Facility Location Problems on Tree Graphs
with Different Speeds for Customers and
Servers: A Study on Covering Problems

Defined by Families of Subtrees

Arie Tamir!.

June 6, 2000

Abstract: In the classical p-center location problems, the objective is to
locate p servers (centers) minimizing the maximum distance or travel time
between customers and their respective servers. We consider a generalization
where in case of a call by a customer, the server and the customer start
moving towards each other, possibly at different speeds. The time elapses
till the customer meets the server is the response time. The objective is to
minimize the maximum response time over all customers. Concentrating on
tree networks, we study the related covering problems defined by collections
of neighborhood subtrees (disks). We present efficient algorithms to solve

these covering problems and the above generalized p-center model.

1 Introduction

In the classical p-center problem on a network there are customers located at
the nodes of the network, and the objective is to locate p servers (centers) in
order to minimize the maximum travel distance between the customers and
their respective nearest servers. This model is typically applicable to emer-
gency facilities like fire department teams and ambulances. If the nature of
the service is such that customers travel to the servers, and each customer

may move at a different speed, an appropriate objective is to minimize the

!Department of Statistics and Operations Research, School of Mathematical Sciences,
Tel-Aviv University, Tel-Aviv 69978, Israel. atamir@math.tau.ac.il

maximum travel time. Assuming constant speeds, the latter case reduces
to the classical weighted p-center problem, where distances are weighted by
the customer speeds. A symmetric model, where servers travel from their
home locations (possibly at different speeds), to the customers might be
appropriate for other practical situations. We have been motivated by an
application which unifies both models. Suppose that in an emergency situa-
tion a customer places a call for help. The customer has a vehicle that can
start traveling immediately, in any direction at a given speed w. There are
several available servers (emergency crews) located on the network, and they
may also have different speeds. The objective is to minimize the response
time, i.e., find a server that will instantenously start moving towards the cus-
tomer, minimizing the travel time elapses till the customer meets the server.
The problem is to find the location of p servers, minimizing the maximum
response time to the customers. We are unware of any previous studies of
this problem, where both customers and servers may move simultaneously at
different velocities. In this paper we discuss this generalized center location
problem, and study some of its variations, depending on the nature of the
set of points, where customers and servers are allowed to meet. We note
that since the classical unweighted p-center problem is NP-hard, so is the
generalized model. Here we focus on tree networks and study the properties

of the mathematical model. In particular, we present polynomial algorithms.

2 The Generalized p-center Problem

Let T'= (V, E) be an undirected tree network with node set V = {vy, ..., v}
and edge set E = {es,...,e,}. Each edge ¢;, 7 = 2,3,...,n, has a positive
length [;, and is assumed to be rectifiable. In particular, an edge e; is iden-

tified as an interval of length [; so that we can refer to its interior points.

We assume that 7' is embedded in the Euclidean plane. Let A(T') denote the

continuum set of points on the edges of 7. We view A(T) as a connected
and closed set which is the union of n — 1 intervals. (A pair of intervals may
intersect only at a common node.) Let P(v;,v;) denote the unique simple
path in A(T) connecting v; and v;. Suppose that the tree T' is rooted at
some distingnished node, say v;. For each node v;, j = 2,3, ...,n, let p(v;),
the parent of v;, be the node v € V| closest to v;, v # v; on P(vy,v;). vj is
a child of p(v;). e; is the edge connecting v; with its parent p(v;). A node
v; is a descendant of v; if v; is on P(v;,v1). A node of T is a leaf node if it is
incident to exactly one edge of T'. Such an edge is called a leaf edge.

We refer to interior points on an edge by their distances along the edge
from the two nodes of the edge. The edge lengths induce a distance function
on A(T). For any pair of points z,y € A(T), we let d(z,y) denote the length
of P(z,y), the unique simple path in A(T) connecting z and y. If z and y
are on the same edge, P(z,y) is called a subedge or a partial edge, and its
length is d(z,y). Generally, the path P(z,y) is also viewed as a collection
of edges and at most two subedges (partial edges). Also, for any pair of
subsets X, Y C A(T), and ¢ € A(T) we define d(z,Y) = d(Y,z) = Infimum
{d(z,y)ly € Y}, and d(X,Y) = d(Y, X) = Infimum {d(z,y)|z € X,y € Y}.
A(T) is a metric space with respect to the above distance function.

We now define the generalized center location model on the given tree.
Each node v; is identified as a customer with a travel velocity w;. Also, each
node v; is identified as a potential location point for a server with travel
velocity wy. If there is a call for service from customer v;, both the customer
and its designated server, say v;, will start moving towards each other until
they meet. The response time is the time elapses till the customer and
the server meet. In the p-center problem for this model, the objective is
to minimize the maximum response time with p servers. We consider two
versions. In the continuous version, the meeting point can be any point

of A(T), where in the discrete version a customer and a server can meet

only at a node. To formulate a mathematical framework we will need more
definitions.

A subset Y C A(T) is called a subtree if it is closed and connected.
Y is also viewed as a finite (connected) collection of partial edges (closed
subintervals), such that the intersection of any pair of distinct partial edges
is empty or is a point in V. We call a subtree discrete when all its (relative)
boundary points are nodes of 7. Note that a discrete subtree can also be
viewed as a subgraph of T.

Given a nonnegative real r, and a node v;, we let T'(v;,7) denote the
subtree consisting of all points in A(7') whose distance from v; is at most 7,
ie, T(vi,r) = {z € A(T)|d(vi,z) <r}. T(vs,r) is called the neighborhood or
disk of radius 7 centered at v;. Similarly, T'r(v;, r), the truncated neighborhood
or trumcated disk of radius » centered at v; is defined as the subgraph of T'
induced by the node set V(v;,r) = {v;|d(vi,v;) < r}. Tr(vi,7) is a subset
of T'(v;,7), and it is also viewed as a discrete subtree of A(T'). We also call
Tr(v;,r) a discrete disk of radius r centered at v;.

Let t be a positive real, denoting the response time for the customers.
Let p(t) be the minimum number of servers (nodes) needed to ensure a max-
imum response time ¢ for all customers (nodes). p(t) is clearly a monotone
nonincreasing function of ¢. ¢*, the optimal value for the maximum response
time that can be ensured with p servers is then the smallest value of ¢, such

that p(t) < p. Formally, for the continuous version of the generalized model,

p(t) is defined by

p(t) = {5’51&% V| 2 T(vg, twi) N (Uyyev{T (v, tw)}) #0,i=1,...,n}.

Similarly, for the discrete version of the generalized model, p(t) is defined by

p(t) = {g_rllé% (V| - Tr(vs, tws) N (Uy;ev{Tr(vj, twy)}) # 0,2 =1,...,n}.

For the continuous model, if v; is served by the server located at v;, the
response time for v; is d(v;,v;)/(w; + wj). Therefore, the value of t* for the

continuous generalized p-center problem is given by

“Z i i M, Ao v s)

We conclude that ¢* for the continuous model 1s an element in the set
Ry = {d(vi,v;)/(ws + w})]i,j = 1,..,n}. Similarly the value of t* for
the discrete generalized p-center problem is clearly an element in the set
Ry = {d(vi,ve) /wilt, k = 1,...,n} U {d(vk,v;)/wik,j = 1,...,n}. The struc-
ture of the set Ky enables us to use the search procedure in Megiddo et al.
(1981) to find t* in the discrete case by computing p(t) for O(log n) values of
the parameter ¢. Similarly, using the structure of the set R;, we can apply
the search in Megiddo and Tamir (1983) to find ¢* in the continuous case by
computing p(t) for O(log® n) values of the parameter t. Note that p(t) is the
solution value of a covering problem of disks by disks. In the following sec-
tions we show how to solve these covering problems, as well as their weighted
versions, efficiently for both the continuous and the discrete models. In the

last section we discuss some related models and generalizations.

3 The Covering Models

Suppose that each node v; € V is associated with two nonnegative reals r;
and s;. Consider the four collections of disks, S} = {T(v;,7;)[7 = 1,...,n},
Sy = {Tr(v;,r;)ls = 1,...,n}, Dt = {T(v;,s:)]e = 1,...,n}, and D} =
{Tr(vi,s:)|i = 1,...,n}.

In the next two sections we study weighted covering problems of one
collection of disks (truncated disks) by the other collection of disks (truncated
disks). Specifically, we assume that each node v; € V has a nonnegative
weight, a;. In the continuous disk covering problem the objective is to find

a subset of nodes (centers) V' of minimum total weight, such that the union

5

of the subcollection of disks {7'(v;,7;)|v; € V'} intersects each disk in Dj.
Similarly, in the discrete disk covering problem the objective is to find a
subset of nodes (centers) V' of minimum total weight, such that the union
of the subcollection of discrete disks {T'r(vj,7;)|v; € V'} intersects each
discrete disk in Dj;. Note that the problem of computing p(t), mentioned
above corresponds to the special case where s; = tw;, ¢ = 1,...,n, r; =
twj, j = 1,...,n, and a; = 1 for 7 = 1,...,n. For a pair v;, v;, we will
say that the disk T'(vj,7;) (T'r(vj,r;)) covers or pierces the disk T(v;,s;)
(Tr(vs, s;)) if the respective pair of disks intersect. Note that the discrete disk
Tr(v;,r;) intersects the discrete disk T'r(v;, s;) if and only if the continuous
disk T'(v;,7;) intersects the discrete disk Tr(v;, s;). Therefore, the discrete
covering problem is equivalent to the problem of finding a subset of nodes
(centers) V' of minimum total weight, such that the union of the subcollection
of disks {T'(v;,7;)|v; € V'} intersects each discrete disk in Dj.

Several special cases of the above covering problems have been considered
in the literature in the context of the p-center problem on a tree. Kariv and
Hakimi (1979) considered the case where r; =0, j = 1,...,n, i.e., each disk
T(vj,7;) shrinks to a single point. The problem reduces to covering disks
with points (nodes). For the unweighted case, (a; = 1, j = 1,...,n), they
presented a simple O(n) algorithm. Their algorithm is based on a “bottom-
up” dynamic programming approach, starting with the leaves of the tree,
and terminating at its root. The weighted version of this case was solved
in O(n?) time in Kolen (1983), (see also Kolen and Tamir (1990)). We will
show a simple transformation of the general continuous covering problem to
the above special case where r; =0, 3 = 1,...,n. We will then consider the

discrete case, and present an O(n?) algorithm for its solution.

3.1 Covering (Continuous) Disks with (Continuous)
Disks

The following reduction theorem indicates that the problem of covering disks
by disks can be reduced to a problem of covering disks by points (points
by disks). In particular, the problem of covering points by disks can be
transformed into an equivalent problem of covering disks by points. Also,
every incidence matrix of two families of disks on a tree, is also the incidence

matrix of a family of disks and a subset of nodes of some tree.

Theorem 3.1 Given the tree T = (V,E), V = {v1,...,v.}, and the two
families of disks {T(vj,r;)|7 = 1,...,n} and {T(v;,s;)|t = 1,...,n}, for each
1,7 = 1,...,n, define a;; to be 1 if the pair of disks T(vs,s;) and T(vj,7;)
intersect, and 0 otherwise. Let A = (a;;), be the respective incidence matriz.
There ezists a tree T' = (VUU,E'), U = {u1,...,un}, and a family of disks
{T'(vj,r5)l7 = 1,...,n}, in T', such that for each i,j = 1,...,n, a;; = 1 if
and only if u; is in T'(v;, 7). Also, there emists a tree T” = (VU U, E'),
U = {uy,...,un}, and a family of disks {T'(vi,s!)lt = 1,...,n}, in T”, such

that for each 1,7 =1,...,n, a;; = 1 if and only of u; is in T'(v;, s).

Proof:

We start by defining the tree T'. Define » = 1 + max{r;|j = 1,...,n} and
s = 1+ max{s;[i = 1,...,n}. T’ is obtained from T by augmenting the set
U to the node set of T, and connecting the pair (v;,u;), 2 = 1,...,n, by an
edge of length s — s;. For each j = 1,...,n, the disk T'(v;,7}) is defined by

its center v;, and its radius = = r; + 5.

Consider a node u;, and a disk 7'(vj,7;). Then, u; is contained in this

disk if and only if d'(u;,v;), the distance in 7' between u; and v; is at most

i, ie., d'(ui,v5) = d(vi,v;) + s — s; < rj = s + r;. The latter inequality is
equivalent to d(v;,v;) < s; +r;, which in turn holds if and only if the pair of

disks T'(v;, s;) and T'(v;,7;) intersect in T'.

7

The tree T” is defined in a similar way. The only difference between T"
and T is that in the latter the length of the edge connecting the pair (u;,v;),
j=1,..,n,is r —r;. For each 7 = 1,...,n, the disk T'(v;, s) is defined by its
center v;, and its radius s; = s; + 7. As above, it is easy to see that 7"(v;, s!)
contains u; if and only if the pair of disks T'(v;, s;) and T'(v;,7;) intersect in
T.

]

As a result of the above theorem, we conclude that the weighted cov-
ering problem of continuous disks by continuous disks can be solved, after
the transformation, in O(n?) time by the algorithm in Kolen (1983). The
unweighted case is solvable in O(n) by the algorithm in Kariv and Hakimi
(1979). In particular we have an O(nlog®n) algorithm to solve the continu-

ous generalized p-center problem on trees by the algorithm in Megiddo and

Tamir (1983).

4 Covering Discrete Disks with Discrete Disks

To solve the discrete covering problem we will use the results and machinery

developed in Kolen (1983), Tamir (1983), Hoffman et al., (1985), and Lubiw

’

(1987) on totally balanced and greedy matrices.

4.1 Totally Balanced and Greedy Matrices

Let A = (a;;) be an m x n, {0,1} matrix. A is balanced if it does not have a
square submatrix of odd size with exactly two nonzero entries in each column
and each row. A is totally balanced if it does not have a square submatrix
with nonidentical columns, and exactly two nonzero entries in each column
and each row. A is greedy if there are no row indices 7; < %, and column
indices j; < ja, such that a;, ; = a;j, = @i, 5 = 1 and a;, 5, = 0. Totally
balanced and greedy matrices have been studied extensively in the literature.

It was shown in Hoffman et al., (1985), and Lubiw (1987), that A is totally

8

balanced if and only if there are row and column permutations transforming
A into a greedy form. Efficient algorithms to test whether a matrix is totally
balanced, and convert such a matrix to greedy form appeared in the above
references. The most efficient scheme for permuting a totally balanced matrix
to greedy form is the O(mnlog(mn)) procedure of Paige and Tarjan (1987).

Weighted covering problems, defined by totally balanced matrices can be
solved efficiently, due to the integrality of the extreme points of the feasible
set. Moreover, if A is already in greedy form, this weighted covering problem,

min{i a;e;| iai,jmj >1,i=1,..,m;z > 0},
j=1 i=1
can be solved greedily in O(mn) time, Hoffman et al., (1985). Summarizing,
we conclude that any weighted covering problem defined by a totally balanced
matrix can be solved in O(mnlog(mn)) time.

Motivated by the above location problems, we focus here on totally bal-
anced matrices defined by collections of subtrees. For these classes we obtain
the greedy form in quadratic time, improving the above bound by a logarith-
mic factor. We avoid the use of the O(mnlog(mn)) algorithm of Paige and
Tarjan, and solve the weighted covering problem in O(mn) time.

Given the two collections of discrete disks, D; and S;, we define their
{0, 1} incidence matrix A = (a; ;) by the intersection relationship, i.e., a; ; =
1, if and only if Tr(v;, s;) intersects T'r(v;,7;). The incidence matrix of two
collections of (discrete) disks is known to be totally balanced, Tamir (1983)
and Lubiw (1987). We will show that such a matrix can be converted to
greedy form in O(n?) time. Combined with the algorithm of Hoffman et al.,
this will imply an O(n?) algorithm to solve the weighted covering problem
of discrete disks. This in turn, will lead to an O(n? log n) algorithm for solv-
ing the discrete generalized p-center problem on trees, by applying a binary
search on the set R, defined above. The conversion to greedy form is based

on the following property which characterizes totally balanced matrices.

Nestedness Property

Let A = (a;;) be an m X n, {0,1} matrix. Let A;, j = 1,...,n, denote
the j-th column of A. A has the nestedness property if there exists a row,
say 1/, such that for each pair of columns A ; and Ay, with a; ; = ayp = 1,
either A; < Ak, or A; > Ay. 1 is then called a simplicial row of A.

A totally balanced matrix is characterized by the property that each one
of its submatrices has the nestedness property. A totally balanced matrix A
has the nest ordering property with respect to its rows, if its first row, 1 =1,
is a simplicial row of A, and for each i = 2,...,m, row 2 of A is a simplicial
row of the submatrix A’ obtained from A by deleting rows 1,2,...,7 — 1 of
A. Efficient methods to identify a simplicial row of a totally balanced matrix
may lead to quadratic or even subquadratic algorithms to permute the rows
of the matrix to form a nest ordering. It is shown in Kolen and Tamir (1990)
that if we are already given a nest ordering, the transformation to greedy
form can be achieved in O(mn) time by using radix sort procedures. One

example is the incidence matrix of nodes (rows) vs. disks (columns) in a tree,

Kolen (1983).

Theorem 4.1 Let A be the incidence matriz of nodes (rows) vs. disks

(columns) in a tree. Let v, and v, satisfy
d(vp,vy) = max{d(vg,v:)|k,t = 1,...,n}.

Then the two rows of A corresponding to the (leaves) v, and v, are simplicial

Tows.

In this case the nest ordering of the nodes (rows) can be obtained in
O(nlogn) time, Kolen and Tamir (1990). (Such an ordering is induced by
the ordering of the distances of the nodes from any specified node.)

A second example is the incidence matrix of (continuous) disks vs. (con-
tinuous) disks. From the proof of Theorem 3.1, and the preceding result we

obtain the following theorem.

10

Theorem 4.2 Given the tree T = (V,E), V = {vy,...,v,}, and the two
families of disks {T(vj,r;)|7 = 1,...,n} and {T'(v;, s;)|i = 1,...,n}, for each
1,7 = 1,...,n, define a;; to be 1 if the pair of disks T (v;,s;) and T(v;,7;)
intersect, and 0 otherwise. Let A = (a;;), be the respective incidence matriz.

Let v, and vy satisfy
d(vp,vq) — (sp + 5¢) = max{d(ve,v:) — (sk + s}k, t =1, ..., n}.

Then the two rows corresponding to the disks T'(v,, sp) and T'(vy, 54) are sim-

plicral rows.

A nest ordering in this case can also be derived in O(nlogn) time as in
the previous case, due to the transformation in Theorem 3.1.

In the next section we prove a similar result for collections of discrete
disks, and in the following section we identify simplicial rows for Trubin

madtrices.

4.2 Nestedness Property for Collections of Discrete
Disks

For i = 1,...,n, let S; denote the discrete disk Tr(v;, s;). For j = 1,...,n, let

T; denote the discrete disk T'r(v;,7;). Let A = (a;;) be the n x n, {0,1}

matrix, corresponding to the collections of discrete disks 5;, ¢ = 1,...,n,

(rows), and T}, 7 = 1,...,n, (columns).

Theorem 4.3 Consider the collection of discrete disks {S;}, 1 = 1,...n

i) }

where S; 1s centered at v; and its radius is s;. Define
DT'" = max{d(S;, S;):,7 =1,...,n}.
Let (p, q), satisfy d(Sp, Sq) = DT', and
d(Vp,vg) — (55 + 59) = max{d(ve,vx) — (s¢ + se)lt, k= 1,...,n;d(S:, Sx) = DT'}.

Suppose that DT’ > 0. Then, the two rows of A corresponding to the

discrete disks S, and S, satisfy the nestedness property.

11

Proof:

Since DT is positive, the distance between S, and S, is positive, and it
is equal to d(v’,v"), where v’ is a leaf node of S,, and v” is a leaf node of S,.
Consider a pair of disks T; and T}, and suppose that both intersect S,.

Case 1

Assume first that T} intersects S, as well. We claim that in this case T}
intersects each disk S;, 2 = 1,...,n, and therefore the nestedness property is
satisfied. Equivalently, we prove that d(v;,S;) < rj,fori=1,...,n.

To prove this claim we first observe that 7; must contain, P(v/,v”), the
path connecting v’ and v”. Consider an arbitrary disk S;. If S; intersects
P(v',v”), then it also intersects T;. Hence, suppose that S; does not intersect
P(v',v”), and let u be the closest point to S; on P(v’,v”). From the maxi-
mality of the pair v',v” it follows that d(u,S;) < min{d(u, S,), d(u,S,)}. Let
w(j) be the closest point to v;, the center of T; in P(v’,v”). Assume without

loss of generality that w(j) is also on P(v’,u). Therefore,
d(vj, S;) < d(vj,u) + d(u, S;) < d(vj,w) + d(u, Sg) = d(vj,v”) < r;.

We conclude that in this case T} intersects S;, for each 2 =1, ..., n.

Case 11

To complete the proof it is sufficient to consider the case where neither T}
nor T intersect S,. Let u(j)(u(k)), be the closest point in T;(T}) to v”. Note
that u(j) and u(k) are not necessarily nodes of the tree. Assume without
loss of generality that d(u(7),v”) < d(u(k),v”).

Case II(a): u(j) and u(k) are on P(v',v").

We show that if T intersects a discrete disk S;, then so does T;. Let
u be the closest point to S; on P(v',v”). If w is in S;, then clearly u is on
P(v',u(k)), which belongs to T;. Thus, suppose that u is not in S;. From the
maximality of the pair of disks S, and S, it follows that d(u, S;) < d(u, Sp) =
d(u,v').

12

Let w(j)(w(k)), be the closest point to v;(vg) on P(v',v”).

Suppose first, that w(j) is on P(u,v”). Then,
d(’l)j, Sl) < d(vj,u)+d(u, Sl) < d(vj,u)+d(u, Sp) = d(’l)j, Sp) = d(’l)j,’l)’) < r;.

We conclude that 7} intersects S5;.
Assume that u is on P(w(j),v”).
If v = w(k), then d(u, S;) < d(u,S,) < d(w,u(k)) < d(u,u(j)). Therefore

d(vj, 5;) < d(vj,) +d(u, 5i) < d(v;,u) + d(u, u(5)) = d(vj, u(j)) <3,

and T} intersects S;.
If u # w(k), consider two subcases:

When w(j) is on P(w(k),v”) we have
d(vg, w(5))+d(w(s), 5:) = d(v, Si) < d(ve, u(k)) < d(vg, w(5))+d(w(5), u(k)).
Therefore, d(w(7), S;) < d(w(j),u(k)). We conclude that

d(vj, 5;) < d(vj,w(7)) + d(w(5), 5i) < d(vj, w(7)) + d(w(s), u(k))

= d(vj,u(k)) < d(vj,u(g)) <rj,

and T} intersects S;.

When w(k) is on P(w(j),v”), (and v # w(k)), we have

d(v;, 5;) < d(vs, w(k)) + d(w(k), Si) < d(vj, w(k)) + d(w(k), u(k))

= d(vj,u(k)) < d(v;,ulj)) < s,

and 7} intersects S;.

Case II(b): u(j) is on P(v',v”), but u(k) is not on P(v',v”).

Suppose that T} intersects S;. Since u(k) is not on P(v’,v"), it follows that
u, the closest point to S; on P(v’,v”) is v = v'. Moreover, v’ must be in .5;,
since otherwise, the distance between S; and S, would exceed d(v’,v”) = DT".

The path P(v’,u(7)) is in T}, and therefore T} intersects S;.

13

Case II(c): u(j) and u(k) are not on P(v',v").

As in the previous case, we must have that v’ is in S;. Since u(k) and
u(7) are not on P(v',v”), it follows that u(k)(u(j)) is the closest point to v’
in Ti(T};). Define u'(k)(w'(j)) to be the closest node to v’ in Ti(7};). Since we
do not assume here that d(u(j),v”) < d(u(k),v”), we may suppose without
loss of generality that d(u'(5),v') < d(u'(k),v").

Suppose that T} intersects some discrete disk S;. We will prove that T}
intersects S;. As in the previous case, we must have that »' is in S;. In
particular, since v’ is in S;, we conclude that v'(k) is also in S;. If ©/(5) is
on P(u'(k),v"), then v/(5) is in S;, and 7} intersects S;. Suppose that u'(j)
is not on P(u'(k),v'), and let u’ be the closest point to v'(7) on P(u'(k),v’).
d(w (j),07) < d{a(k), ") implies d(a(7), o) < d(u!(K),).

Let 7' be the minimal subtree containing {v’,u'(k),«'(7)}, and let w(z)
be the closest point in 7" to v; the center of S;. Since v’ and u'(k) are in S;,
and d(u'(j),u") < d(u'(k),u’'), we conclude that if w(z) is not on P(u'(k),u’),
u'(7) is in S;, and therefore T} intersects S;.

Suppose that w(z) is on P(u'(k), ') and w'(j) is not in S;. Then, since v’
is in S;, we must have d(v',u') < d(v'(j),).

From the above we have
d(v',u') < d(u'(5),v') < d(u'(k),u).

Let w(p) be the closest point in 7’ to v,, the center of S,. From the fact
that «'(7) and w'(k) are not on P(v,v”), it follows that both nodes are in 5.
Thus, 7" is in Sp. It is easy to check that any location of w(p) in 7" would
imply that

sp — d(vp,v') > 5; — d(v,v").

In particular, it follows that v’ is also the closest node of S; to v”, and there-

fore d(S;, Sy) = d(v',v”) = DT'. However, from the above, we contradict the

14

maximality of the pair p, g,

d(vi,vg) = (si +54) = d(vi,v") +d(v',v4) — (si + 59)
> d(vp,v') + d(v',v9) — (sp + 54)

= d(vp,vg) — (sp + 5q)-

Remark 4.4 From the above proof it follows that the result of the above

theorem holds for any pair (p, q), satisfying d(S,, S,) = DT', and

d(vp,vq) — (8p + 54) = max{d(vi,vq) — (st + 8g)lt = 1,...,n;d(Ss, Sy) = DT', S: 0 S, # 0},

d(vp,vq) — (8p + 84) = max{d(vp,v:) — (sp + s¢)|t = 1,...,n;d(Sp, St) = DT', S, N S; # 0}.

The next example illustrates that for discrete disks it is not sufficient to select
an arbitrary pair maximizing the distance between all pairs of discrete disks

to ensure the nestedness property.

Example 4.5 Consider the tree with four nodes, and E = {{v1,v2), (v1,v3), (v1,v4)}.
The length of (v1,v4) s 2, while the other two edges have length 1. For

1 =1,...,4, S; is centered at v;. The radius of Sy is 0, and the radii of the

other discrete disks are 1. The mazimum distance between pairs of discrete

disks is 2, and d(S4,S1) = d(S4,S2) = d(S4,53) = 2. Nevertheless, the
discrete disk S; does not satisfy the nestedness property. (Consider the two

disks Tp = {va} and Tz = {v3}.)

Theorem 4.6 Consider the collection of discrete disks {S;}, i = 1,...,n,

where S; is centered at v; and its radius is s;. Define
DT' = max{d(S;, S;)|5,7 = 1, ...,n}.

Suppose that DT' = 0. Then there exists a node u, contained in each disk
Si,t=1,...,n. Let S, be a disk such that

sp — d(vp,u) = min{s; — d(v;,u)|lt = 1,...,n}.

15

Then, S, satisfies the nestedness property.

Proof:

When DT’ = 0, each pair of disks have a common point. From the Helly
property on trees (see Kolen and Tamir (1990)), all disks share a common
node, say u. Let 7”7 be the tree obtained from the given tree T', by aug-
menting a node, say v,,1, and connecting it to u with an edge of length
s = 1+ max{s;]i = 1,...,n}. Define a new disk Sy, by its center, v,4,, and
sn+1 = 0. Applying the previous theorem to 77, and the respective collection
of disks, we conclude that the pair of disks, S,+1 and Sp, defined above have
the nestedness property with respect to T”. In particular, S, satisfies the

property with respect to 7.

4.3 Converting an Incidence Matrix of Collections of
Discrete Disks to Greedy Form

In this section we use the above results to obtain an O(n?) algorithm for
transforming an incidence matrix of two collections of discrete disks into
greedy form. As mentioned earlier, it is sufficient to find in O(n?) time a
permutation of the rows of this incidence matrix that yields a nest ordering.

Using the notation in Theorem 4.3, for each 7,5 = 1,...,n, define d; ; =
d(Si, S;). Let D be the square matrix with elements (d; ;), 7,7 = 1,...,n. For
each j = 1,...,n, let L(j) be the list obtained from the set {d; ;},i=1,...,n,
by sorting the elements from largest to smallest, with the provision, that if
d;, ;j = di, ;, and d(v;,,v;) — (85, +85) < d(viy,v;) — (i, +55), then the element
d;, ; precedes the element d;, ;.

The incidence matrix of the two collections of discrete disks can clearly
be computed in O(n?) time from the lists {L(5)}, 7 = 1,...,n. Moreover,
Theorem 4.3 implies that the nest ordering of the rows can easily be de-

rived from these lists in O(n?) time. For example, to obtain the first row

16

in the nest ordering, we look at the (multi) set K consisting of the follow-
ing n elements; the first element of L(1), the first element of L(2), etc. Let
K' ={d; ;,...,di. i} be the (multi) subset of K consisting of all the largest

elements in K, where
d(”h)”jl) - (Sil + Sjl) = ma’x{d(viuvjt) - (Sit + Sjt)}t =1, >m}

Then d;, ;,, defines the discrete disk S; as the one corresponding to the first
row of the nest ordering. To obtain the second row, omit S, , 1.e., the list
L(71), and from each list L(k), k # j;, delete the first element if it corresponds
to a distance to a disk that has already been omitted. Proceeding in this
way, after O(n?) time, we reach the stage where all distances between the
remaining discrete disks are equal to zero. We now apply Theorem 4.6. Since
we know that all remaining disks share a common node, we can apply the
linear time algorithm in Kariv and Hakimi (1979) to identify such a node, say
vy, If we let {S;}, 7 € J denote the subset of the remaining disks, then from
Theorem 4.6 we conclude that the ordering of the elements {d(v;,v:) —s;|7 €
J} induces the nest ordering of the remaining disks. Therefore we conclude
that the total time to obtain the nest ordering of the rows of the n x n
incidence matrix from the lists {L(5)}, 7 = 1, ..., n, is indeed O(n?).

We will now show how to compute all the lists {L(j)}, 7 = 1,...,n, in
O(n?) total time.

4.3.1 Computing the lists {L(j)}

The process is inductive on the size of the given tree. We use centroid
decomposition as in Megiddo et al., (1981). In O(n) time we find a centroid
node, say vg, of the given tree T'. vy decomposes the tree T into two subtrees
T! = (V' E') and T? = (V2% E?), such that V! N V? = {v;}, and |V <
(2n 4+ 1)/3, t = 1,2. Suppose, inductively, that for each v; € V! (v; € V?),
the list L'(j) (L*(7)) of distances from S;, the discrete disk centered at v,

to all other disks centered at V' (V2) has already been computed.

17

For each disk Sj, let vy(;) denote the closest node to the centroid v in

S;. Define
Ve = {ve € V2 — {vi}|owe € V2 — {w}},
VP =V? =1y — {u},
Vi ={ve € V' — {wp}loey € V' — {we}},
Vy =V =V —{u}

The effort to compute the nodes v(;), for j = 1,...,n is clearly O(n?).

We now describe how to construct all the lists L(j), v; € V! in O(n?)
total time. (A similar process can then be applied to construct the lists L(j),
v; €V -VL)

In O(nlogn) time compute, and sort the distances {d(vk, veq))|ve € Vi}.
(Ties are partially resolved according to the ordering induced by the num-
bers {d(v¢,vr) — s¢}, as required by Theorem 4.3.) Note that d(vi,vi)) =
d(vk, S¢). Let L* denote the sorted list. Next, in O(nlogn) time compute
and sort the numbers {d(v¢, vk) — sijve € V2}. Let L' denote the sorted list.

Case I: Computing the list L(k).

In this case the list L(k) is attained by merging the lists L'(k) and L*(k).

Case II: Computing the lists L(j) for all v; € V.

For eachv; € V}' we have s; < d(vg,v;). Let L*() denote the list obtained
from L* by adding the term d(vg,vk(;)) to each element in L*. Traverse the
path from vy to wg(;), following the ordering induced by L', and compute the
(sorted) list L**(j) of distances {d(S;, St) = d(vk(j), St)|ve € V{?}. Note that
at this point the set of distances {d(S;, S;)|¢ = 1, ...,n} is partitioned between
the three lists L'(j), L*(j), and L**(j). Merging these three sets yields the
list L(j). The time needed to compute L(j), (when L'(j) is already given),
is O(n).

Case III: Computing the lists L(j) for all v; € V.

18

For each v; € V;' we have s; > d(vi,v;). Thus, d(S5;,S:) = 0, for each
vy € V2. Let L**(j) be the list obtained from the set {d(S;, Si)|v: € V;2},
by ordering according to L'. Let L*(j) be the sorted list of the elements
{d(S;, S¢)|ve € V2}. (Note that unlike Case II, the ordering of L*(j) is not
necessarily idependent of j.) The list L(j) is obtained by merging the three
lists, L*(j), L**(j) and L*(j) in O(n) time.

To show that the total time in Case III is also O(n?), we will now
construct all the lists L*(j), v; € V3! in O(n?) time. First we note that for
each v; € V3, and v, € V2, d(5;,5:) = d(Sf,vk(t)), where S;-“ is the discrete
disk centered at v; of radius s; = s; — d(vg,v;). Therefore, constructing the
lists L*(j), v; € V3! reduces to the following problem:

Problem 1

Given the subtree 72 = (V?, E?), with |V?| = n, and a set of m discrete
disks S7,..., S/, all centered at some distinguished node v, € V?, of radii
P1, ..., Tm, Tespectively, find in O(n? + m) total time for each discrete disk 57,
the sorted list of distances {d(S!,v:)|v; € V?}. (It is assumed that r; <y <
. < Pm.) Since we deal with discrete disks, it is sufficient to deal with the
case where each of the given radii is of the form d(vg,v;), where v; € V2.

We solve Problem 1 by applying centroid decomposition on 7'2. To
facilitate the discussion, for each v; € V2, let L; be the sorted list of distances
of the discrete disk of radius 7; = d(vg, v;), centered at vy, to all nodes v, € V2.
Let v, be a centroid decomposing the tree T2 into two subtrees T?%(1) =
(V2(1), E*(1)) and T?(2) = (V?(2), E%(2)), such that V2(1) N V*(2) = {v,},
and |V2(u)| < (2n 4+ 1)/3, v = 1,2. Suppose without loss of generality that
vg € V2(1). Let L;(1) be the sorted list of distances of the discrete disk S}
of radius 7; = d(vk,v;), centered at vg, to all nodes v; € V?(1). Let L;(2) be
the respective sorted list of distances from S! to the rest of the nodes in V2.

First, inductively, we compute all the lists {L;(1)}. Next we compute the
list L;(2) for each index % such that d(vg,v;) < d(vg,v,). Let L* be the list of

19

sorted distances obtained from the set {d(v,,v:)|v: ¢ V?(1)}. L* is computed
in O(nlogn) time. Now, for each disk S} with d(vk,v;) < d(vg,vy), the list
L;(2) is obtained from L* by adding the constant d(S;,v,) to each element
in L*. To obtain L;, we then merge the lists L;(1) and L;(2) in linear time.

Let I be the index set of all disks S; such that d(vk,v;) > d(vk,v,). To
compute the lists L;(2), 7 € I, we now inductively consider the subproblem
of computing the distances to the nodes in V?(2) from the set of discrete
disks, all centered at v, of radii {d(v;,vk) — d(vk, v,)|s € I}. Again, for each
i € I, the list L; is obtained by merging the lists L;(1), and L;(2).

To bound the total effort to solve Problem 1, denote by K(n) the total

effort needed to construct all the lists L;, for a tree 7 with n nodes . Then,
K(n) < en®+ K(ny) + K(n5),

where ¢ is constant, n} + ny, = n+ 1, |[V3(1)] = n} < (2n + 1)/3, and
V2(2)| = ny < (2n + 1)/3. The above relation implies that K(n) = O(n?).

We summarize Case III, and note that the total time to construct all
the lists L(7), v; € V3! is O(n?).

So far we have shown how to construct all the lists L(5), j = 1, ..., n, from
the lists L'(j), L2(3), 7 = 1, ...,n, in O(n?) time. To calculate the total effort
(including the time to compute the lists L'(j), L*(j), s = 1,...,n), involved
in the above inductive process, let n; = |V!| and ny = |V?|. Denote by C'(n)
the total effort needed to construct all the lists L(j), for a tree 7' with n
nodes {v1,...,vn}. Then,

C(n) < en® + C(n1) + C(na),

where ¢ is constant, n; +ny =n+1,n; < (2n 4+ 1)/3, and ny, < (2n +1)/3.
The above relation implies that C'(n) = O(n?).
We can now conclude that the total time needed to find a nest ordering

of the rows of the matrix of two collections of discrete disks is quadratic.

20

Following Kolen and Tamir (1990), the total time to convert such a matrix
to greedy form is therefore O(n?). From Hoffman et al., (1985) it follows
that the weighted covering problem defined by such a matrix is also solvable

in O(n?) time.

Remark 4.7 In Megiddo et al. (1981) the centroid decomposition approach
is used to generate in O(nlog®n) time, an implicit representation of the set
{d(vi,v;)|i,7 = 1,...,n}. This representation allows efficient (subquadratic)
selection in the set. We conjecture that the above centroid decomposition
process to generate the lists {L(j)} can be sped up to yield a similar repre-
sentation of the distances {d(S;, S;)|i,7 = 1,...,n} in O(nlog®n) time. This

may lead to a subquadratic algorithm for finding the nest ordering.

4.4 Path Graphs

The above discussion simplifies significantly when the tree is a path. In this
case each truncated disk is a subpath. A truncated disk can be represented
as a continuous disk. For example, if P(vg,v:) is a path, we can view it as
a continuous disk of radius » = d(vg,v:)/2, centered at the midpoint of the
path. With this observation we can now apply the transformation in Theorem
3.1 to represent the incidence matrix of two collections of paths on a path
graph as the incidence matrix of disks (rows) vs. nodes (columns) in a simple
tree obtained from the path by extending additional edges from some points
of the underlying path graph. Specifically, the related unweighted covering
problem can be solved in linear time on this tree by the algorithm of Kariv
and Hakimi (1979). The weighted covering problem is solved in O(nlogn)
time by the algorithm in Bertossi and Gori (1988). If the endpoints of the
intervals are already sorted, then the weighted covering problem can be solved
in O(n) time by the algorithm in Chang (1998). Due to the structure of the
sets R; and K, we can solve both the discrete and the continuous generalized

p-center problems in O(nlogn) time.

21

4.5 Trubin Matrices

In this section we consider another class of totally balanced matrices defined
by a collection of subtrees, for which the nest ordering, and therefore the
greedy form, can be obtained in O(n?) time. Let T = (V, E) be a tree with

= {v1,...,v,} and E = {es,...,e,}. Following Trubin (1983), for each
7 = 1,...,n, define the set of subtrees T*(j,k), k = 1, ..., n, recursively by:

T*(j,1) consists of the single node v; only.

For k = 2,...,n, T*(j,k) is obtained from T*(j,k — 1) by augmenting
the unique edge (and its two nodes), which has the smallest index amongst
all edges that are incident to T*(j,k — 1), i.e., have exactly one node in
T*(5,k —1). v; is called the root of T*(j, k). We note that for k = 2,...,n,
T*(j,k) contains T*(j,k — 1), i.e., the latter is a subtree of the former.

Consider the Trubin family of subtrees {T*(j,k)|j, k =1, ...,n}. For each
node v;, and subtree T*(7, k), define a; ;) to be equal to 1 if v; is in T*(7, k)
and 0 otherwise. Let A = (a; (jx)) be the respective incidence matrix with n
rows and n? columns. It follows from the discussion in Trubin (1983) that A
is totally balanced. We call such a matrix a Trubin matriz. We will present
a simple proof of this result by identifying explicitly a pair of leaf nodes of
T, (rows of A), each one of them possessing the nestedness property with
respect to the above family of subtrees. This proof will also lead to an O(n?)
algorithm to find a nest ordering of the rows of a Trubin matrix.

We define these leaf nodes inductively. First, for each subtree T* with
at least two nodes, define the edge of T with the largest index to be the
heavy edge of T*. If T consists of a single node declare it to be simplicial. If
T consists of a single edge declare both of its nodes to be simplicial nodes.
Suppose that T = (V, E) has n > 2 nodes, and £ = {e;,...,en}. Ife, =
(vi,v;), let 7" and T” be the two subtrees obtained by cutting e,, where v; is

in 7', v; is in T”, and T’ has at least two nodes. e, is the the heavy edge of

22

T. Let ¢’ be the heavy edge of T". (¢’ is the edge of T" with the largest index.)
Then it is easy to see that there is one simplicial node v’ of 7', such that ¢’
is on the unique simple path in 7" connecting v; with v’. If T” has a single
node, v;, then declare v’ and v; to be the pair of simplicial nodes associated
with 7. Otherwise, let €” be the heavy edge of 7”. Then there is a simplicial
node v” of T”, such that e” is on the unique simple path connecting v»” with

v;. Declare v’ and v” to be a pair of simplicial nodes of T'.

Theorem 4.8 Let T = (V, E) be a tree, and let A be the respective Trubin
matriz. Let vy, vy, be a pair of simplicial (leaf) nodes of T, defined above.

Then the rows of A corresponding to vy, v, are simplicial.

Proof: Consider a simplicial leaf node v,. Suppose that e, = (v;,v;), where
v; i1s on the path connecting v; with v,. From the inductive definition of
the simplicial nodes it follows that there is a sequence of edges e;(1), ..., €j()

?

7(t) = mn, on the path connecting v; with v,, with the following properties:

(1) 3(1) < 5(2)... < 4(2).

(2) vp is a leaf of ej().

(3) For each m = 1,...,¢, let T}, be the connected component of 7', which
contains exactly one node of ej(,) and one node of €j(m11), and is obtained
by cutting the edges e;jm) and €jm41). (For convenience, ej(41) is defined as
the other simplicial node of T, v,.) If e; is an edge of T}y, then ¢ < j(m).

To prove the nestedness property consider a pair of subtrees T*(j;, k1)
and T*(j3, k2) in the Trubin family defined above, and assume that both
contain the simplicial node v,. Suppose without loss of generality that v
(v;,), the root of T*(j1, k1) (T*(J2, k2)) is in Trm; (Tomy), with m; < m,.

From the definition of the family, and the above properties, it now follows
that T*(j1, k1) contains 77 U... U Ty, and T*(ja, k2) contains T3 U...UTy,,. If
T*(j1, k1) does not intersect e,,,;1, then clearly it is contained in T™*(ja, k2).

Otherwise, both T*(j1, k1) and T*(js, k2), coincide with two subtrees in the

23

family that are rooted at the same node, i.e., a node of e,,,.;. Hence, one of

these subtrees must contain the other one. This completes the proof. [

Remark 4.9 Note that a leaf edge of mazimum index does not necessarily
correspond to a simplicial node, as illustrated by the example of the tree unth
siz nodes and ey = (v1,v3),e3 = (Va,vs5), ea = (v3,v6), €5 = (v3,v4), and eg =
(va,v3). Also, a leaf edge of minimum index does not necessarily correspond
to a simplical node, as illustrated by the ezample of the tree with four nodes

and e; = (v1,v3),e3 = (v1,v3), and es = (v, v4).

The above theorem can be used to find a permutation leading to the nest
ordering of the nodes (rows) of a Trubin matrix in O(n?) time. It is sufficient
to show that the largest indexed edge e, and a pair of simplicial nodes, v', v”,
of a given tree T', with e, on P(v’,v"), can be found in O(n) time. We apply
a result in Chazelle (1987), that after O(n) preprocessing time, for any pair
of nodes v, v¢, and an edge e;, it takes constant time to determine whether
e; is on P(vg,v:). From the definition of the pair of simplicial nodes, given
above, Using Chazelle (1987), it now follows that v’,»” can be obtained from
the respective pairs of the subtrees 7’ and 77 in constant time. Argueing

inductively we conclude that v’ and v” can be found in O(n) time.

5 Concluding Remarks

In the above generalized p-center problems it is implicitly assumed that the
cost of establishing a center (server) is fixed and independent of its location.
We can further extend this model and include setup costs which depend on
the location. Specifically, suppose that the cost of establishing a center at
node v;, 7 = 1,...,n, is a;. In the generalized budgeted center problem there
is a total budget of B for setting up centers at the nodes of the tree, and
the objective is to minimize the maximum response time, without violating

the budget constraint. This model can be solved efficiently by the approach

24

used above for the p-center version. The only difference is that for the bud-
geted model, we need to solve weighted covering problems. From the above
we conclude that the complexity of solving the generalized budgeted center
problems is O(n?logn).

In the above models customers and servers are allowed to meet either
at any point of the network (the continuous model), or at any node (the
discrete model). We may consider a third variant, where a customer v; and
a server located at v; can meet either at v; or at v;, but nowhere else. In
other words, a customer v; can be served only at its own location, or at any
node where a server is located. (In the latter case the service will definitely
be provided at the location of the closest server to v;.) We call this version
of the model, the binary p-center problem. It should be noted that even the
case of a path graph is not known to be efficiently solvable. The incidence
matrices defining the covering problems are not necessarily totally balanced.
For a given response time ¢, the elements of the incidence matrix A = (a; ;)

are defined by a; ; = 1 if and only if d(v;,v;) < t max{w;, w;}.

Example 5.1 Consider the following set of nodes (points on the real line):
vy = 0,v3 = 2,vu3 = 5,us = 6,v5 = 7, and ve = 12. Suppose that w; = w;,
1=1,...,6, and w; = 6,wy = 0,wz = 5,wy = 0,ws = 5, and wg = 6. For
t = 1, the submatriz defined by the rows {1,2,6} and the columns {3,4,5},
satisfy a13 = a14 = 1, a15 = 0; az3 = 1, a4 = 0, a5 = 1; and ag3 =
0, aga = aes = 1. This submatriz is neither totally balanced nor totally

unimodular.

The three versions of the generalized p-center problem, the continuous,
the discrete and the binary versions, are all NP-hard when the underlying
graph is general, and not necessarily a tree. In a separate paper we will
discuss approximations algorithms for the three versions defined on general

undirected graphs.

25

References

1]

(6]

7]

8]

A.A. Bertossi and A. Gori, “Total domination and irredundance
in weighted interval graphs,” SIAM J. on Discrete Mathematics 1,
(1988), 317-327.

M. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest, and R.E. Tarjan,
“Time bounds for selection,” J. Compute. System Science 7, (1972),
448-461.

K.S. Booth and J.H. Johnson, “Dominating sets in chordal graphs,”
SIAM J. on Computing 11, (1982), 191-199.

M.W. Broin and T.J. Lowe, “A dynamic programming algorithm
for covering problems with (greedy) totally balanced constraint ma-
trices,” SIAM J. on Algebraic and Discrete Methods 7, (1986), 348-
357.

M.-S. Chang, “Efficient algorithms for the domination problems on
interval and circular-arc graphs,” SIAM Journal on Computing 27,
(1998), 1671-1694.

B. Chazelle, “Computing on a free tree via complexity-preserving

mappings,” Algorithmica 2, (1987), 337-361.

S.W. Cheng, M. Kaminski and S. Zaks, “Minimum dominating sets
of intervals on lines,” Algorithmica 20, (1998), 294-308.

G.N. Frederickson and D.B. Johnson, “Finding k-th paths and p-
centers by generating and searching good data structures,” J. of

Algorithms 4, (1983), 61-80.

26

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

A.J. Hoffman, A. Kolen and M. Sakarovitch, “Totally balanced and
greedy matrices,” SIAM J. on Algebraic and Discrete Methods 6,
(1985), 721-730.

O. Kariv and S.L. Hakimi, “An algorithmic approach to network
location problems: Part I. The p-centers,” SIAM J. on Applied
Mathematics 37, (1979), 513-538.

A. Kolen, “Solving covering problems and the uncapacitated plant

location problem on trees,” Furopean J. of Operational Research

12, (1983), 266-278.

A. Kolen and A. Tamir, “Covering problems,” in P.B. Mirchandani
and R.L. Francis, eds. Discrete Location Theory, Wiley, New York,
(1990).

A. Lubiw, “Doubly lexical ordering of matrices,” SIAM J. on Com-
puting 16, (1987), 854-879.

N. Megiddo and A. Tamir, “New results on the complexity of p-
center problems,” SIAM J. on Computing 12, (1983), 751-758.

N. Megiddo, A. Tamir, E. Zemel and R. Chandrasekaran, “An
O(nlog®n) algorithm for the k-th longest path in a tree with appli-
cations to location problems,” SIAM J. on Computing 10, (1981),
328-337.

R. Paige and R.E. Tarjan, “Three partition refinement algorithms,”
SIAM J. on Computing 16, (1987), 973-989.

A. Tamir “A class of balanced matrices arising from location prob-
lems,” SIAM J. on Algebraic and Discrete Methods 4, (1983), 363-
370.

27

[18] A. Tamir, “Totally balanced and totally unimodular matrices de-
fined by center location problems,” Discrete Applied Mathematics
16, (1987), 245-263.

[19] V.A. Trubin, “Two classes of location problems on tree networks,”

Cybernetics 19, (1983), 539-544.

28

