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Abstract

Many location problems can be formulated as minimizing some location objective function subject to upper bounds
on other location constraint functions. When such functions are subadditive and nondecreasing in the distances (a
common occurrence), worst-case demand point aggregation error bounds are known. We show how to solve a re-
laxation and a restriction of the aggregated problem in such a way as to obtain lower and upper bounds on the optimal
value of the original problem. We consider some applications to covering and related problems.
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1. Introduction

Location problems often involve finding loca-
tions of new facilities that provide services of some
kind to existing facilities, also called demand
points (DPs). When such problems occur in urban
contexts, each private residence can be a DP. Thus
there can be too many DPs to be modeled indi-
vidually, and aggregation of the DPs becomes
necessary; indeed, sometimes only aggregated data
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is available. This aggregation creates a more
tractable model, but also introduces model error.
It is naturally of interest to examine how much
error is introduced, and the effect of the level of
aggregation upon the error. Essentially the mod-
eler is faced with a tradeoff: less model accuracy
for more model tractability, or vice versa.
Hillsman and Rhoda (1978) were perhaps the
first to study errors associated with DP aggrega-
tion for the K-median problem. Their classification
of aggregation errors was further studied by Cur-
rent and Schilling (1987), Erkut and Bozkaya
(1999) and Zhao and Batta (1999). Plastria (2001),
in an effort to reduce aggregation error, further
refined the Hillsman—Rhoda error classification,
and made a strong case for using the centroid of
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each aggregation group as the representative point
for the group in the reduced K-median problem.
Current and Schilling (1990) considered errors due
to aggregation for the (discrete) covering problem,
a problem we consider in some detail in this paper.

Methods for reducing DP aggregation error
have been proposed by Current and Schilling
(1987), Bowerman et al. (1999), and Hodgson and
Neuman (1993). General background discussions
on DP aggregation and resulting errors can be
found in Francis et al. (1999), Zhao and Batta
(1999, 2000) and Plastria (2001).

Zhao and Batta (2000) point out that there is
another kind of aggregation error; it is perhaps less
obvious but often occurs. Due to budgetary con-
straints, only a subset of the set of all possible
feasible solutions may be considered. For example,
potential location sites of interest may be enu-
merated in a list. With more resources to consider
sites of interest, additional sites might be added to
the list. This approach is usually viewed as solving
a restriction of the actual problem, but it can also
be viewed as a “solution space” aggregation, since
a large collection of potential sites is, in effect,
aggregated into a smaller collection. Zhao and
Batta (1999, 2000) also give a general background
discussion of DP aggregation, as do Francis et al.
(1999, 2002).

A useful idea in aggregation analysis is that of
an error bound. Suppose X denotes a choice of new
facility locations, and f(X) denotes a location
model objective without DP aggregation. Let //(X)
denote the resulting approximating location model
after some form of aggregation. An error bound is a
number, say eb, so that |f'(X)— f(X)| <eb for all
X of interest. Such DP aggregation error bounds
originated with Zemel (1985) and Francis and
Lowe (1992), and are now known for a large class
of network location models (Francis et al., 2000),
including the K-center, K-median and other mod-
els. Sometimes error bounds can be “two-sided”,
that is, f'(X)<f(X)+ eb, for all X, and
fX)<f'(X) +eb, for all X. Such error bounds
are worst-case error measures, since they hold for
all X. However, if they are small compared to
function values, they can be useful. Computational
experience to date (Rayco et al., 1997, 1999) indi-
cates they can be especially helpful for problems

with worst-case structure, such as K-center models,
which are known to be closely related to covering
models (Kolen and Tamir, 1990).

In this paper we consider aggregation for some
constrained location minimization models. The
objective function to be minimized is a location
function, and there are also constraints that impose
upper bounds on costs of other location functions.
Starting with an original (unaggregated) model, say
(Pr), we do aggregation to obtain an approximating
model, say (Pr'). We find a restriction of (Pr') say
(Pr,,.) and a relaxation of (Pr’) say (Pr,, ), that
also “serve” as a restriction and relaxation re-
spectively of (Pr). Assuming all three approximat-
ing problems can be solved to optimality, we can
thus obtain bounds on minimal values of both (Pr)
and (Pr'). When the bounds are (nearly) equal we
can conclude that an optimal solution to (Pr) is
(nearly) optimal to (Pr). Our work generalizes
earlier aggregation results (Francis and Lowe,
1992) that were specific to covering models.

An overview of our paper is as follows. In
Section 2 we present notation, the basic location
models (Pr) and (Pr’), and assume the existence of
certain vectors of two-sided error bounds. The
underlying location context of interest involves
locating facilities on a network, using shortest path
distances between points. Our abstraction of this
context assumes a metric space. In Section 3 we
present Theorem 1, our basic bounding result. In
Section 4 we consider a class of so-called SAND
location models (Francis et al., 2000), essentially
ones that are subadditive and nondecreasing in
distances. For such models, Theorems 2 and 3
provide formulas to compute the two-sided error
bounds. At the end of the section we specialize
these results to covering and K-center models. In
Section 5 we present some computational experi-
ence for covering problems. The experience indi-
cates our results can be useful for covering and
related models. A short conclusion section ends
our paper.

2. Notation and definitions

In a typical location model we have a set of DPs
(existing facilities), embedded in some metric space
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such as an (undirected) transport network; we
need to select a subset of points X in the space
where servers (new facilities) will be located.
Usually, there are constraints on X, depending
possibly on cost considerations, and proximity of
the servers to the DPs. The goal is to choose a
feasible subset X, optimizing some given utility
function, say f(X), defined on the collection of all
feasible subsets X. In this section we introduce a
quite general and formal model that will capture
the above characteristics and components of a
location problem.

Let M be a metric space, with d(x, y) denoting
the distance between any pair of points x,y € M.
We denote by 2M the power set of M, the collection
of all subsets of M. Given is a domain § C 2¥, with
real functions f(X), m(X),...,(X), from S to
R', and a subdomain &' C S. We also have (ap-
proximating) real functions f'(X), hj(X),...,
K(X) from S to R', and a vector t=
(t1,...,%) € R*. We consider the following gen-
eral optimization problems:

Pr(t) : v(t) = min{f(X) : H(X) < 1,X € S},
Pr'(t) : v/(t) = min{f"(X) : ¥ (X) <1, X € §'},

where h(X) = (m(X),..., (X)), K(X) = (K(X),
..., h(X)). We assume the above two minima
exist, as well as subsequent ones. Note the problem
statements also define two functions, v and v'.

Motivated by DP aggregation in location
models, our main interest is in a subclass of the
above defined as follows.

Given are two multi-subsets of M, a DP set
P={py,...,pn} and an aggregate demand point
(ADP) set P' = {p|,...,p,}. The DPs are distinct,
but the ADPs are not; hence the need for a multi-
subset. For each i, p| is the point that p; is aggre-
gated into. For any finite subset X of M, and
¥y € M define D(X,y) = min,cx d(x,y). Let D(X,P)
be the vector in RT defined by D(X,P)=
(DIX,p),...,D(X,p,)). Let D(X,P") be defined
by D(X,P) = (D(X,p|),...,DX,p.)). We shall
also use the notation T(P,P') = (d(p,p});-..,
d(pm,p,,)) in Section 4.

For j=0,1,2,...,k, let g; be a real function
from R7 to R'. Suppose that f(X) = go(D(X,P)),

f'(X) =g(D(X,P)), and h;(X) =g;(D(X,P)),
h(X) = g;(D(X,P')), for j=1,...,k. (We assume
that each X € S is a finite subset of M.) We refer to
the foregoing subclass of models designated with
prime symbols as Jocation aggregation models.

As an example, consider the K-median problem
with the additional constraints requiring that each
DP in P will be served within a distance which
is not greater than some given radius #. In this case
wedefiner = (¢,...,1),S ={X: X C M, |X| =K},
k=m, go(ur,...,um) =73 1 ,u, and g;(u,...,
Un) =u;jforj=1,...,m

We make the following assumptions with re-
spect to the general optimization problems:

Assumption I. There exist o € ERL and B, € SR';
such that for any X € S, there exist Yy € &', and

@) f'(Ye) <f(X) + i,
(i) #'(Yx) <h(X)+ By

Assumption II. There exist «, € R and B, € R
such that for any X € S,

O f(X)<S'(X) + o,
(ii) A(X)<H(X) + B,

(In some cases we will simply take Yy = X.)

3. General bounding result

Fig. 1 gives an overview of this section. The
upper portion of the figure shows the original
problem Pr(z) and the three aggregated prob-
lems Pr’ (1), Pr' (t + B,), and Pr' (t — B,). The re-
sults of this section are the three consequences,
proven in Theorem 1. Consequence 1 uses Pr(z),
Pr' (1 + B,), and Assumption I. Consequence 2
uses both assumptions and the three aggregated
problems. Consequence 3 uses Pr(t), Pr' (1t — §8,),
and Assumption II. The three consequences pro-
vide lower and upper bounds on both v(z) and
V(7).

We are now ready to prove the main result re-
lating problems Pr(t) and Pr’(t). (Note that this
result is applicable to the general optimization
problems and not only to the subclass defined
above by the functions go,g1,...,8%.)
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Consequence 1:
vi(T+B)— oy <v(t)

Consequence 2:
V(T+B) S vI(T) S V(T -B2)

Consequence 3:
v(T) <vi(T-B) +

Assumption [

Assumption II

Fig. 1. Overview of section: consequences and information used to obtain them.

Theorem 1. Suppose that the minimal objective
Sfunction values v(t), v'(t), vV'(t + B,) and V'(t — B,)
are well defined. Then, under Assumptions I and II,

Viit+ By) — o <v(t) V(T - By) + o,

V(T+ B) <V(r) <V (T - By).

Proof. The inequalities v(t+ B,) < V(1) <V (t—
B,) follow directly from the definition of Pr’(t),
and the nonnegativity of 8, and f,.
Next we prove v(t) < V'(t — f,) + ;. Assuming

all minima of interest exist, we have
v(t) = min{f(X) : (X)) <1,X € S}

< min{f(X) : h(X)<1,X € §'}

< min{f'(X) + o : H(X)<1,X € S’}

< min{f'(X)+ o : HX)<t- B, X €5}

=+ min{f"(X) : ¥(X)<1- p,,X € §'}

=m +V(t - By).

(Note that the first inequality follows from S’ C S,
the second follows from Assumption II;, and the
third follows from Assumption II;.)

To prove that v'(t+ f,) — oy < v(1), let X* € S
be optimal for Pr(r). Hence f(X*)=v(r) and
h(X*)<t. From Assumption I, there exists
Yy. € §' such that

H (Y ) <h(X*) + B,

' (Y ) SSX7) + e

Since h(X*) <7, we obtain A'(¥y.) <A(X*) + B, <
7+ B,. The latter implies that Yy. is feasible for
Pr' (z + B,). In particular,

V'(t+ By) < S (Txe)

Combining the latter inequality with the above
upper bound on f’(Yx-), we conclude

-y +V(t+ b))
< -+ () <SE) =0(). O

4. Application to SAND location aggregation mod-
els

In this section we apply the above general the-
orem to constraint, objective and solution domain
aggregation for so-called SAND location models
(Francis et al., 2000). To introduce such models we
first define a SAND function. Let g be any real
function from R7 to R'.If, forany U,V € RY the
function g satisfies g(U + V) < g(U) + g(V), then
g is called subadditive. If, for any U,V € RY with
U <V the function g satisfies g(U) < g(V), then g
is called nondecreasing. If g is both subadditive and
nondecreasing we say it is SAND. Clearly, if g is
SAND, then for any U,V,W € R} with U<
V + W we have g(U) <g(V) + g(W). Note, since
0< 0+ ¥ for any ¥V € R7, that g(0) <g(0) +g(¥)
implies 0 < g(V); our SAND functions are always
nonnegative valued. If g is subadditive and
g(0)=0, V< W implies ¥ <0+ W, so g(V)<
g(0)+g(W)=g(W) and it is unnecessary to
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assume g is nondecreasing. Well-known SAND
functions (Francis et al., 2000) include the sum
function, g(U)=wu; +---+u,, and the max
function, g(U) = max{u,...,un}.

Let S be a domain and let S’ C S be a subdo-
main. Let  be a nonnegative real. We say that ' is
an r-cover of S if for any X € S, there exists
Yy, Yx € &, such that D(Y,,x)<r for any x € X.
Without loss of generality, we assume |Yy| < |X].

The r-cover definition implies that for each
x € X, there exists y, € Yy with d(x,y,)<r. As a
motivating example, suppose M comes from an
undirected travel network using shortest path
distances. Let » be half the longest arc length in the
network. For each x € X, we can take y, to be a
closest vertex to x, and then have d(y,,x) <r. We
then set Yy = {y, : x € X}.

To obtain an overview of this section consider
Table 1. Table 1 is a summary of notation (lines 1-
3), along with the results of Theorems 2 and 3,
which establish the formulas in lines 4 and 5 for the
o’s and f’s. Lines 6 and 7 summarize the relation-
ships of the a’s and f’s to the functions for the
original and approximating (aggregated) problems.

Lemma 1. Suppose that S’ is an r-cover of S. For
any X €S,andi=1,...,m,

D(Y/\"p:) sD(X1pl) + r+d(PnP.I)

Proof. Let x € X satisfy D(X, p;) = d(x,p:), and let
¥ € Yy € 8 satisfy d(x,y,) <r. Then, D(Yy,p!) <
Ay, p}) Sd(x,x) +d(x,pi) +d(pi,p)) ST +d(x,pi) +
d(p,p)) =r+DX,p) +d(p,p). O

Table 1
Notation, and summary of Theorems 2 and 3

Lemma 2. Let e € R be defined by e = (1,...,1).
Let g be a SAND function from R to R', and
suppose that S' is an r-cover of S. Then for any
X €S,

g(D(Yx,P')) <g(D(X,P)) + g(re + T(P,P')).

Proof. From Lemma 1 we have D(Yy,P)<
D(X,P) + re + T(P,P'). The result follows directly
from the fact that g is a SAND function. O

Remark 1. If we let S’ = S, then §' is a 0-cover of
S. In particular, for any X € S we have ¥, = X. In
this case, we obtain

g(D(X,P)) < g(D(X,P)) + g(T(P,P)),

g(D(X,P)) <g(D(X,P)) + g(T (P, F')).

Theorem 2. Let gy be a SAND function from R to
R'.
(@) Then f(X) = go(D(X,P)) and f'(X) = go(D(X,
P')) satisfy Assumption II; with
a = g(T(P, P)).

(b) Moreover, if S' is an r-cover of S, then
S(X) =go(D(X,P)) and f'(Yx) = go(D(Yx,
P')) satisfy Assumption I, with

oy = go(re + T (P, P)).

Proof. Part (a) follows from the Remark above,
while (b) follows from Lemma 2. [

Objective information

Constraint information

D(X,P) = (D(X,p))

S(X) = g(D(X,P))

S'(X) = go(D(X, P))

oy = go(re + T(P,P'))

a = go(T(P,P'))

SX)KSX) + g, all X

7 S()SfX)+a, XeS, Yres

N DWW N —

T(P,P) = (d(p1,P\);-- - d(pm: P},))

h(X) = (&1(D(X,P)),...,&(D(X,P)))

H(X) = (g1(D(X,P)),...,&(D(X,P)))

By = (gi(re+T(P,P)),...,8(re+ T(P,P)))
B, = (&:1(T(P,P)),....&(T(P,P)))

R(X) <K (X) + By all X
H(Yy)<hX)+B,XES YyeS

S is an r-cover of S; for every X € §, 3Yy in & such that D(Yy,x) <r for any x € X. All g functions are SAND.
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Theorem 3. For j=1,...,k let g; be a SAND
function from RT to R'. Let h(X)= (h(X),
oo (X)), and K (X) = (h(X),...,h(X)), where
) = 5(D0P) “and K0 = (DU, P))
j=1...k

(a) The functions h(X) and K (X) satisfy Assump-
tion II; with

B = (&(T(P,P)),...,&(T(P,P)).

(b) Moreover, if S' is an r-cover of S, then the func-
tions h(X ) and K'(Yy) satisfy Assumption I; with

B, = (gi(re + T(P,P)),...,g(re + T(P,PY))).
Proof. The proof is the same as for Theorem 2. O

Finally, we conclude that if the functions
20,81, .- -, & are SAND functions, and §' is an r-
cover of S, then Theorem 1 is applicable to the
respective location aggregation model, where «,
o2, B; and f, are defined in Theorems 2 and 3.

In the remainder of this section we specialize the
above results to a class of location problems;
covering problems, and constrained K-center
problems. We shall see it is sometimes possible to
exploit extra problem structure to find smaller
entries in the « and f§ vectors than those given by
Theorems 2 and 3.

The basic covering problem appears in line 1 of
Table 2, with related aggregated problems in lines
2-4. Note that ' is an r-cover of S, h(X) = (D(X,
PI)7 v ’D(X»Pm))’ hl(X) = (D(X,Pll)7 cen ,D(X,p'm)),
1= (t,...,tn). Theorem 3 gives B, = (d(p1,p}),
ooy d(Pm,P,)), By =re+ B,. Because the original
and approximating covering problems have the
same objective and do not depend (directly) on P,
f(X)=|X]=f'(X). Thus f(X) < f'(X) + O for all
X, so Assumption IJ; is satisfied with o, = 0. Now
consider Assumption I;. Since S’ is an r-cover of S,
for any X € S there exists Yy € §' such that

Table 2
The family of covering problems

|Yx| < 1X|, which means f(Yy) < f(X) + 0 for all X.
Hence Assumption I; is met with «; = 0. We note
the basic inequalities (see the Remark below) used
to obtain the relaxation and restriction are —d(p;,
p) <D(X,p) — D(X,p}) <d(p;, p;), which hold for
all X and i. We also use Theorem 3 to obtain the
relaxation.

By considering Table 2 we obtain the following.

Qualitative Insight 1. Pr’'(z) should be a good
aggregation if t; > r + d(p;, p}) for all i.

The insight follows from noticing that if the
other terms on the right-hand-sides of the con-
straints for the problems in lines 2-4 are small
compared to the ¢, then all the right-hand-side
values will be essentially the same, indicating the
associated problem minimal objective function
values will all be in some ‘“small” interval, say
[a,b]. By Theorem 1, the minimal objective func-
tion value of the problem of line 1 will also be in
[a, b]. Thus Pr’ (1) should be a good approximation
to Pr(t).

There is, of course, no guarantee that a feasible
solution to Pr' (t) will be feasible to Pr(t). How-
ever, a direct consequence of Assumption II is the
following.

Remark 2

(a) Almost feasibility: If X is a feasible solution to
Pr' (1), then X is “almost” feasible to Pr(z),
that is, D(X,P)< 1+ f,, X € S.

(b) Feasibility: If X is a feasible solution to Pr' (1)
and D(X,P')<t— f,, then X is feasible to
Pr(7).

Table 3 first lists the constraints of the three
aggregated problems with duplicate ADPs in col-
umn 2. The process of aggregation makes some
constraints redundant. Thus column 3 shows the

Covering problem Objective Constraints of problem
1 Original: Pr(t) min |X| DX,p) <y, alli; X €S
2 Aggregation: Pr'(t) min |X| DX,py<t,alli; X e§
3 Restriction: Pr'(t — 8,) min |X| DX, py<t—d(p,p)), alli; X € §
4 Relaxation: Pr'(t + B,) min | X| DX, py<r+1;+d(p,p), alli; X € S
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Table 3
Covering constraints for aggregated covering problems; §' is an r-cover of S; ; = {i:pi=gq;}, j=1,...,n
Problem Covering constraints with

ADPs p},...,p,

Distinct ADPs: ¢, ...,¢,;
1 = min{t; — d(p;,q;) : i € I;};

All f; = ¢ also
1y =t —-max{d(p,q;) : i € I}};

1 =min{t; :i € ;}; =1

T =r+ min{t; + d(p;,q;) : i € I}

tf =r+t+min{d(p,q;) : i € [;}

Restriction DX, p)<ti—dpi,p), X €S

Pr'(t—pBy)

Aggregation DX,p)<t, Xe§
Pr'(7)

Relaxation DX, p)<ti+r+dp,p), X €S
Pr'(z+B))

D(X,q;) < 7, X € S
D(X,q;)<1, X €S

D(X,q) <t} X €S

D(X,q))<7, X €S
D(X,q,)<t, X €S

DX,g)<tf, X €S

constraints again with distinct ADPs. Finally col-
umn 4 shows a simplification of the constraints
when the covering radii are identical. Constraint
aggregation for the covering problem can reduce
substantially the number of constraints. With n
distinct ADPs, there are exactly n constraints for
the aggregate problem, reduced from m for the
original problem. Denote by O = {qi,...,4,} the
set of all distinct ADPs. Let I; denote the set of all
indices of DPs aggregated into g;, that is, /; =
{lpl, ij}’j: 11-"1"'

In Section 5, we provide examples separately for
the case r = 0. Note r =0 if ' =S. A consider-
ation of Table 3, along with reasons similar to
those for Qualitative Insight 1, leads to the fol-
lowing note and qualitative insight.

Extra structure note. If all ; = ¢, and there is some
i € I; with p; = g;, then min{d(p;,q;):i €} =0
and 1:;.‘ =r+t.

For reasons similar to those given for Qualita-
tive Insight 1, we also have

Qualitative Insight 2. If all ; =¢, then Q and &
should be a good aggregation if, for all j=
1,...,n,

t > max{d(p;,q;) : i € [},
t> r+min{d(p;,q;) : i € I;}.
K-Center problem. Suppose, instead of the above

covering problem, we have a K-center objective
f(X) = max{w,D(X,p;) :i=1,...,m}, with the

same distance constraints and given informa-
tion of the above covering problem, and dis-
tinct ADPs gy,. .., g,. Define w; = max{w; : i € I;}
for j=1,...,n, and eb=max{wd(p,q;):i¢€
I;,j=1,...,n}. We then have f'(X) = max{w;,D
(X,q;): j=1,...,n}. We can take #, and f, to
be the same as for the covering problem. Assum-
ing §' is an r-cover of S, Theorem 2 applies to
this problem with o; =eb and o = max{w;(r+
d(pi,p})) :i=1,...,m}. Note, if all w; =1 then
o =r—+ o

We can obtain a smaller value of «; with an
extra assumption. Suppose each ADP is some DP,

so that f'(X) < f(X) for all X. Note that Lemma 1
applies for any choice of the pl, say pl =a;, i =1,
...,m. Hence, with; 4 = {ay,...,a,}, D(¥x,4) <
D(X,P)+re+ T(P,A). If A =P then D(Yx,P)<
D(X,P) + re. Thus by applying any SAND func-
tion g, we can conclude that g(D(Yx,P))<
g(D(X,P)) + g(re). When g is the weighted max-
function of this problem we also know that
S'X)<S(X) for all X, and f(¥c) = g(D(¥x, P)),
F(X) = g(D(X,P)). Thus f'(Yy) <f(Y) <f(X)+
g(re). Thus (Assumption I} &y = g(re) = max{w;r :

i=1,...,m}=rmax{w;:i=1,...,m}.

5. Computational experience

In this section we present some computational
experimentation, illustrating Theorem 1 for the
covering location model with rectilinear distances,
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for several large-scale data sets, assuming r = 0.
The approach employs several different aggrega-
tion methods, which we outline only; see Emir-
Farinas and Francis (2004) for more details. We
observe from the experimentation that solving
only the aggregated problem often underestimates
the actual minimal objective function value. Also,
it is possible, with enough ADPs (a relatively small
number compared to the number of DPs), to find a
restriction and relaxation of the aggregated prob-
lem that together provide an optimal solution to
the original problem.

Some notation is useful. Given any ADP set Q,
for each g; € Q, let I; again denote the set of in-
dices of DPs aggregated into ADP g, (those closest
to g;). For each ADP g;, define y;, = min{d(g;, p/) :
pi € I;} and §; = max{d(q;, p;) : p: € I;}. With ref-
erence to Table 3, we then have 77 =1-9,
17 =t+y, for all g;. With reference to Table 1,
because there is no aggregation of DPs in the ob-
jective function, we have o) = a; = 0. Further, the
vectors 8, and B, are given by §, = (t}), B, = (7}).

For any given ADP set Q, let LB and UB de-
note the respective optimal objective function
values of the following aggregated problems:

Relaxation:

LB = min [X| s.t. D(X,q;)<t+7y;, q;€0;
Restriction:

UB = min |X| StD(X,q,)ét—éj, CIJEQ

Theorem 1 gives LB < v(7), v'(t) < UB, where v(7),
v'(t) are the optimal objective function values of
the original and aggregated covering problems
respectively.

We considered three aggregation methods,
which we refer to as pick the farthest (PTF), ran-
dom, and independent projection algorithm (IPA).
PTF is based on the 2-approximation algorithm of
Dyer and Frieze (1985), and has previously been
used by Daskin et al. (1989) for aggregation for
various covering problems. PTF constructs an
ADP set Q as follows. The first element of Q is any
randomly chosen DP. Then, if Q denotes the cur-
rent ADP set, Q is augmented with a DP p; for
which D(Q, p;) is largest (p; is the farthest DP from
Q). Termination occurs when |Q| is sufficiently

large. The complexity of the method is O(|Q|m).
The Random method, used for comparison pur-
poses and for its simplicity, makes a random se-
lection of ADPs from among the DPs.

IPA is designed specifically for rectilinear dis-
tances. For any given planar covering problem
with rectilinear distances we use a well-known
linear transformation T(x,y) = (x+y,—x+y)
(Francis et al., 1992, p. 231) to the DPs to obtain
an equivalent problem with Tchebyshev distances.
The transformed DPs are then projected onto the x
and the y axes. These two sets of projected points
on the axes provide the input data for solving two
covering problems on the real line to optimality,
using a covering radius much smaller than the
value ¢ of interest. The solution to each covering
problem on the real line is a collection of intervals.
The Cartesian product of the two sets of intervals
forms a collection of cells in the plane. For each
cell that has at least one DP a (Tchebyshev) 1-
center problem is solved to find the ADP for all
DPs in that cell. Applying the inverse transfor-
mation 7" (u,v) = 4 (u — v,u + v) to this collection
of ADPs provides the set O of ADPs for the
original covering problem with rectilinear dis-
tances. Due to ranking the DPs for the covering
problems on the real line, the complexity of IPA is
O(mlogm). Several factors must be considered in
making a choice of the covering radius p for each
covering problem on the line. If we want the dis-
tance between each DP and its ADP to be at most
¢ (say), we choose p < &. If we want approximately
n ADPs, and 4 denotes the total area of the set
containing all the DPs, we rely on a formula from
Francis and Rayco (1996) and choose p approxi-
mately equal to /(4/(2r)). To have an aggrega-
tion of high quality, we also want p < ¢, the
covering radius of the original problem. Some
degree of trial and error may be necessary to find a
good choice of p.

We used two data sets. A random problem had
50,000 DPs uniformly distributed in a square of
dimensions 1000 by 1000, and a covering radius of
t =250. A second problem with real data, for
Palm Beach County, Florida, had 69,960 DPs and
a radius of 50,000 feet (15,240.2 m). The DPs are
power transformers for a utility network, and
closely follow the street network. The dark regions
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Fig. 2. DPs, and 703 ADPs located according to IPA for Palm
Beach Co.

in Fig. 2 illustrate the DPs for the latter data set.
The light points in Fig. 2 are the ADPs, found with
IPA.

All the aggregated covering problems were
solved as continuous rectilinear covering prob-
lems, using well-known reduction techniques (see
Garfinkel and Nemhauser, 1972) with CPLEX
(Version 7.0), and a well-known finite dominating
set (FDS) principle. The FDS principle, intro-
duced by Hooker et al. (1991) for location prob-
lems on networks, narrows the search for an
optimal solution to a predetermined finite set of
points. For the continuous planar location-cover-
ing problem with rectilinear distances, one version

of the FDS principle is as follows. Consider the set
of all ¢, (rectilinear) neighborhoods, squares each
with a center at some ADP and radius being the
corresponding covering upper bound; each edge of
each square makes a 45° angle with an axis. It can
be shown that a FDS in this case consists of the set
S of (a) all centers of isolated squares, together
with (b) edge intersections of all pairs of nondis-
joint squares. (We actually used a superset of S, by
including all four vertices of the rectangle formed
by the intersection of each pair of nondisjoint
squares.) Note that the total number of points in
S to be considered is bounded above by |Q|+
2l0/(1Q1 - 1)/2 =10/

Tables 4 and 5 show the upper and lower
bounds on (1) for the uniform and Palm Beach
County data sets respectively. In the tables, N/A
means 6, >t for some ADP g;. For IPA, the
number of ADPs is chosen to be close to the
nominal number of interest. For both random and
PTF, the aggregated problem is identical to the
lower bounding problem, since the ADPs are a
subset of the DPs, and therefore all y, = 0. For
IPA, we show the optimal value of the aggregated
problem, v'(z); it is the same as the corresponding
lower bound value except for one instance.

Note that IPA and PTF usually give the best
upper bounds (UBs) and lower bounds (LBs) re-
spectively. Regardless of the aggregation level and
the scheme, LBs and UBs are bounds on the same
v(t). Therefore, the maximum (minimum) of the
LBs (UBs) is also a LB (an UB) on v(r). We
highlight the best lower bounds and upper bounds
in the tables.

Table 4

Lower and upper bounds on v(t) for the uniform DP data set
No. of IPA No. of PTF Random
ADPs LB v(x) UB ADPs LB UB LB UB

53 8 8 15 50 9 28 7 N/A

151 11 11 17 150 10 18 9 20
255 10 10 16 250 11 17 10 19
349 10 10 14 350 12 16 10 18
442 10 10 13 450 12 15 11 17
543 12 12 14 550 12 15 11 17
661 12 12 14 650 12 15 12 17
757 12 12 14 750 12 15 11 16
863 11 12 14 850 13 14 11 17
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Table 5

Lower and upper bounds on v(z) for the Palm Beach County data set
No. of IPA No. of PTF Random
ADPs LB v (1) UB ADPs LB UB LB UB
100 11 11 16 100 12 20 6 N/A
199 12 12 16 200 13 17 6 N/A
306 12 12 15 300 13 16 6 N/A
399 12 12 15 400 13 15 8 N/A
498 13 13 15 500 13 16 8 N/A
599 14 14 15 600 13 15 8 N/A
703 13 13 14 700 13 15 7 N/A
807 13 13 14 800 13 15 8 N/A
899 13 13 14 900 13 15 8 N/A

For the uniform problem, we conclude v(t) =
13. Even though the aggregate problem providing
the LB has the same number of centers as the
aggregate problem providing the UB, it may not
be feasible. By contrast, the aggregated problem
with 442 ADPs located with IPA and providing
the UB gives an optimal solution to the original
problem.

Similarly, the best LB and UB are 14 for the
Palm Beach County problem. The aggregated
problems with 703, 807 and 899 ADPs located
according to IPA all give an optimal solution to
the original unaggregated covering problem. Note
there is no aggregation level shown in Table 5 with
LB = 14 =UB. However, we did find such a level,
using IPA with 2047 ADPs.

Fig. 2 shows both the DPs and the ADPs for the
Palm Beach County data set, based on IPA with
703 ADPs. Fig. 3 shows the solution to the cor-
responding restriction, which gives a provably
optimal solution to the original problem.

Figs. 4 and S5 give histograms of the gammas
and deltas for the problem of Fig. 2 found using
IPA. Note the variety of values in the two histo-
grams, and the opposite skewness tendencies of the
distributions. By perturbing the radius ¢ of the
aggregated problem (17 =t—9;, 17 =1+7y) we
obtain both the restricted and relaxed problem.
The opposite skewness tendencies mean that the
restriction is more of a perturbation than the re-
laxation.

In conclusion, it is clear that the quality of the
solutions obtained by this bounding approach is
sensitive to the number of ADPs, and that there is

Fig. 3. Solution to aggregated problem providing UB, with
radius 50K feet.

Histogram of gammas

Frequency

Fig. 4. Histogram of gammas for Fig. 2 problem; y, =
min{d(q;,p,) : p; € [;}.
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Fig. 5. Histogram of deltas for Fig. 2 problem; ¢, =
max{d(g;,p;) : pi € I;}.

a danger of obtaining an inaccurate solution by
not using enough ADPs, or using an inferior ag-
gregation method. Using enough ADPs can yield
an optimal solution to the unaggregated original
problem. If there are |Q| ADPs then, prior to the
use of reduction methods, the aggregated covering
problem, posed as a 0-1 integer programming
problem, will have |Q| constraints (rows) and no
more than |Qf° variables (columns). By contrast,
under the same conditions the size of the original
problem with m DPs is m rows and no more than
m? columns. For the Palm Beach County problem,
m= 69,960, while |Q| < 900.

6. Summary and conclusions

In this paper we have considered how DP, and
solution space, aggregation can create error in a
class of location models. We introduced two-sided
error bound parameters o, and o, as measures of
objective function error, and vectors 8, and §, as
measures of constraint and solution space aggre-
gation error. An examination of the « and f
bounds occurring in Section 3 and later shows that
each such bound is nondecreasing in the terms
d(p:,p}) and in r. The conclusion is clear that the
smaller these terms are the better the aggregation
will be.

Via Theorem 1, we showed how constructing a
relaxation and a restriction of the aggregated
problem can provide optimality bounds on the
original problem, and in Theorems 2 and 3, pro-
vided means of computing these bounds for SAND
location models. We then considered covering and

related center problems to illustrate the bounds,
and for purposes of computational experimenta-
tion. These problems demonstrated that the
bounds can be tight. Further, for covering and
center problems, if each ADP is an original DP
then the bounds of Theorems 2 and 3 can be im-
proved. Computational experience for these prob-
lems seems encouraging. The ratio eb/¢ appears as
if it may be a simple, useful measure for constraint
aggregation error, and deserves further consider-
ation. Because our results apply to a number of
location models besides the covering and center
models, there are considerable opportunities for
further computational experimentation.

We have assumed that DP aggregations are
given. While this may be true, often they must be
determined. The following literature deals with
determining such aggregations for specific models
having SAND structure: Francis and Rayco
(1996), Francis et al. (1999), Rayco et al. (1997,
1999), Zhao and Batta (1999, 2000). Our work
now opens the question of how to determine good
aggregations for the class of SAND models we
have studied.
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