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In two recent papers, similar multifacility problems on tree networks were studied
where facilities are subtrees of the tree. The complexity of the problems was left as
open. In this paper, we formulate a general model that includes the above-cited prob-
lems as special cases and give a polynomial algorithm to solve the general model.

1. INTRODUCTION

Most of the literature dealing with optimally locating facilities on networks
treat the facilities as points of the network. There has been significant interest
in such problems due to their theoretical properties as well as to their practical
applications in both the private and public sectors. Survey articles by Brandeau
and Chiu [1], Dearing [10], Francis et al. [12], Halpern and Maimon [15],
Krarup and Pruzan [27], McGinnis [29], and Tansel et al. [37] give an indication
of the scope and nature of such problems. In addition, location problems on
networks are discussed in texts by Christofides [2], Handler and Mirchandani
[16], Larson and Odoni [28], Minieka [31], and Mirchandani and Francis [32].

Recently, there has been interest in extending the notion of a facility as a
point on the network to that of a path or tree-shaped subgraph of the network.
Most of this work has dealt with the case of locating a single such facility.
Generally, the facility provides some form of service to demand points located
at vertices of the network. The cost of service to a vertex is taken to be a
function of the shortest-path distance on the network from the vertex to the
closest point of the facility. In addition, it is generally assumed that the cost of
the facility is some increasing function (often linear) of the total length of the
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facility. Examples of various versions of this problem can be found in Morgan
and Slater [33], Slater [35], Minieka [30], Kim et al. [20-22], Kincaid et al. [23],
and Richey [34]. These papers approach the solution to the facility (a path or
subtree) location problem by exploiting network structure and thus assume that
the network has a special structure e.g., it is a tree or a series-parallel graph, in
order to obtain polynomial time algorithms.

In contrast, the papers by Hutson and ReVelle [17, 18], Current et al. [6-9],
Current [5], and Church and Current [3] approach the facility location problem
via integer programming models.

In this paper, we consider a very general model for locating p (=1) tree-
shaped facilities on a tree network and provide a polynomial dynamic program-
ming algorithm for solving the general model. As we will show, the model
captures generalizations (facilities as subtrees) of several instances of the facil-
ity location problem that have been considered in the literature.

Our interest in this problem was stimulated by recent working papers by
Hakimi et al. [14] and Church and Current [4]. The former paper studies the
complexity of 64 versions of the facility location problem. The versions are
derived by considering such elements as locating one or p > 1 facilities,
whether the facilities are paths or tree-shaped, whether the underlying network
is a tree or a general network, and the objective function of the problem.

The latter paper considers the location of p > 1 tree-shaped facilities on a
tree network. A multiobjective problem is considered with the objectives of
minimizing the total length of all facilities located and maximizing the total
number of vertices ‘‘covered’ by the facilities. The solution approach is via
integer programming.

Hakimi et al. [14] have shown that several of the problems that they consider
can be solved in polynomial time if the underlying network is a tree, but are
NP-hard if the network is arbitrary. That trees give rise to efficient solution
methods to some of these problems is not totally surprising. When the facilities
are considered to be points, certain convexity properties (see Dearing et al.
[11]) are present. In the case of a single facility that is tree-shaped, submodular-
ity properties (see Tamir [36]) are present.

Our main motivation for this paper was to resolve the complexity issue of the
problem studied in Church and Current [4] and two of the problems, cited as
open, in Hakimi et al. [14]. Our general model, which we solve in polynomial
time, includes these problems as subcases.

We now give a brief review of the paper. In the next section, we formulate
the general model that we consider and draw the relationship between the
model and other facility location problems that have been considered in the
literature. In Section 3, we give the dynamic programming recursive equations,
which lead to an O(n®p?) algorithm to solve the general model. Concluding
remarks are given in Section 4.

2. THE MODEL

Let 7= (V,E) be an undirected tree with node set V ={1,2, . . . , n} and edge
set E. A subtree 7 = (V',E’) of T is a connected subgraph of 7, with V' a subset
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of V and E’ a subset of E. We are concerned with finding a p-forest of T (p
disjoint subtrees [facilities] of T, 1 < p < |V|) in order to minimize the sum of
the following cost terms:

The cost of the length of all of the facilities.

The cost of the edges of T that connect the components of the p-forest.

The travel cost from each node of T to a closest facility.

The cost of communication between facilities that occur on the edges of

the facilities.

5. The cost of communication between facilities that occur on the edges of
T that connect the facilities.

6. The cost of selecting exactly one vertex, a ‘‘server,’’ in each facility.

-B':»Nv—-

To formulate the model, we make use of parameters defined on the edges and
nodes of T. Each node i € V is associated with a nonnegative weight, w(i), the
cost of selecting i as a server, and a nonnegative nondecreasing transportation
cost function c;(-), whose argument is the total distance of travel to a nearest
facility. Without loss of generality, we assume that ¢;(0) = 0. Eachedge ¢ € E
is associated with five nonnegative parameters:

ai(e)—the contribution of e to the cost of the length of the p-forest if e isin a
component of the p-forest.

a»(e)—the contribution of ¢ to the cost of the forest of T that connects the
components of the p-forest, when e is in the connecting forest.

as(e)—the contribution of e to the travel distance from a node of T to a
facility if e is in the path to the facility. We assume that as(e) > 0.

as(e)—the contribution of ¢ to the cost of communication between compo-
nents of the p-forest if e is in a path between components and e is itself
in a component.

as(e)—the contribution of e to the cost of communication between compo-
nents of the p-forest if e is in a path between components, but e is not in
a component (is in the connecting forest).

The use of the above parameters in the cost terms 1-6 is as follows: the sum
of the a,(e) over all edges in the components of the p-forest is term 1. The as(e)
are used in term 2. The parameters as(e) are used to determine a closest facility
to node i of T, and the length of a shortest path to a facility is the argument of
ci(+). The sum of these functions over the nodes of T is term 3. The parameters
a4(e) and as(e) are used in terms 4 and 5, respectively. Finally, the parameters
w(i) are used for term 6.

To more rigorously specify the role of the parameters in our general model,
we need some additional notation. A p-forest, F,, of T is a collection {r,,
T2, . . . , T, of p mutually disjoint subtrees (facilities) of 7. By disjoint we mean
sharing no common nodes or edges. Each subtree 7;is composed of edges of T.
Given an F,, we denote by S’ the minimal forest of T whose components
connect (span) the components of F,. When p > 1, we note that S’ consists of
at least one, but no more than p — 1 disjoint components.



220 TAMIR AND LOWE

The cost associated with the “‘length’ [via ay(-)] of F, is determined as
follows: For each 7;,j =1, ..., p, let

Ly(7) = 2 {ai(e): e € 7;}.

If 7; is a single point (node of T), Li(r;) is zero.
The cost [via ay(+)] associated with the edges that connect the components of
F,, i.e., the edges of §’, is denoted by

Ly(S") = 2, {axe):e € S'}.

For each i € V, the unique path o(i,7;) between i and the first-encountered
node of T in facility j either has no edges, i.e., i € 7;, or has one or more edges
of T. We denote by ds(i, F,) the ‘‘length of the shortest path’’ between i and F,,,
which is defined by

ds(i,F,) = min {2 {aste):e €E ali,r)}ij=1,. .. ,p}.

When i € F,, di(i,F,) is defined to be zero.

Two types of ‘‘communication’ costs between facilities are considered:
those costs measured across the edges of F), and those costs measured across
the edges of S’. Consider first the former case. Let e € 7; for some j =
1, ..., p. The removal of e from T disconnects T into two disjoint components
T.(e) and Tgx(e). Letting a(e) (B(e)) denote the total number of facilities that
satisfy 7, C T,(e) (7« C Tg(e)), then the communication cost across edge e is a(e)
X B(e) X asle). The communication cost for facility 7; is defined as

My(r;) = 2 {ale) X Ble) X asle):e € 7;}.

We note that 7; & T,(e) and 7; € Tg(e), but that for an edge e € 7;, ale) + Ble) =
p — 1. Each edge e of an ‘‘extreme’’ facility has either a(e) or B(e) equal to
zero. Also, if a facility p; is a single point, M4(7;) is zero.

Consider the communication cost across an edge of §’, the forest spanning
the p-forest F,,. The removal of e from T disconnects T into T,(e) and Tg(e). But
in this case, since e € §', with a(e) and B(e) as defined above, a(e) + B(e) = p,
and a(e), B(e) = 1. The cost of communication for edge e is taken to be a(e) %
B(e) x as(e), and the cost of communication on S’ is defined as

Ms(S") = D, {ale) x B(e) X as(e):e € S'}.

With the above definitions and descriptions of the cost terms, our objective is
to find a p-forest F, = {ry, . . ., 7,} to minimize
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fF) =2 {Lr):j=1,...,p}
+ Ly(S") + D, {ci(ds(i,F,):i € V}

+ > M) j =1, ..., p}+ M«(S")
+ > {min{w@):i € 7}:j=1,...,p} (2.1

The terms of (2.1) correspond, respectively, to cost terms 1-6 discussed
earlier.

Expression (2.1) unifies several location models discussed in the literature.
For example, if w(i) is constant and c;(y) = uy, for all i € V, where u > 0 is
sufficiently small, a,(e) is sufficiently large for all e (so that the p facilities are
points of T), and if ay(e) = a4(e) = as(e) = 0 for all e € E, the problem reduces
to the classical p-median problem on 7 (see, e.g., Kariv and Hakimi [19].

A second example is the simple plant location problem on a tree [25, 26],
which is obtained from (2.1) by setting a,(e) = as(e) = as(e) = 0, forall e € E
and setting a,(e) sufficiently large for all ¢ € E (so that, again, the p-facilities are
points of 7). We remark that although the simple plant location problem allows
a variable number of facilities (p is a variable), a minor modification of our
solution procedure will solve the above instance of the problem in polynomial
time, since in an optimal solution, no more than »n facilities will be chosen (no
more than one at each vertex).

A third example is the minimal cost/maximal covering forest problem consid-
ered by Church and Current [4]. Their problem is obtained from (2.1) by set-
ting, fori € V,

_0ify=r;
ci(y) = 0; otherwise,

where r; > 0, and 6; > 0 for all i; setting w(i) to a constant; setting a,(e) = pas(e)
for some w > 0; and again setting a,(e) = as(e) = as(e) = 0. Hakimi et al. [14]
also considered this model with 6, = +x.

A fourth example is the fixed-cost spanning forest problem considered by
Granot and Granot [13]. [This model and the second example have motivated
the introduction of w(i).] In their model there exists a set of demand points, V',
a subset of V, and the problem is to select p sites for the service centers.
Service centers can only be established at the vertices of 7. The cost of opening
acenter at i € Vis w(i). The objective is to minimize the sum of the total cost of
setting up centers and the length of the forest connecting the demand set V' to
the established centers. The model is obtained from (2.1) by setting, fori € V',

_ _0ify=0
cly) = +o  otherwise,

and fori € V — V', ¢c;(y) = 0 for all y, and setting a;(¢) = as(e), for e € E, and
a)(e) = asle) = as(e) = 0, for e € E. We remark that Granot and Granot allow a
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variable number of centers (p is a variable) [13]. However, our comment with
respect to the second example above applies here as well.

Although the analogy is not exact, our rationale for cost terms 4 and 5 (the
communication cost between facilities) is partially due to the p-median problem
with mutual communication considered by Kolen [25] among others. Kolen’s
problem considers the sum of weighted distances between pairs of facilities
(which are points) as well as the sum of weighted distances between nodes of T
and the facilities. In Kolen’s problem, each facility is distinctly identified and
the weight corresponding to a node-facility pair is prespecified. Thus, the
travel cost for a node is not a function of the distance to a closest facility, but is
the sum of weighted distances to all facilities.

3. THE DYNAMIC PROGRAMMING PROCEDURE

We (arbitrarily) root the tree T at some node iy € V. For eachi € V, let D(i)
be the set of all nodes j having i on the unique path connecting them to iy. D(i) is
called the set of descendants of i. Let S(i) be the set of children of i, where a
member of S(i) is a descendant of i and is connected to i via an edge of 7. We
note that S({) C D(i) and that i is in D(i), but not in S(i). If S(i) is empty, i is
called a tip (or leaf) of T.

To solve (2.1) on T, we recursively solve a sequence of problems defined on
certain subtrees of T, starting with the leaves of 7. To define these subtrees,
consider anode i € V. Suppose that S(@) = {i(1), i(2), . . ., i(s(i))}, where s(i) =
|S@)|. Forany t = 1, ..., s(i), let T(i,) denote the subtree induced by the
nodes in {i} U D(i(1)) U - - - U D(i(¢)). In what follows, we let

N(@,t) = D(i(1)) U DG2)) U - - - U D(i(2)),

so that the sets N(i,r — 1), D(i(2)), and {i} are disjoint, but their union is the set
of nodes of T(i,#). Figure 1 depicts an example of these definitions.
Givenanodei € Vandt =1, ..., s(i), we define a sequence of restricted
problems. Let j and &k be nodes in 7(i,¢) and T — T(i,?), respectively. Consider
the problem of selecting a minimum-cost g-forest F, = {r, . . . , 7,} of T(i,?),
where g = p and j is a node in F, that satisfies ds(i,j) = d5(i,F,).
We denote by f(i,t,j,k|q) the minimum objective function value of

SH{Lz):ir=1,...,q}
+ Lo(S'(T(, 1))
+ > {cx(min{ds(h,F,), ds(h,k)}): h €T(,1)}
+ > M):ir=1,...,q}
+ {M(S'(TG,1)) + O, {min{w(h):h €r}:r=1,...,q}. (3.1

The optimization is over all g forests F, in T(i,?) that contain node j and node j
is the closest node (in the sense of ds(+)) of the g forest to node i. In (3.1), if g =
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FIG. 1. Illustration of definitions.

p,orif 1 < g < pandiis in a component of the g-forest, then S'(T(i,?)) is
defined to be the forest of T(i,) spanning the g-forest. If g = 0, S'(T(i,?)) = ¢. If
1 =g <pandiis notin a component of the g-forest, then S'(7T(i,?)) is the forest
of T(i,t) spanning the g-forest and node i. Although S'(7(i,?)) clearly depends
upon F,, for ease of exposition, we delete the notation indicating dependence
of §'(-) on F,. Note that in (3.1), with respect to the node travel costs c,(:), we
are concerned only with nodes in T(i,#). The travel cost for node h € T(i,?) is
taken to be the minimum of the travel cost to the closest point in the g-forest
and the point k in T — T(i,#). The case with g = 0 (i.e., a O0-forest [the empty
set]) is denoted by f(i,t,—,k|0) and its value is  {c,(d5(h,k)): h € T(i,1)}. If no
node k is selected in T — T(i,t), the respective objective value is denoted by
fG,t,j,—|q), and the minimization in the third term of (3.1) is replaced by
ds(h,F,). As a boundary condition, we define f(i,z,—,—|0) as +c.
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In the case that i = j (i.e., i is restricted to be in the g-forest), it is necessary
to define f-(i,t,i,k|q), which is the minimum objective value of (3.1), over all
g-forests F, of T(i,t), with i € F,, but not including the cost of selecting a node
in the component of F, that contains node i; that is, f(i,z,i,k|g) does not
consider that element in the last term of (3.1) that counts the cost of a minimum
cost node in the facility containing node i.

When i is a leaf node of T, we note that S(i) = ¢. In this case, we have the
boundary conditions

fl,—,i,k|1) = w(i) (since ds(i,i) = 0),
f_(ia_’i’kll) = 0, and
f(ia_a—’klo) = Ci(d3(i’k))' (32)

We now give the recursive equations for computing f(i,t,j,k|q) and
fG,t,i,klq). We will set f(i,t,j,klq) = f(i,t,i,k|q) = += if it is not possible to
select a g-forest in T(i,7). For example, f(i,—,i,k|q) = f(i,—,i,k|q) = +, for
all g = 2. We begin by computing, via (3.2), f(i,—,i,k|1), f~(i,—,i,k|1), and
fG,—,—,k|0), Kk € T — {i}, for all leaf nodes i of T. By induction, assume that
fl,t — 1,j,klg) and f~(i,t — 1,i,k|q) have been computed for all j,k, and
q = p and that f(i(v), s(i(v)),j,klq) and f (i(v),s(i(v)),i(v),k|q), for all v =
1,..., s@),j,k, and q have been computed as well.

The recursive equations depend upon the parameters i,7,j,k, and g, but can
be categorized into 10 subcases (not counting the boundary conditions for leaf
nodes). These 10 subcases are best explained through the use of a ‘‘condition
tree’’ (Fig. 2). The ‘‘tips’’ of the figure represent the 10 subcases. In the figure,
there are two main branches labeled I and II. In branch I, j and & are such that
diy(i,j) = ds(i,k), and in branch 11, ds(i,j) > d5(i,k). Thus, for branch I, since k €
T — T(,t), for any h € T(i,t), ds(h,k) = d3(h,i) + ds(i,k) = ds(h,i) + d3(i,j) =
ds(h,j) so that k is irrelevant [see the third term in (3.1)]. Thus, f(,t,j,—|q) =
f(,t,j,k|q) on branch I. On branch I, since ds(i,j) > ds(i,k) > 0, the case i =j is
not possible, and so f(+) is only computed for cases IBla, IB1b, IBta, and
IBtb. Table I gives the recursive equations for each of the subcases. The reader
will find it convenient to use both the figure and the table to verify the recursive
equations. In the table, the notation 7(q) and 8(q) is used. 7(q) and 8(q) are
defined as follows:

For any g, 0 = g = p, the indicator function 8(q) is

_ 1ff0<g<p
0 otherwise

d(q)

and the product function 7 (q) is

m(q) = q(p — q).
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FIG. 2. Condition tree.

Note that 8(g) is used in conjunction with a,(e), where we include only the cost
of edge ¢ in a ‘“‘connecting’’ forest, when edge ¢ is on the path between at least
two members of F,. Also, m(q) is used in conjunction with as(e) to correctly
count the communication cost across edge ¢ when it is in a connecting forest.
Since a total of p facilities will ultimately be chosen, if g facilities are on ‘‘one
side’’ of e, then p — g facilities will eventually be located on the ‘‘other side’’ of
e. When no facilities (¢ = 0) are on one side of e, w(q) = 0. Thus, 7 (g)
accurately counts the communication traffic between facilities across edge e.

Finally, we note that with iy as the root of 7, an optimal solution to (2.1) is
found by solving

min{ f iy, (o), u,—|p) : u € D(ip)}.

The verification of the complexity of the dynamic programming approach is
straightforward. For every vertex i, we must consider O(n?) pairs {j,k}, with j
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€ D(i) and kK € V — D(i). For fixed i,t,j, and k,O(p?) total effort is required to
compute f(i,t,j,k|q) forallg =1, ..., p. Sincet = 1, . . ., s(i), the overall
approach takes O(n?p*(Z{s(i):i € V})) = O(n*p?).

4. CONCLUSIONS AND FINAL COMMENTS

In two recent papers, Hakimi et al. [14] and Church and Current [4], similar
multifacility location models on a tree network were studied, where facilities
are subtrees of the tree. The first paper called the model the center p-tree
problem, while the second, considering a generalization, referred to it as the
minimal cost/maximal covering forest problem. We have presented the gener-
alized p-forest problem that extends and unifies the above models as well as
several other multifacility location problems studied in the literature. We then
provided an O(n’p?) dynamic programming algorithm to solve our generalized
model, thus resolving the open complexity issue.

Several comments are in order. First, we note that our algorithm can be used
parametrically in p to solve the case where p is a variable, since p, the number
of facilities, is bounded by the number of demand points (nodes). In fact, the
case where p is a variable is considerably simpler when the cost of communica-
tion between the facilities is irrelevant, i.e., as(e) = as(e) = 0, forall e € E. One
can easily modify the recursive equations for this case to obtain an O(n?)
algorithm.

Our next comment concerns the definition of a subtree. We have regarded a
subtree as a subgraph of the underlying tree network, i.e., every edge of the
subtree is also an edge of the tree. Hakimi et al. [14] considered this definition
as well as a variant where the subtree is allowed to contain partial edges. Our
algorithmic results can be extended to the partial edge case. Instead of dealing
with the discrete entities f(i,z,/,k|q) in (3.1), we will need a continuous version
where j and & are ‘‘points’’ along edges of T(i,z) and T — T(i,t), respectively.
Some models allowing partial edges are directly reducible to our model with
“full” edges. To illustrate, consider the center p-tree problem with partial
edges defined by Hakimi et al. [14]. To obtain this problem from our model, we
set

_0ify=r
i) = otherwise,

set w(i) = Ofor all i, a,(e) = as(e) = as(e) = O for all e € E, and a,(e) = nas(e) for
all e € E, where u > 0. Also, the ‘‘cost’’ of a partial edge is proportional to its
length.

It is easy to see that there exists an optimal solution to the above problem
where each boundary point of a facility, which is not at an original node of 7, is
at a distance of exactly r; from some node i of T. If we add to the original set of
nodes all points of the tree that are at a distance of exactly r; from some node i,
foralli € V, the problem reduces to the p-tree problem with ‘“full’’ edges. Also,
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if k is one of the added points, we set ¢,(y) = 0 for all y. Since O(n?) points are
added, the original problem can be solved in polynomial time.

Finally, we comment on the complexity bound of our algorithm. Our main
goal has been to resolve the open complexity issues raised in the literature.
Therefore, we focused in this paper on the relatively simple O(n*p?) recursive
procedure of Section 3 that requires minimal notation and machinery. We have
also developed a more elaborate recursive approach that has an O(n?p?) com-
plexity. In this latter approach, the single function f(i,z,j,k|q) of (3.1) is re-
placed by a two-function recursive system. The interested reader can obtain the
details from the authors.
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