Collection Depots Facility Location Problems in Trees

Robert Benkoczi
School of Computing, Queen’s University,
Kingston (ON) K7L 3N6, Canada

rbenkoccz@cs. queensu. ca,

Binay Bhattacharya
School of Computing Science, Simon Fraser University,
Burnaby (BC) V5A 156, Canada
binay@cs.sfu.ca,

Arie Tamir
Department of Statistics and Operations Research,
School of Mathematical Sciences, Tel Aviv University,
Ramat Aviv, Tel Aviv 69978, Israel
atamir@post.tau.ac.il

March 20, 2006

Abstract

We consider a generalization of the median and center facility location problem
called the collection depots facility location (CDFL) problem. We are given a set of
client locations and a set of collection depots, and we are required to find the placement
for a certain number of facilities so that the cost of dispatching a vehicle from a facility,
to a client, to a collection depot, and back, is optimized for all clients. The CDFL center
problem minimizes the cost of the most expensive vehicle tour among all clients and the
CDFL median problem minimizes the sum of the tour costs for all clients. We provide
the first algorithms to solve the 1 and k median problems in trees with time complexities
O(nlogn) and O(kn?) respectively, where n is the number of vertices in the tree. In
contrast, a restricted version of the k-median problem where clients are given lists of
allowed collection depots, is NP-complete even for star graphs. We also give an optimal
linear time algorithm to solve the discrete and continuous weighted 1-center problem,
improving on the O(nlogn) result of Tamir and Halman [10].

Keywords: Algorithms, dynamic programming, facility location, collection depots
problem, trees.

1 Introduction

The collection depots facility location (CDFL) problem is an optimization problem with a
special objective function. Two sets of points are given, a) clients and b) collection depots.
The two sets need not be disjoint, 7.e. a point can simultaneously be a client and a collection
depot. A set of facilities provides service to all clients and this service requires that a vehicle
originating at a facility travels to the client, then visits a collection depot, and finally returns



1 INTRODUCTION 2

to the same facility. The cost associated with this service is the weighted distance traveled by
the vehicle visiting the client, i.e. the traveled distance multiplied by a positive value specific
to the client. The goal is to compute the placement for k facilities so that a certain objective
function is minimized. The objective function we consider here is (i) to minimize the cost of
the most expensive tour (a k-minmax or k-center problem), or (ii) to minimize the total cost
of all tours (a k-minsum or k-median problem). If every client location is also a collection
depot, then we obtain an instance of the classic k-median or k-center problem. Since the
classic k-median and k-center are NP-hard problems, naturally their CDFL versions are also
NP-hard. In this paper we focus only on the CDFL location problems. We simply call these
problems the k-median or k-center and we use the term “classic” k-median and k-center to
refer to the usual location problems using the weighted distances for cost.

The CDFL location problem was recently proposed by Drezner and Wesolowsky [6] who
motivated the research with several industrial applications such as septic tank cleaning ser-
vice, garbage collection, or supply management. Their paper characterizes some properties of
the optimal solution for the median problem on the line and in the plane with Euclidean and
rectilinear distances. It also proposes a heuristic algorithm to solve the Euclidean distance
version in the plane and presents an empirical study of its performance. In a subsequent paper
[4], Berman, Drezner, and Wesolowsky considered the CDFL problem in general graphs and
trees, but they only analyzed the optimal solution for the single facility median and center
problems without proposing an algorithm to compute the optimal solution. This work was
later extended by Berman and Huang [5] who studied the multi-facility location problems in
general graphs, trees, and cycles. They established new properties for the optimal solution
in trees and in cycles, and also proposed an algorithm for locating both collection depots and
facilities in general graphs. Their method uses a Lagrangean relaxation algorithm embedded
in a branch and bound framework. Recently, Tamir and Halman [10] studied the k-center
problem in the plane, in graphs, in trees, and in paths. They proposed a more general formu-
lation in which every client is given a set of collection depots that the client is allowed to use.
In addition, they considered two extensions of the CDFL problem, the customer one way
and the depot one way problem in which the cost of the return trip to the facility is ignored.
Their paper contains a host of algorithmic results including constant factor approximation
algorithms for k-center in general graphs, exact algorithms for 1-center in graphs and in the
plane, and exact algorithms for k-center in trees and paths.

Center problems are classified based on where the facility can be placed and whether
clients are weighted or not. If the facilities must reside at the vertices of the tree, we have
an instance of the discrete center problem, otherwise the problem is called continuous (the
facilities can be located on the edges of the tree). Tamir and Halman [10] show that a solution
to the k-center CDFL problem in trees is obtained in O(n?logn) time for both discrete and
continuous weighted problems. For the 1-center problem on a tree, they describe an algorithm
with O(nlogn) time complexity and a linear time algorithm for paths. We mention that the
center problems considered by Tamir and Halman are more general, in that each client
location has a list of allowed depots it can use. We refer to their version of the problem
as the restricted median or center problem. We also note that for the median problem, the
distinction between discrete and continuous versions is irrelevant because there is always an
optimal solution to the continuous version consisting only of medians located at the vertices
of the tree [5].

Our results can be summarized as follows. For the unrestricted median problem, we give
an O(nlogn) algorithm for locating one facility and a dynamic programming algorithm with
time complexity O(kn?) for k facilities in trees. We also show that the restricted k-median
problem on trees is NP-complete when the facility setup costs are not identical. For the
unresiricted 1-center, we give an optimal linear-time algorithm for the weighted discrete and



2 NOTATION, DEFINITIONS, AND PROPERTIES 3

5y, v)

O depots
AN\ (y,v)
’,/\/_ LT

v
(8(y, v), 7w(y, v))

Figure 1: The trip to serve client v from facility y

continuous case, which is a generalization of the prune-and-search method used by Megiddo
to solve the classic weighted 1-center problem in trees [7]. Our method does not apply for the
restricted problem. We begin Section 2 by introducing the notation and proving properties
that are crucial for the correctness of our algorithms. In Section 3 we discuss our algorithm
for the single facility center problem. The algorithms for the median problems are given in
sections 4.2 and 4.3.

2 Notation, Definitions, and Properties

Let T = (C U D, E) be a tree where |C| = n¢, |D| = np, and |[CUD| = n. Let C =
{v1,va,...,vns} be the client vertices of T' and let D = {61, 2, ..., dn, } be the depot vertices
of T'. Client and depot vertices may coincide. Each edge e € E has a positive length [{e). We
view the tree as a network in which an edge e € E corresponds to a closed interval A(e) of
length I{e) so that we can uniquely identify its interior points by the distance to the endpoints
of A(e). We denote the set of all intervals of the edges of T by A(T') (the set of arcs of T'). A
facility may be located at a point from set A(T"). Each client v € C is associated with weight
w(v) > 0. If T" is a subtree of T, we denote by C(T”) and D(T") the client respectively depot
set of T”. For any pair of points = and y from A(T), let m(z,y) be the unique path between
z and y, and let d(z,y) be the network distance between z and y defined as the length of
path 7(z,y). We extend this notation to include the network distance between a point x and
a path P C A(T'), defined as
d(z,P) = min d(z,v).

Similarly, we let 7(z, P) be the path between point z and path P. For simplicity, we use the
term tree even when we refer to the points A(T') from the network defined by tree 7'

The restricted version of the collection depots problem proposed by Tamir and Halman
[10] specifies that every client v; is associated a set X (v;) of depots that are allowed for
that client. If X(v;) = D for all clients v;, then we have an instance of the unrestricted
CDFL problem. Unless we specify otherwise, all location problems discussed in this paper
are unrestricted. Let y be a point in A(T). We denote the weighted trip distance, also called



2 NOTATION, DEFINITIONS, AND PROPERTIES 4

the trip cost, from facility y to client v; by

r(y,vi) = w(vﬂ(d(y, v} + 5 min ) {d(vi, 8) + d(4, y)})

eX (v

Figure 1 shows a typical example of a route from facility y to client v. The optimal depot
location for the route determined by y and v is denoted d(y,v) and is not necessarily the
closest depot to the client or to the facility, but it depends on the facility-client pair.

Problem 1 (Unrestricted CDFL facility location). For any finite subset of points F' C A(T)
in the tree network, we define the following two objective functions which correspond to the
median and center location problems respectively.

ne
m(F) = Z 1;161;1 (Y, v;)
i=1

ofF) = max minr(y, i)

Input:
~ A tree T = (V, E), with the set of clients C, set of depots D, and edge length function (.
— A non-negative client weight function w: C — Ry.

- A non-negative function for the cost of opening facilities at the vertices of the tree, f :
V — Ry. For any subset of vertices V', we write f(V') = EyEV’ f ).

— A positive integer parameter k.

Output: A set Fy of cardinality k of facilities that optimizes the following objective functions.
k-median: The facilities are opened on the vertices, and the total service cost is minimized,

FrCV, m(F) + f(Fs) = min (m(Y) + f(Y)).
lYT=k
Discrete k-center: The facilities are opened on the vertices, and the mazimum service cost
s minimized,
FoCV, c(Fy) = l)r/nlgH& (e(Y)).
Y=k

Continuous k-center: The facilities can be opened on the vertices and the edges, and the
mazimum service cost 18 minimized,

F, c AT, c(Fy) = YICn};I(lT) Y).
I¥|=k

For center problems, there is no cost of opening facilities.

If the optimal depot used in the trip from y to v; is determined, we can write

(v, i) = (o) (dly,03) + dvi, 80, 00) + d(6(5,0),)).

If we analyze the trip from y to v; and keep in mind that T is a tree network, we notice that
the trip from y to v; can be partitioned into two parts. One part involves the path from y to



3 THE WEIGHTED 1 CENTER CDFL PROBLEM 5

5 5(v1, R)

5(uv2, Q)

trip
distance

I

o S .

T(y, v2)

gbmmmm

Fu ) SEPI N W

I
I
'
I
I
I
1
1
I
I
I
1
i
1
'
i
)
!
P s
position y

Figure 2: Here, distance M is assumed to be sufficiently large so that depots §(v1, R) and
4(ve, @) do not influence each other; somewhere between ¢ and R, the dominating client
changes

v;, denoted by 7(y, v:), and the other involves the path from 8(y, v;) to 7(y,v;) (see Fig. 1),
Hence

r{y,v) = 2w('ui)<af(y?vi) + d(d(y,@'i),rr(y,vi))), (1)

The unweighted trip distance Ti%:”)) has certain properties that are different from the usual

tree distance d(y,v;). We point out one difference that causes difficulties in our algorithins
for both median and center problems but first, we mention an intuitive result proved by
Tamir and Halman. They show ([10] Lemma 4.3) that the trip distance to any client is
monotone non-decreasing as the facility moves on a simple path away from the client. This
property is used in their 1-center algorithm on trees. We also use it here in the design of our
improved linear-time algorithm. Unfortunately, if we consider a set of clients and a facility
y that moves on a simple path, away from all of them, the client with the largest (smallest)
unweighted trip distance from y can change as y moves. This does not happen if we use the
unweighted tree distance. An example is given in Fig. 2.

3 The Weighted 1 Center CDFL Problem

In this section we present a linear time algorithm to solve both the discrete and continuous
unrestricted weighted 1-center CDFL problems in trees. For the restricted problem, the
best known result is from Tamir and Halman [10] with complexity O((n + K)logn) where
K =35""° | X (v:)] s the total size of allowed depots which can be O(n?). We generalize the
iterative approach of Megiddo [7] used to solve the classic 1-center problem to the CDFL
problem. More precisely, we modify the O(nlognj iterative algorithm of Tamir and Halman
[10] so that we eliminate from the tree a constant fraction of vertices at every iteration. We
assume the tree to be rooted so that we have pairs of vertices in a child-parent or ancestor-
descendant relationship. If the tree is not rooted, we choose an arbitrary vertex as root.



3 THE WEIGHTED 1 CENTER CDFL PROBLEM ]

Figure 3: Determining whether the optimal center location belongs to a forest of subtrees of
T

Let T'(4) be the tree consisting of the vertices not eliminated at iteration ¢ — 1 or at earlier
iterations. Let ¢ be the centroid of T'(i). Iteration ¢ consists of computing all weighted trip
distances from c as a facility to all clients in T'(¢) in time O(|T(3)|) (see [10]) and determining
the client Tmee with the largest weighted trip distance. We denote by 5:(c) the component
rooted at ¢ that contains Tm., and by Sz(c) the component, also rooted at ¢, that doesn’t
contain Tmq, (see Fig. 4). Both S(c) and Sz(c) have more than | 1|T'(i)|] vertices each.
Because of the monotonicity of the unweighted trip distance, we know that the optimal
center must reside in S1(c) and therefore we can recursively select the centroid of S1(c) as
the candidate facility for the next iteration. To achieve a running time linear in n = |T7|,
we will identify a constant fraction of clients from S»(c) (and thus a constant fraction of
the total number of vertices used at iteration ) that cannot determine the position of the
optimal center because they are dominated by other clients from T'(¢). If &4 is not unique
and an equidistant vertex exists in S3(¢), then ¢ is the optimal solution for both the discrete
and continuous l-center problems.

Our approach requires an answer to the following query in time linear in the size of the
consists of all the descendants of u;. Does the optimal center y,,; belong to the union of
these subtrees or not? To answer this query, we use the idea of Megiddo [7] (see Fig. 3).
From uy, we can compute the weighted trip distance to all clients in 7} in time proportional
to the size of T;. Let R; be the maximum weighted trip distance over the clients in T} and
let Ryar = Bj» = maxjgj<p R;. It is possible to show using arguments similar to those of
Megiddo in [7] that, if yop € U5, 7}, then yop € Tj-. Indeed, if yopy is in Tj and j # j*,
then no client from T} can determine the position of y,p¢ because there is at least a client in
T« with a dominating weighted trip distance. Consequently, we can move yop¢ away from
T; without increasing the cost of the 1-center solution. It follows that, to determine if the
optimal center is in U’; T}, it suffices to compute the trip distances from u;~ to all the
clients in time linear in"the size of the tree. If the largest trip distance from uy+ is to a client

in T+, we conclude that y,,; € Ujl T;, otherwise y,,¢ is not in the union of subtrees.

We now describe the process of pruning vertices from the tree. As in the previous section,
the optimal center must lie in component S1(c) where ¢ is the centroid found at an iteration.
We will identify a constant fraction of the client vertices in S3(c) that will not determine
the position of the optimal center. These client vertices will be eliminated from the tree.
Moreover, the tree structure of component S3(¢) is not needed anymore and can be replaced
by a list of client vertices v € Sy(c). The list contains, for every client v, the distance to
the centroid d(v,c) and the depot distance from the closest restricted depot §(c,v) located



3 THE WEIGHTED 1 CENTER CDFL PROBLEM 7

S1{c)

Figure 4: The case when the optimal facility is in component S1(c)

in S2(¢) to the path m(c,v). We call such a depot restricted and we use notation §'(c, v) if
this depot is the closest depot located in some given subtree of the tree. If the given subtree
(for example S3(c)) contains no depot, then ¢'(c,v) is not defined and the corresponding
depot distance is considered infinitely large. Using the list of centroid and restricted depot
distances for clients in S3(c), the length of the trip originating at any vertex in the other
component S1(c) to any client in Sa(c) can be easily computed. In Fig. 4, if y is the origin
and v is the client, the optimal depot used is either &'(c,v) or another depot from 5, (c)
depending on how far this other depot is from path n(y,c). It is not difficult to modify the
trip distance computation from a fixed source described in [10] to handle the lists of clients
associated with certain vertices in the tree structure.

Let &/, be the median value of depot distances d(6'(c,v), w(c, v)) from the list associated
with component Sz(c), and denote by K™ the clients from 55 (c) with depot distance greater or
equal than d, ,, and K the clients with depot distance smaller or equal to & _,. Thus both
K% and K~ have cardinality at least L\S‘zﬂj If component Sy (c) contains no depot, then
we set KT = Sa(c) and K~ = 0. We focus now on the vertices from the other component,
S1(c). I we look at the path from a vertex y € 51(c) to ¢, there exists a depot in S;(c)
(a restricted depot!) that is closest to the path. For some vertices in S1(c) this restricted
depot distance could be smaller or equal than 6/, ,. These vertices form a forest of subtrees
of S1(¢) that we denote T7, ..., T} (the shaded subtrees in Fig. 4).

We know how to determine whether the optimal center y,p; lies in Uf___l T; or not in time
linear in |7°(¢)|. First, assume yop € UI;_I T; and therefore the depot distance from yepm to
centroid ¢ is smaller than & _,. This means that all clients from set K will use the same
depot from component Si(c) if served by yep. We arbitrarily form pairs of clients (rom set
K. For every such pair (u,v), we compute a value denoted t,,, that represents the additive
unweighted cost needed to make the weighted trip distances to u and v equal. More precisely,
tuy 1s such that

wlv) - (tw -+ d(c, U)) =wlu) - (tm, -+ d(c,u)>‘

Let timeq be the median value of the t,, computed above. We are now interested in the
vertices y € S1(¢) f{or which the unweighted trip distance from y to ¢ is greater than t,,.4. It
is not difficult to observe that the set of all y vertices form again a forest of disjoint rooted
subtrees of S1(c), and thus we can determine again if the optimal center y., belongs to this
forest or not. In other words, we can determine if d(yop:, ¢)-+d <<5(y0pt, ), T(Yopt c)) is greater
than £,,.4 or not. If it is greater, then from the pairs of clients in Sy(c) with ., < t,eq, the
weighted trip distance from y,,¢ to one of the clients will always dominate the weighted trip
distance to the other. Thus we can eliminate the client with the dominated weighted trip
distance. If the trip portion from g,y to the centroid is smaller than ¢,,.4, then we focus on



4 THE MEDIAN PROBLEM 8

the pairs of clients with tyy > tmeq. Here too, the weighted trip distance to one of the clients
will dominate the trip distance to the other client in the pair. In each case, one quarter of
the vertices from set K is pruned, i.e. at least | 1|S2(c)[].

In the second case, yops € Si(c) \ U§=1 T;. This means that any client in Sa(c) from set
K~ will use its own depot from component S2(c) in the trip originating at yop:. We again
arbitrarily pair up the ¢lients from K ~. For every pair (u,v), we compute the value #,, that
represents the distance to centroid ¢ from a vertex y in 51(¢) required so that the weighted
trip distances from y to both u and v are equal. More precisely, £, satisfies

w(v) - (tiw + d(e,v) + d(6(c,v), W(c,v))) =w(u)- (t;v + d{c, u) + d(§{c, u), n(c, LL)))

The difference from the first case is that the depots used are in both cases chosen from Sq(c)
and do not depend on the choice of facility y. Let ¢/, be the median value of ¢}, above. The
vertices y from Sy(c) that are further than ¢, from the root form a forest of subtrees. We
can again determine if y,p; lies in this forest or not. Exactly as in the previous paragraph,
we identify one vertex from at least half of the pairs (u,v) that can be pruned.

As a final technical detail, we point out that compounent S1(¢) in which we search for
the optimal center may contain only partial structure information. Some rooted subtrees of
Si{c) are represented only by lists of clients and restricted depot distances. However, it is
not a problem to decide if any forest of subtrees of Si(c) contains the optimal center because
we already know that the subtrees represented by these lists do not contain yop:.

Analysis: At every iteration, computing the weighted trip distances to all client vertices
and determining where the optimal center lies is performed in time linear in the size of the
tree. Pruning also eliminates a quarter of the vertices of set K™ or K~. Each of these sets
contains at least half of the number of clients from component S2(c). This component also
contains at least one third of the vertices in tree T(7) used at iteration ¢. Therefore, iteration
i prunes at least 55|T(i)| vertices and therefore the algorithm has time complexity O(n),
where n = |T|.

Computing the optimal discrete center: The iterative process described above stops
when either (i) ¢ is equally distant to at least two dominating vertices from S1(c) and S (c),
in which case ¢ is the optimal center, or (ii) |7'(¢)| < 24, in which case we find the optimal
center in constant time by complete enumeration.

3.1 The Continuocus l-center CDFL Problem

To solve the continuous l-center problem, we first compute the discrete optimal 1-center
using the procedure deseribed above. If the algorithm stops because ¢ is equidistant to two
dominating vertices from both Si(c) and Sa(c), then ¢ is the solution for the continuous
problem too (case i). Otherwise, |T'(¢)| < 24 and we compute the optimal continuous center
by enumeration, in constant time.

4 The Median Problem

In this section, we describe our solution for the I-median and k-median CDFL problems.
We consider the unrestricted median problems. We show that k-median can be solved in
polynomial time with dynamic programming and that the 1-median problem is solvable in
O(nlogn) time and linear space even when the cost of opening facilities is arbitrary. In



4 THE MEDIAN PROBLEM 9

Figure 5: NP-completeness of restricted k-median, reduction from the vertex cover problem.
The example assumes a < b < c.

contrast, the restricted k-median problem with non-uniform costs for opening facilities is
NP-complete.

Theorem 4.1. The restricted k-median problem with non-uniform costs for opening facilities
is NP-complete even on star graphs and even when the list X (v;) of restricted depots for client
v; 18 a singleton for all v;.

Proof. The restricted k-median problem is in NP because the cost of any solution can be
computed in polynomial time. To prove the NP-hardness, we use a reduction to the vertex
cover problem. Given a graph G = (V, E), we are asked if a vertex cover of size k exists in
G.

First we fix an arbitrary permutation of the vertices in G which is represented by the
binary relation <. In other words a < b if and only if ¢ precedes b in the permutation. Then
we construct a star graph G’ = (V/, F’) with the central vertex s and a vertex v, of degree
one for each vertex a € V. We let f(s) -+ oo and f(va) = 0 for all v, € V' \ {s} . Let
e; = (u,v) be an edge in graph G and assume without loss of generality that u < v. With e;,
we associate a client ¢; placed at vertex u in the star graph and we set X (¢;) = {v}. We do
this for all edges in the graph G. Clearly, a vertex of star graph G’ may contain more than
one client. We also set the edge lengths and vertex weights of the star graph to 1. Then, a
vertex cover of size k exists in ' if and only if the cost of the restricted k-median in G’ is
not more than 2m, where m = |El. |

Our algorithm for the 1 facility minsum problem uses a tree decomposition called the
spine decomgpesition that has been previously used in the context of median problems. For
completeness, we give a brief description of this structure in the following section.

4.1 The Spine Decomposition (SD)

The spine decomposition (SD) is a tree decomposition designed and presented in some of
our earlier work, [3, 1]. The SD uses a path to direct the partition of the input tree. This
makes it suitable for computation tasks involving components of the tree that interact with
one another.

In Fig. 6, let T be a binary tree rooted at a vertex rp. If 7' is not binary, we can make it
binary as in [9]. We select a path from rr to a leaf in 7' such that the next vertex in this path
always follows the child with the most number of leaves hanging from it. Formally, if vg = rp,
v1, ... Uk are the vertices on the path, if p(v) denotes the parent of v, and if N;(v) denotes the
number of leaves that have v as ancestor, then we always have N;(vi41) > Ni(u;) where u; is
the other child of vertex v;. We call path vp, vy, ... vx a spine and use notation m(vg, vg). If



4 THE MEDIAN PROBLEM 10

55D

Figure 6: A typical spine decomposition; spines are shown in thick lines, search trees as thin
lines and components are outlined by dashed lines; the numbers beside spine vertices at the
top-most spine give the number of leaves of T for the corresponding SD component

we remove the spine from T we obtain a set of at most k disconnected components which are
each recursively decomposed. Let T(u;) be one of these components rooted at u; where u; is
adjacent to spine vertex v; but is not itself a spine vertex. We call T'(u;) an SD component.

Let A(v;) dencte the number of leaves of T'(u;). We construct a hinary search tree with
vertices v; as leaves and we associate it with the spine. Thus the leaves of the search tree
and the spine vertices of m(vg, vi) are the same (or one can consider a one to one mapping
between them). The root of the search tree is linked to the spine vertex of the parent spine,
i.e. the root of the search tree for the spine of T'(w;) is linked to v;. In this way, different
search trees are connected through one or more spine edges, and we can talk about a unique
super-path that exists between any two search tree nodes that belong to different search trees.
Search trees are balanced by weight A(v;) associated with leaf v; such that components with
many leaves (and thus many recursive spines) are closer to the root of the search tree. We
denote the path between any two search tree nodes w and y by o(z,y).

The SD components that are descendent (in a search tree) of some SD node z form a
subtree of T' denoted T, and called subtree of z. Given z, we identify two spine vertices
(and thus two vertices of the original tree) with z. The spine vertex denoted zf (and x”
respectively), is the spine vertex that (1) has x as ancestor in the search tree and (2) is the
closest (or furthest respectively) to rr if we consider the tree distance in the original tree
T. Two important properties of the SD are mentioned here without proof because of space
constraints. Full proofs are provided in [1].

Theorem 4.2. The length (number of edges) of any super-path o(z,y) in the SD is Ologn)
where n is the number of vertices of the input tree T.

Theorem 4.3. The construction algorithm for the SD has time complezity O(n). The storage
space complexity of the data structure for the SD is also O(n).



4 THE MEDIAN PROBLEM 11

Vo

(a) (b)

Figure 7: Computing the cost of the 1-median when v is the facility

4.2 The l-median Problem

The general idea of the 1-median algorithm follows a pattern similar to the work of Rosenthal

and Pino [8] who studied the location of one facility in trees, with several objective functions,

in linear time. For this problem, the same framework seems not to lead to linear time
algorithms very easily because of the peculiarities of our distance function. We propose here
an algorithm with running time O{nlogn) for locating one median.

From the paper of Berman and Huang [5], we know that the optimal sclution must be a
vertex of the input tree, therefore we simply compute the 1-median cost with the facility at
each vertex in the tree and select the one for which the value computed is the smallest. The
obvious algorithin to compute the cost for a given facility uses linear time for processing which
leads to a quadratic 1-median algorithm. In the following paragraphs, we show that using
the spine decomposition [3, 1] and pre-processing, we can compute the cost in logarithmic
time per candidate median.

The main idea is as follows. We can compute, in O(n logn) time, the cost of the 1-median
in subtree T, if ¥ or z is the median. With z' as the median, we need to determine the
contribution of the remaining vertices from 7"\ T3, in order to estimate the cost in the whole
tree. Because of the properties of the spine decomposition, there are O(log n) subtrees whose
costs need to be accounted for. However, the depot distance from ' to the root of those
subtrees influences the cost of the subtrees. This influence can be calculated if we sort the
vertices z in each subtree by the restricted depot distance from the root of the subtree to z
and if we precompute prefix sums of weighted distances.

Assume that at every node z of the SD we have the following information available
(Fig. 7).

(a) The clients of T}, are sorted in decreasing order of the distance from the path between
the client and zpr, and the elosest depot to the path. The sequence is 21, 22, ... 2jc(1y))
such that

A(6(xr, z5), n(zr, 25)) > d(8(xr, zp ), n(xp, 25))

for any 7/ > j. Note that 6(zr, z;) is the closest depot to the path from the set of all
depots. It can be computed efficiently using the approach in {10, 1].

(b) The weighted sum for the depot distance to path #(z;, zr) for all clients starting with z;
to the last one in the order described above. We use subscript “L” because we compute
another value Pgr(z,j) which returns the same weighted sum but using the ordering



4 THE MEDIAN PROBLEM 12

relative to paths 7(z;, zr).
|C(T2)]
PL(I’j) = Z ’LU(Z»L') : d(é(IL,Zi),W(ZL,Zi)), 1 S] S ‘C(Tz)i

i=j
¢) The sum of the weights of the clients in the order described at (a) up to vertex z;.
J
J
Quiz,j) =D w(z), 1<j<|0(TL).
i=1
(d) The cost of all clients in T, as if served by a facility at z;, but without adding the depot

distance. To obtain the trip distance, one needs to add this value to the depot distance

weighted sum.
[C(T)

Mp(z) = Z w(z;) - d(zr, zi).
=1
A similar ordering of the clients in T} is computed relative to the depot distance to the
path from the client to x g, cl(é(zj;J:R’),W(zj.,:zr;g)). Then, we define Pgr(z,j), @r(z, ), and
Mp(x) exactly in the same way using the new ordering.
To compute the contribution of clients in T}, if served by some tree vertex v (Figure 7
(a)), we simply have to know the depot distance to path (v, z). Let this distance be dpeq,

dnew = d(8(v,z1), 7(v, rL))

Let j be the largest index in the ordering 21, ... 2jc(n,)| of the client vertices in T}, relative
to ay, for which the depot distance is larger than d,,..,, in other words, for which

d(é(zj mL)v W(Zj: -EL)) > dnew«
Then, the contribution of clients in T} served by v is
2. (ML(T) +w(Ty) dw,zr) + Qr{z,7) - dnew + PL(z, 7 + 1)) (2)

Indeed, the first two terms represent the total cost for the trip between the clients and the
facility and the last two the total cost for the trip between the optimal depot and the client-
facility path. Note that we use d,.,, as depot distance for all clients for which the depot
distance for the trip inside T, is larger than d,,.,,. Of course, if v is towards the root from x,
we use the values Pr, Jr and Mg in a similar way.

Now, we have all the ingredients needed to compute the 1-median cost when some vertex
v € T is the facility. Consider Figure 7 (b) where v € T is the facility for which we need the
cost. Let rg, r1, ... 74 and lg, 11, ... 13 be the SD nodes adjacent to path o(v, sgp). At each
of these SD nodes including v, we use (2) to evaluate the contribution of the client vertices
in the respective components, and we report the total as the result.

Observe that the evaluation of (2) is done in constant time once value j is determined. If
we use binary search with dy,.,, over the ordering of clients, we spend O(logn) time at each
SD node, and thus O(log? n) time for each vertex. This gives an algorithm with O(nlog®n)
running time. However, we can replace the binary search step with sequential search if we
have access to dp.y in sorted order. Let y be the 5D node sibling of z. Node x is used
in the computation from (2) only when v € T,. But at y, we already have the sorted list
of all vertices (we will compute the sorted list for all vertices and not only for the clients)
relative to their depot distance to the path to either yr, or yg. We then evaluate (2) for v in
this order. We can also reduce the storage space of this algorithm to O(n) from the obvious
bound of O(nlogn) if we discard the lists of values that are not needed in the algorithm.
The algorithm is sketched below.



4 THE MEDIAN PROBLEM 13

Figure 8: Cost function for the k-median problem

e Compute the SD and any information required for maintaining the sorted lists of ver-
tices at any node.
e Traverse the SD bottom up; at every node z with children y and ¢ do:

1: Sort the clients in T, by depot distance; let Z(z) be the sorted list of clients. Com-
pute the lists of values P, (, and M for Z(z). Store everything at z.

2: Traverse Z(y) and generate queries in ¢ (i.e. evaluate the contribution of Ty if the
median is at a vertex in Ty using (2)). Answer the queries by sequential search in
the list at ¢.

3: Store the result incrementally in an array indexed by the tree vertex corresponding
to the query.

4: Repeat steps 2 and 3 with the roles for ¥ and ¢ interchanged.

5: Discard the lists stored at y and ¢.

e Traverse the array indexed by tree vertices and output the entry with smallest value.
We can state the following result.

Theorem 4.4. The 1-median collection depots problem in trees can be solved in O(nlogn)
time and O(n) space.

4.3 The Unrestricted k-median Problem

In this section we show that the unrestricted k-median problem can be solved in polynomial
time for trees. We use dynamic programming like in the classic k~median problem. We assume
that T is a binary rooted tree, otherwise we can root it at an arbitrary vertex and make it
binary by adding a linear number of vertices as in Tamir’s approach for the classic problem
[9]. The cost functions we propose are more complex because they have two parameters that
depend on the choice of facilities, and not only on one as in the classic version. The cost
functions are associated with subtrees of the given rooted tree.

Let v be the root of subtree T, and p the number of facilities chosen in T, (see Fig. 8).
For z,y € V, we define the function G(T,p, z,y) to be the minimum sum of trip costs for
the clients in T, plus the facility opening costs for the facilities in T, if p facilities are chosen
in T, optimally, x is a facility that serves client v, and the nearest facility in tree distance
to v is y. If x € Ty, then z counts towards the number p of facilities chosen in T}, and the
opening cost f(z) for this facility is added to the value of the cost function. Similarly, if the
closest facility v is in T, and is different from «, it too counts towards the number p and the
opening cost f(y) is added to the value of the function.

The dynamic programming algorithm computes the cost functions for all the rooted sub-
trees T, of tree T and all possible choices of parameters, bottom up. If rp denotes the root of
T, then the optimal unrestricted k-median solution is retrieved from ming yev G(Trp, K, 2, ).
Before we analyze the recursive computation of cost function G, we prove its correctness.



4 THE MEDIAN PROBLEM 14

Figure 9: Correctness of cost function G

Theorem 4.5 (Principle of optimality). Let F* be an optimal set of k facilities for the
k-median problem and let v € V be an arbitrary vertex with T, as its rooted subtree. Denote
by x,, the facility from F* that serves v and by y, € F* the closest facility to v. Then, for
p = |F*NTy|, the contribution of clients and facilities in T, in the optimal solution F* is
equal to G(Ty, D, Ty, Yn)-

Proof. Let Fy = F*NT, and let p = |F}| (see Fig. 9). To prove the result it is sufficient
to show that for each client ¢ € T\ T, (¢ € Ty), and for each facility ¢t € Fy (¢t ¢ F}), we
have r(¢,¢) > min{r(yv, c), 7(zy, c)}. This will imply that in the optimal solution F*, a client
c € T\ T, is served by a facility in (F*\ F})U {zy,%,}, and a client ¢ € T, is served by a
facility in Fy U{zy, y»}. We consider only the case where ¢ € T'\ T}, since, due to symmetry,
the proof for the case where ¢ € T, is basically identical.

Let t € F} be a facility serving a client ¢ € T'\ T, (Fig. 9-b). Consequently, v is on the
path from ¢ to c. Suppose that §(¢,¢) is in T,,. Then,
r(t,v)

r(t,c) = wlc) - ( w() +2d(v,c)> > w(c) - (

Suppose that 6(¢, ¢) is in T\ T,. Then,

T(Zy, v)

w(c)

+ 2d(v, c)) > r(zy, c).

r(t, ¢) = 2w(c) - (d(t,v) +d(v,c) + d(é(t,c),w(v,c))) >
> 2w(c) - (d(yv,v) +d(v,c) + d(é(t,c),w(v,c))) > r(yy, C).
a

4.3.1 Computation of the cost function:

From the proof of the previous theorem we notice that the argument y of the cost function
G(T,,p,z,y), which represents the nearest facility to v, can potentially serve clients from
the other side even though v is served by . More precisely, if y € T, then y might serve
clients from T°\ T,,. This could reduce the overall cost even if the cost incurred strictly in
T, returned by the cost function G(7T,,p,z,y) is higher than when y is not forced to be a
facility. When y € T'\ T, y could serve clients from T,. We call the case when y serves
clients beyond vertex v, cross-service.

There is an important observation regarding a facility y which is responsible for cross-
service. This observation follows directly from the proof of Theorem 4.5. Let v be an arbitrary



4 THE MEDIAN PROBLEM 15

v=zr=y

Figure 11: Recursive computation of cost function G(1y,p,z,y)

vertex of T" as in the proof of the theorem, and let s and ¢ be its two children. Vertex v is

adjacent to three components, T, Ty, and T\ T, (Fig. 10). Assume without loss of generality

that y € T,. Then, either y provides cross-service to both Ty and T\ T}, or only to one of
them, or to neither one of them. In any case, we cannot have two distinct facilities y,, y2
with d(y1,v) # d(y2,v) that provide cross-service. If y does not provide service to at least
one client from T of T\ T, then y is called redundant for that component. We will compute
the cost function G(T,,p,z,y) even for values of y that are redundant for 7T5,.

We now describe the computation of G(T,,, p, z,y). We identify three base cases (Fig. 11).

In each of these base cases, several sub-cases are possible depending on the location of vertex

Y.

A) z €T, z # v. Without loss of generality, assume z € T (Fig. 11-a). If z € T, then we
can use the same argument as in the proof of Theorem 4.5 to show that z must also serve
vertex 3. Consequently, the contribution of clients in T is returned by G(T5,1,z,y). For
the other subtree T3, it is possible that other medians from within T3 serve the root of t.
Therefore, to calculate the contribution of T3, we need to choose the best cost function
computed for T3 among all choices of x; € T3.

We consider four sub-cases that depend on the location of y. We assume y # v since
otherwise z =y = v.



4 THE MEDIAN PROBLEM 16

1) yeT,and y # z.

G(Ty,p,z,y) = r(z,v) + min {G(Ts,i,x,y) +
2<i<p
+ min {G(Tt>p - i,z,y), G(Tt)p - iayay)z rnEl’IIl‘ G(E,p - ’Laltzy)}} (3)
TrCiy
i<p—1

2) y = z. The recurrence relation follows the same pattern,

Gy, p,xz,x) = r(x,v) + min {G(Ts.,i,x,:n) +
1<i<p

+min{G(Tt,p—i¢m,m), mein G(Tt,p—i.,xt,m)}}. (4)
TpEiy
i<p—1

3) yeT\Ty.

G(Ty.p.,y) = r{z,v) + min {G(Ts,i,m,w n
1<i<p

+ min {G(Ttap - i,w)y)> G(Ttap - i:y;y): Irtneigf G(Tf)p - i,It,y)}}~ (5)
i<p—1

4) yGTt.

TM’) 3 = ’ i S7la 3
G(Tupo) = (o) + v {GLuyio) +

+ min {G(Thp - ’I:,.’Z, y)’ G(Tiap - ia y,y)v Irl_l,ln, G(Tt)p - i>mt>y)}}‘ (6)
=
B) z € T\ T, (Fig. 11-b). We have a similar situation except that besides t, the client s
could also be served by some facility located in Ts and thus we need to select the optimal
cost function for T as well.
Three sub-cases are identified depending on the choice for y as long as y # v.
1) y € T,,. Without loss of generality we assume y € T5.

G(Tv:paw’y) = T(I,U) +

+ min {min {G(Ts,i,m,y), G(Ts,%,y,y), min G(Ts,i,ms,y)} +

1<i<p z: €T,
TsFY
(22
+ min {G(Tt,P - iv T, y)7 G(Thp - iv yzy)v a:nl‘_l,r; G(Tfap - i,It,y)} } (7)
&l
i<p—1

2) yeT\T, and y # z.
G(Ty,p,z,y) = r(z,v) +

+ Olgli}gp{mln {G(Ts,l,w,y), G(Ts,4,y,v), Jin G(Ts,l,ms,y)} +
1>1

+ min {G(T‘tup_’“m?y) G(Ttap_l7y)y)7 zmelg G(T‘tap_luwiay)}} (8)
te4y
i<p-1



4 THE MEDIAN PROBLEM 17

3) y==x.
G(Tv,p) m,.’n) = T‘(:L‘, 7“) +

+ min {min{G(Ts,i,m,z), min G(Ts,i,ms,m)}+
0<i<p €T,
i

+ min{G(Tt,p—i,m,m), min G(Tt,p—i,mt,m)}}. (9
xr Ty
i<p-—-1

C) z =y = v (Fig. 11-¢). For this situation, we need a recurrence relation very similar to
Case B3. The only difference is that we have to add the facility opening cost of v,

G(Ty,p,v,v) = r{v,v) + f(v) + min {min {G(Ts,i,v,v), min G(Ts,i,ws,v)} +
0<i<p—1 2T

1

+ min {G(Tt,p —1—1,v,v), Im{lrrl GTy,p—1- i,mt,v)}}. (10)
i<p-2
The base case for the recurrences defined above is easy to express. If v is a leaf in the
tree and x and y are the facility serving v and the nearest facility respectively, the cost does
not depend on y. We have
G(Ty,i,z,y) = r(z,v) + C, (11)

wherei =0and C=0ifz#v,andi==1and C = f(v) ifz =y =wv.

4.3.2 Complexity analysis:
Based on the recurrence relations (3)-(10), we can prove the following complexity result.

Theorem 4.6. The unrestricted k-median problem on trees is solved by the dynamic pro-
gramming algorithm described above in O(kn®) time and O(kn?) space.

Proof. We can directly apply Tamir’s result for the classic k-median problem on trees [9] for
which the number of discrete cost function values is O(kn?). In our case, the total number
of discrete values that need to be computed for cost function G is O(kn*). Thus, we need
to show that the recurrence relations can be implemented in constant amortized time. The
space complexity of the algorithm is obviously O(kn2) because any time we compute the cost
function for a vertex v we only need to keep the cost function for the children of v.

If we fix parameters z, y, and p in Equation (3), and if we focus only on a single dis-
tribution of facilities between T, and T, (a particular value for ), all the terms of (3) are
available in constant time except for A(i) = ming, er, G(T3, p -1, T+, y) which can be obtained

i<p-1
in O(|T%}) time. However, A(%) is used for the cor_rfputation of the cost function G(Ty, p,z,v)
for all z € T and a fixed y € T and can be computed only once. Therefore, A(i) is also
available in amortized constant time for fixed = and y. The same argument can be made for
relations (7) and (10). Hence, the analysis in [9] is applicable to our case. O

We conjecture that, for a fixed value of k, it is possible to use a continuous dynamic pro-
gramming algorithm to solve the unrestricted k-median problem in time O(n?log®n) where
¢ is some constant, using an approach similar to that for the classic k-median problem of
Benkoczi and Bhattacharya [2]. The key observation in favor of our claim is that G(T,,p, z,y)
can be replaced by a function G(T%,p,z,«) continuous in « if y € T\ T,,. The parameter



5 CONCLUSION AND FUTURE RESEARCH 18

« represents the distance from the nearest facility located outside of the subtree. In this
way it is possible to reduce the complexity of all cost functions, continuous and discrete, to
O(n? log‘:/ n) for some constant ¢’ if the subtrees 7, are defined based on the spine decompo-
sition [2]. This could possibly reduce the time complexity of the algorithm to O(n? log® n).

5 Conclusion and Future Research

In this paper we study the collection depots location problem in trces both with the center
and median objective functions. For the unrestricted 1-center problem we give an optimal
O(n) algorithm for both the discrete and continuous cases, improving the currently best
known bound of O(nlogn) of Tamir and Halman [10]. Their algorithm however is more
general since it applies for restricted I-center as well.

For the unrestricted 1-median problem, we propose an algorithm with time complexity
O(nlogn) and space complexity O(n) which uses a recursive decomposition of trees called
the spine decomposition [2]. We do not know if the restricted 1-median problem can be
solved in sub-quadratic time. A trivial algorithm that runs in O(n?) time is to compute the
cost of the restricted 1-median from all vertices in the tree.

Finally, we show that the restricted k-median problem is NP-complete even for star graphs
if the cost of opening facilities is non-uniform. We also give an algorithm with O(kn3)
time complexity and O(kn?) space complexity for the unrestricted k-median problem with
non-uniform opening facility costs for tree graphs. If k is constant, we conjecture that the
approach described in [2] for the classical k-median problem can be adapted for the CDFL
problem as well, potentially reducing the time complexity to O(n?log®n). We do not know
if a further reduction in complexity by undiscretizing parameter x is possible or not.

References

[1] Robert Benkoczi. Cardinality constrained factlity location problems in trees. PhD thesis,
School of Computing Science, Simon Fraser University, Burnaby, BC, Canada, May
2004.

[2] Robert Benkoczi and Binay Bhattacharya. A new template for solving p-median prob-
lems for trees in sub-quadratic time. In G.S. Brodal and S. Leonardi, editors, Proc. Fu-
ropean. Symp. of Alg., volume LNCS 3669, pages 271282, 2005.

[3] Robert Benkoczi, Binay Bhattacharya, Marek Chrobak, Lawrence Larmore, and Wo-
jeiech Rytter. TFaster algorithms for k-median problems in trees. In B. Rovan and
P. Vojtas, editors, Proc. 28th International Symposium on Mathematical Foundations of
Computer Science, volume LNCS 2747, pages 218-227, 2003.

[4] Oded Berman, Zvi Drezner, and George O. Wesolowsky. The collection depots location
problem on networks. Naval Research Logistics, 43(1):15-24, 2002.

[5] Oded Berman and Rongbing Huang. Minisum collection depots location problem with
multiple facilities on a network. Journal of the Operational Rescarch Society, 55:769-779,
2004.

[6] Zvi Drezner and George O. Wesolowsky. On the collection depots location problem.
European Journal of Operational Research, 130(3):510--518, 2001.

[7] Nimrod Megiddo. Linear time algorithins for linear programming in R® and related
problems. SIAM J. Comput., 12(4):759-776, 1983.



REFERENCES 19

[8] Arnon Rosenthal and José A. Pino. A generalized algorithm for centrality problems on
trees. Journal of the ACM, 36(2):349-361, 1989.

[9] Arie Tamir. An O(pn?) algorithm for the p-median and related problems on tree graphs.
Operations Research Letters, 19:59-64, 1996.

[10] Arie Tamir and Nir Halman. One-way and round-trip center location problems. Discrete
Optimization, 2:168-184, 2005.





