables, (2).

Example 11. Consider the tree T = (N, E)
where N = (p,, p,, ps} and E = ((p,, py), (p,,
p3)). Let D =C ={p,, p,, p3}. Suppose that all
edges have length 1 and r; = 1, for i = 1,2, 3. Also
let a; = 2, for i = 1,2,3, (b, b,, b3) = (2,1,2), and

(w,, wy, wy) =(1,1,1). Thus, the characteristic
function of the generalized game is given by
V{i}) =2, 1=1,2,3,

V({1,2)) = V({2,3) = 2,
V({{1,3}) = V({1,2,3}) = 3.
Therefore, ‘
Core(V) = {( x5, %y, x3)lx; + %, + x5 = 3,
<2, xy +25 <2,
x;20,i=1,2,3}.
The core has the following three extreme points:
(1,1,1), (2,0,1) and (1,0,2).

The dual problem (5), which is used in (7) to con-
struct the core allocations in Theorem 10, takes the
following form

max(2z, + 2z, + 223 — 2u; — u, — 2u,)

x) + x5 <

st.z; + zy —u; <1
z) +2z9 + 24 —u,; <1
zy + 23 —uy <1
220, u>»0.

2

The unique optimal solution is given by (z}, 23,
25, uf, uy, uy) =(1,0,1,0,1,0). Thus, the scheme
given by (7) will only generate the extreme core
allocations (1,0, 2) and (2,0, 1).

Remark 12. The core allocations constructed in
(7) for the generalized game are integral. Similar
integrality results for the core of the regular game
are stated in Corollary 5. These properties are quite
significant whenever the setup costs, the character-
istic function V, as well as the allocations of the
total cost, V(D), can be expressed only in terms of
some indivisible commodity (monetary unit), e.g.,
skilled workers, oil barrels, gold bullions, etc. The
above integrality results guarantee that there is a
stable (core) allocation even with that indivisibility
restriction.

CONCLUDING REMARKS

THE ORIGINAL version of this work was written in
1980 and presented at the International Sympo-
sium on Locational Decisions, Skodsborg, Den-
mark, 1981. Since then the main results of this
paper (Theorem 4, Corollary 5 and Theorem 10) on
the existence of core allocations arising from loca-
tion models have not been improved or generalized
significantly.

From the proofs given above we note that the
existence of core allocations on tree graphs follows
from the balancedness property satisfied by the
matrix A, defined by (1), which appears in the
characterization of the core in Lemma 2. Such a
matrix is in the class of totally balanced matrices
which has been studied extensively since 1980. We
refer the reader to [9] and the references cited
there, for a detailed discussion on algorithms and
structural results related to this class. In particu-
lar, we observe that core allocations of the types
discussed in Corollary 5 and Theorem.10 above can
now be computed in 0(n?) tlme for a tree graph
with n nodes.

The framework of the proof of Theorem 4 is
directly applicable to other games whose respective
optimization models are defined by a totally bal-
anced matrix. One such model is the simple unca-
pacitated plant location problem on tree graphs.
The cost allocation game defined by this problem is
briefly, discussed in [9]. Another example is the
classical production lot size model of WANGER and
WHITIN.'®) This model can be formulated as an
instance of the uncapacitated plant location on a
bitree. (A bitree is obtained from a tree by replacing
each arc by a pair of oppositely directed arcs. These
arcs are allowed to have different lengths). The
total balancedness property is preserved for matri-
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ces A, defined by (1), when the underlying graph is
a bitree.!? Thus, when we look at the cost alloca-
tion game defined by the production lot size model
in [16], viewing the demand points as the players,
the same proof as in Theorem 4, will exhibit con-
structively that there exist core allocations.

With the exception of the above results the only
other works we know of which focus on cost alloca-
tion schemes in location models on networks, and
employ the cooperative game framework are (5, 6].
The model in [5] is different from the game dis-
cussed above in several respects and therefore the
results are not comparable. Both are confined to
tree networks. The location model in [5] considers
only the single facility case; however, its assump-
tions on the utility functions of the users are less
restrictive than those (implicitly) made in our
model.

The cost allocation game in [6] is based on a
connectivity location model. There are no proximity

constraints on the distances between the users and -

the centers. The objective is to minimize the total
cost of establishing the centers and connecting the
users to them. Each user must be connected to
some center, not necessarily the closest to him. It is
shown in (6] that core allocations for this model
exist when the underlying network is a tree.

REFERENCES

1. J. P. AuBIN, “Cooperative Fuzzy Games,” Math. Opns.
Res. 6, 1-13 (1981).

2. R. CHANDRASEKARAN AND A. TaMmir, “Polynomially
Bounded Algorithms for Locating p-Centers on a
Tree,” Math. Program. 22, 304-315 (1982).

3. D. R. FULKERSON, A. J. HOFFMAN AND R. OPPENHEIM,
“On Balanced Matrices,” Math. Programm. Study 1,
120-132 (1974).

10.

11.

12.

13.

14.

15.

16.

. R. GiLEs, “A Balanced Hypergraph Defined by Sub-
trees of a Tree,” ARS Combinatorica 6, 179-183
(1978).

. D. GranoT, “The Role of Cost Allocation in Locational
Models,” Opns. Res. 35, 234-248 (1987).

. D. GrRanNoOT AND F. GRANOT, “On a Fixed Cost Span-
ning Forest Game,” Working Paper No. 1235, Faculty
of Commerce and Business Administration, Univer-
sity of British Columbia, 1987.

. S. L. HakimMi, “Optimum Distribution of Switching
Centers and Medians of a Graph,” Opns. Res. 12,
450-459 (1964).

. O. KARIV AND S. L. HakiM], “An Algorithmic Approach
to Network Location Problems. Part I: The p-
Centers,” SIAM J. Appl. Math. 37, 513-538 (1979).

. A. KoLEN AND A. Tamir, “Covering Problems,” in

Discrete Location Theory, P. B. Mirchandani and

R. L. Francis (eds.), Wiley, New York, 1990.

G. OWEN, “On the Core of Linear Production Games,”

Math. Program. 9, 358—370 (1975).

A. TAMIR, “A Class of Balanced Matrices Arising from

Location Problems,” SIAM .J. Algebraic Discrete

Methods 4, 363-370 (1983).

A. TaMmIr, “Totally Balanced and Totally Unimodular

Matrices Defined by Center Location Problems,” Dis-

crete Appl. Math. 16, 245-263 (1987).

B. C. TanstL, R. L. Francis, T. J. Lowe aNnD M. L.

CHEN, “Duality and Distance Constraints for the

Nonlinear p-Center Problem and Covering Problem

on a Tree Network,” Opns. Res. 30, 725-744 (1982).

B. C. TansiL, R. L. Francis anDp T. J. Lowg, “Loca-

tion on Networks: A Survey: Part I: The p-Center

and p-Median Problems,” Mgmt. Sci. 29, 482-497

(1983).

E. TARDOS, “A Strongly Polynomial Algorithm to Solve

Combinatorial Linear Programs,” Opns. Res. 34,

250-256 (1986).

H. M. WAGNER aND T. M. WHITIN, “Dynamic Version

of the Economic Lot Size Model,” Mgm¢t. Sci. 5, 89-96

(1958).



