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The paper provides new conditions ensuring the optimality of a symmetric feasible point of
certain mathematical programs. It i1s shown that these conditions generalize and unify most of
the known results dealing with optimality of symmetric policies (e.g. [2.4.6.11}). The
generalization is based on certain ergodic properties of nonnegative matrices. An application
to a socio-economic model dealing with optimization of a welfare function is presented.
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1. Introduction

In recent operations research and economic literature we find several decision
and optimization models that possess certain symmetry properties. For example,
Samuelson [9] and Hadar and Russell [S] have proved that a risk averter,
(characterized by a concave utility function) would allocate his funds equally
among prospects having a symmetric joint distribution. Bessler and Veinott [2]
have studied symmetric networks. Kielson [6, 7] has discussed decision prob-
lems associated with random walk models. Berge [1] has applied results on
symmetry to quasi-convex programming and Greenberg and Pierskala [4] have
shown that certain symmetric nonlinear integer programs can be reduced to
corresponding extremal problems in just one variable.

The basic property shared by the above models (and others as well) is a set of
convexity and symmetry assumptions that ensure the optimality of a symmetric
policy, 1.e. one where all the decision vanables take on the same value.

The main purpose of this study is to generalize and then unify the known
assumptions guaranteeing the optimality of a “symmetric policy”. Our general-
ization 1s based on certain ergodic properties of nonnegative matrices.

We consider the mathematical program given by

max f(x); x € X,

where f is a real-valued function defined on X CR". Following Berge [I],
Greenberg and Pierskala [4], and Tamir [11] we recall several definitions. X is a
(cyclically) symmetric set if x € X implies Px € X for all (cyclic) permutation
matrices P. X is S-convex if x € X implies Sx € X for all doubly stochastic
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matrices S. Finally X 1s cyclically convex if x € X 1mplies that Sx € X for all
(doubly stochastic) matrices S which are convex combinations of cyclic per-
mutations.

Turning to the objective function f we say that f is symmetric (cyclically
symmetric) on a symmetric (cyclically symmetric) set X if f(Px)= f(x) for all
permutations P (for all cyclic permutations P). f is S-concave (cyclically
concave) on an S-convex (cyclically convex) set X if f(Sx)= f(x) for all doubly
stochastic matrices S (for all matrices S which are convex combinations of
cyclic permutations).

We note that S-concavity implies cyclic concavity, since a doubly stochastic
matrix can be represented as a convex combination of permutation matrices. It
is shown in [I,4] that S-convex sets contain a symmetric point, i.e. a point
x=(x;))ER", where x; =z for i =1,..., n. Furthermore, the set of points maxi-
mizing an S-concave function on an S-convex set X, is itself S-convex, and
hence contains a (maximum) symmetric point.

The above results are extended in [11] to the cyclic concave case. In particular
the existence of an optimal symmetric point is demonstrated.

Our purpose is to provide more general conditions on f and X, that will yield
the optimality of a symmetric point. A motivation for our results is given in the
last section where an application to a socio-economic welfare model is presen-
ted.

2. Ergodicity and symmetry

Let A be an n X n matrix and X C R". We say that X is A-closed if x € X implies
that the closure of {x, Ax, A’x,.. .} is in X. f defined on an A-closed set X is
A-majorizing if f(Ax)=f(x) for all x € X. We observe that the class of non-
negative A-majorizing functions defined on the same A-closed set is closed
under multiplication and addition, where these two operations are pointwise. As
an example we mention the quasiconcave symmetric functions, that are A-
majorizing for any doubly stochastic matrix A, i1.e. they are S-concave, (see [4]).
Thus, unlike the quasiconcavity property, which is not preserved under addition
of symmetric quasiconcave functions the S-majorization is maintained.

To present our main result we recall several definitions from the theory on
nonnegative matrices.

Suppose A is a square nonnegative matrix. If by permuting the rows and
columns of A in the same way, we obtain a matrix of the form

b
C D
where B is a square matrix, then A is said to be reducible. Otherwise it is called
irreducible. A is called aperiodic and primitive if A* is positive for some integer

k. Finally, A is substochastic if its row sums do not exceed 1, and it is strictly
substochastic if for at least one row the sum is less than 1.
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Theorem 1. Let A be an n X n substochastic matrix such that for some integer k,
the elements of A" are positive. Suppose that X CR" is A-closed and f, defined
on X, is an A-majorizing real function. If VY x & X, and ¥V converging sub-
sequence {u""Y € {x, Ax, A°x, .. Jwith lim, .. f(u'") < f(lim, .. u'") holds then forany
x € X, there exists a symmetric point y € X (possibly dependent on x) and
f(y)=f(x). Further, if A is strictly substochastic, then for any x € X, y is the
zero vector.

Proof. Consider first the stochastic case, 1.e. when all row sums are equal 1.

From Perron-Frobenius theory for nonnegative matrices it follows that A has
exactly one eigenvalue, A = 1, of unit modulus, and all other eigenvalues are
strictly less than 1 in modulus. Therefore, see [3,10], if i—>x, then A'>en
elementwise, where e is a column vector of 1's, and = is the (positive) row vector
of A corresponding to the eigenvalue A = |. (Furthermore, the rate of approach
to the above limit is geometric).

Using the A-closedness of X we obtain that foreach x € X, y =enx € X. y is
clearly a symmetric point having all its components equal to 7x. And since f is
A-majorizing and continuous by assumption:

fv)=f{1im A'x) = lim f(A%) = f(x).
For the strictly substochastic case, the corresponding Perron-Frobenius eigen-
value is less than 1, (see [3, p. 120]). Therefore if i > =, then A' converges
geometrically to the zero matrix. It then follows that f(0)= f(x) for all x € X.

Remark 1. In terms of Markov chains theory, the assumptions on the matrix A
in the stochastic case are equivalent to the ergodicity of the corresponding finite
chain, i.e. an irreducible aperiodic stochastic chain.

Remark 2. It is worth pointing out that the assumptions of Theorem 1 are indeed
weaker than S-concavity. While S-concavity implies A-majorization of every
doubly stochastic matrix, the Theorem requires only that the A-majorization
holds for some doubly stochastic matrix A with A* positive for some k. As an
example we establish (see [11]) the class of cyclically concave functions, i.e.
functions which are A-majorizing for any doubly stochastic matrix A which is a
convex combination of cyclic permutation matrices. (As pointed out in the
Introduction the S-concave functions constitute a proper subset of the above).

Remark 3. The result of Theorem 1 for the strictly substochastic case holds for
more general circumstances. Given an arbitrary real square matrix A, a neces-
sary and sufficient condition for the convergence of the sequence A’ to the zero
matrix is that the moduli of all the eigenvalues of A are less than 1, (see [8,
Theorem 11.1.1]). Applying the latter result together with Perron-Frobenius
theory for irreducible matrices [3, p. 120], we observe that for the strictly
substochastic case of Theorem 1 we can relax the property that A* is positive
for some k by irreducibility to obtain the convergence of {A'} to the zero matrix.
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(Simple two dimensional examples illustrate that positivity of A* cannot be
replaced by irreducibility in the stochastic case, while irreducibility cannot be
omitted in the strictly substochastic case).

Remark 4. The optimality of a symmetric point in the S-concave [1,4] and
cyclically concave [11] cases are implied by the above theorem when A is a
matrix with all the components equal to 1/n. (The only distinct eigenvalues of A
are 0 and 1, the latter being simple).

Theorem 1 also provides a generalization to the following set of conditions for
optimality of a symmetric vector, given by Keilson [6].

Theorem 2 (Keilson). Let f(x) be a symmetric real function defined on the
hyperplane H = {x | 2xi=1}. Let f be continuous and suppose that for each
xeH

(1)

X1+ X2 X1+ Xx2
f(xI,Xz.....xn)Sf< '2 S 7,x_x,....¥n>.

Then f(x)<f(l/n,..., 1/n) for all x € H.

This result 1s extended in [11] to the cyclically symmetric case. We now show
that Theorem 2 is implied by Theorem 1 when

RE T N 0]
0,0, 1,... ... .0
A= 0
0.0, 0,... ..., l
T N 0]

To show the positivity of A“ we use the property that for a stochastic irreducible
matrix A, A" is positive for some k if and only if the only eigenvalue with unit
modulus is 1, [(3, p. 120-124)].

A is clearly stochastic and irreducible since all states of the corresponding
markov chain intercommunicate. To see that 1 is the only eigenvalue with unit
modulus, we note that |[A — AI|=(—1)"""[3(A + A""')= A"], and hence the result
follows. To complete our proof we point out that (cyclic) symmetry together
with property (1) of Theorem 2 implies that the conditions of Theorem 1 are
satisfied for the above matrix A. Also (1/n,...,1/n) is the unique symmetric
point in H.

We conclude this section by observing that the ergodic requirement given in
Theorem 1 can be weakened to the following structure:

[A 0]
A"[AZI Al

where A is stochastic, A, and A, are irreducible matrices, A, is ergodic and
A, # 0. (Matrices of this structure are called regular in [10]). As shown in [3, p.
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125] a matrix A. fulfilling these properties satisfies

. k .
lim A" = eir, where m=(m,....7m0,....0)

ko

and
lim /41;:[7T1,....7Tm] (m<")
k—x Tls e e o s Tm
From the proof of Theorem 1. it follows that for each x = (xy,.. ... ) E X

there exist v = (37, mx)e. (certainly symmetric) and f(v)= f(x).

3. An application to a socio-economic model

To further motivate our results we describe the following model. Consider a
soclety, consisting of n individuals, which is interested in distributing its total
wealth, W, among its members in order to maximize its welfare function.
Denoting by x;, the wealth given to the ith member we assume that the welfare
function, f = f(x,...., x,), 1s indifferent as to the allocation of the wealth vector
(x1.....x,) among the n individuals, 1.e. f(xy, ..., x,) 1s fully symmetric in its
arguments. Suppose further that the structure of the society is such that if any p
individuals form a coalition and share their corresponding wealth vector then the
entire society gains in terms of welfare. (Note that p is a given integer,
2=p=n).

We are interested in finding conditions on the sharing mechanism of p-
coalitions that would ensure that maximum society welfare is achieved for a
policy distributing the same wealth to each member of the society. Using the
results of the previous section we will show that if each p-coalition has the same
linear mechanism for dividing i1ts wealth vector then an equal distribution of the
total wealth of the society 1s optimal, provided certain positivity and continuity
properties are met.

Specifically, it is assumed that if (x;,. ..., x;,) is the wealth given to an arbitrary
p-coalition, (i, ..., i), then after sharing among themselves the members hold
the wealth vector

(Vi o .. Vi) = B(xi.....x,). (3)

B is a positive, doubly stochastic p X p matrix.

The assumption that the society favors p-coalitions is now formulated as
follows.

For any permutation (iy,. ... ips ..., in) and wealth distribution (x;, ..., x;,
... x;,) sausfying x;, + - -+ x, =W

f('x‘ll“‘""\)‘v""'xin)Sf(yil7"".vi,wx.i/wi’ """ \"‘n) (4)

where (vi.....v,) Is given by (3).
Given an arbitrary distribution wealth vector (xi,...,x,) we combine the
symmetric property with property (4) to have
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f(xt, . oo Xpy oo X)) = f(V1y ooy Ypu Xpitts e ooy Xn)
= f(y2.. .., Yps Xp+1s - - o s Xny V1)

where (yi.....y,) are defined by (3). Using B, to denote the j-th row of B, we
define the n X n matrix A = (a;;) by

p | n-p

"B, -
: 0 p—1
B.p

0 I, | n—p

B, 0

I.-, is the identity of order n — p. It is clear that A is doubly stochastic and that
the set of wealth vectors (x;,..., x,) satisfying x;+---+x, = W is A-closed.
Furthermore the welfare function is A-majorizing. The next lemma proves that
A given by (5) is primitive.

Lemma 3. Let A = (a;) be a square matrix defined by (5) where B; (j=1,...,p)is
a positive vector. Then, k =2(n —p)+ 1 is the smallest power such that A" is a
positive matrix.

Proof. Since we are concerned only with sign properties of A* where A is a
nonnega.ive matrix, we may replace each positive entry of A* by 1. Thus it is

easily verified that
p

A(n~p)+l _

n-p
1 ---1--10
1 --- 1 ---1

Moreover, for any integer 1 <k <2(n —p)+ 1 the element (p, n) of A* is zero.
Noting that for k =2(n—p) the (p,n) element is the only zero entry, we
conclude that A" "' is a positive matrix; thus completing the proof.

To conclude the discussion we prove our main assertion, regarding the above
model.

Theorem 4. Let f(xy,...,xn) be the welfare function of the society when the n
individuals are distributed the wealth vector (xi,...,Xx:). Suppose that
f(xi, ..., Xn) is continuous and symmetric. If the society prefers p-coalitions in
the sense of (3)—(4) then the maximum welfare of the entire society is achieved
for a distribution where each member obtains the same wealth.
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Proof. Using Lemma 3 we observe that the assumptions of Theorem 1 are met.
Thus a symmetric distribution is optimal.

Extensions of the above model have been developed and will be reported
elsewhere. ‘
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