DISCRETE
APPLIED
MATHEMATICS

ELSEVIER Discrete Applied Mathematics 87 (1998) 229-243

Fully polynomial approximation schemes for locating
a tree-shaped facility:
A generalization of the knapsack problem

Arie Tamir

Raymond and Beverly Sackler Faculty of Exact Sciences, Department of Statistics and Operations
Research, Tel Aviv University, Ramat-Aviv, 69978 Israel

Abstract

Given an n-node tree T =(V,E), we are concerned with the problem of selecting a subtree of
a given length which optimizes the sum of weighted distances of the nodes from the selected
subtree. This problem is NP-hard for both the minimization and the maximization versions
since it generalizes the knapsack problem. We present fully polynomial approximation schemes
which generate a (1 + ¢)-approximation and a (! — &)-approximation for the minimization and
maximization versions respectively, in O(n’/¢) time. © 1998 Elsevier Science B.V. All righis
reserved.

Keywords: Facility location; Tree-shaped facility; Knapsack problems

1. Introduction

Let T=(V,E) be an undirected tree with node set ¥ ={vy,...,v,} and edge set E.
Each edge is assumed to be rectifiable. In particular, an edge is identified as a unit
interval so that we can refer to its interior points. We assume that 7 is embedded
in the Euclidean plane. Let A(T) denote the continuum set of points on the edges
of T. We view A(T) as a connected and closed set which is a union of (n — 1) unit
intervals. Let P(v;,v;) denote the (unique) simple path in A(T) connecting v; and v;.
Suppose that T is rooted at v;. For each node v, j=2,...,n, let f(v), the parent of
vj, be the node v € ¥, closest to v;, v #v;, on P(vy,v;). With the above notation we set
E={ey,...,en}, where e;, j=2,...,n is the edge connecting v; with its parent f(v;).
A point (x,/), 0<x<1, on ¢; is represented by its Euclidean distance x from f(u).
Specifically, the endpoints (nodes) of e;, f(v;) and v;, are represented by (0,/) and
(1,/), respectively.

A subset Y CA(T) is a subtree of T if Y is both connected and closed. Y is also
viewed as a finite (connected) collection of partial edges (closed subintervals), such
that the intersection of any pair of distinct partial edges is empty or is a point in V.

0166-218X/98/519.00 © 1998 Elsevier Science B.V. All rights reserved.
PII S0166-218X(98)00059-6

230 A. Tamir! Discrete Applied Mathematics 87 (1998) 229-243

A subtree is said to be discrete if all its (relative) boundary points are nodes of 7. It
is almost discrete if at most one of its boundary points is not a node.

An edge €;, j=2,...,n, is associated with a positive integer, a;; a; is the length of
e;. If (x,j) and (y,/) are two points on e; the length of the partial edge connecting
them is a;|x — y|.

The numbers as,...,a, induce a distance function on A(T). If (x,i) and (y,)) are
two points consider the unique simple path in 4A(T) connecting them. This path is
viewed as a collection consisting of edges and at most two partial edges. The distance
between (x,!) and (y,j) is the sum of the lengths of the edges and partial edges on
the path.

Similarly, if ¥ is a subtree, the length of ¥, L(Y), is the sum of the lengths of its
edges and partial edges.

Finally we define, d(v;,Y), the distance between a node vy €V and a subtree
Y CA(T), to be the distance of v; to the closest point in Y. In particular, if v is
in Y then d(v;,Y)=0.

In this paper we discuss the problem of locating a tree-shaped facility (a subtree)
of a given length in a tree network, with the objective of optimizing the weighted
sum of node distances from this facility. To define the problem formally, suppose that
each node v, j=1,...,n, is associated with a nonnegative integer weight w;. For each
subtree Y C A(T) define

F(Y)= Zw,-d(_u,-,Y).

j=1

Let A be a nonnegative integer satisfying 4 <L(T). We consider the following two
location models.

Min F(Y)
(1.1)
st. L(Y)<A,
Y is a subtree of T,
Max F(Y)
(1.2)
st. L(Y)=A,

Y is a subtree of T.

Note that (1.2) models the problem of locating an obnoxious facility. For example,
consider the problem of locating a garbage dumping area of a given size 4 along a
highway system [14].

When 4 =0 in the above problems, an optimal subtree must be a point. Thus, (1.1)
and (1.2) reduce to the classical median and antimedian problems, respectively. In
particular, O(n) algorithms are available for solving these models [5, 15].

Several instances of problems (1.1) and (1.2) have been studied in the literature,
[6,7, 11, 12]. Minieka [11] and Hakimi et al. [6] showed that there are optimal

A. Tamir! Discrete Applied Mathematics 87 (1998) 229-243 231

subtrees for (1.1) and (1.2) which are almost discrete. Minieka presented a greedy-
type polynomial algorithm to solve problem (1.1). Rabinovitch and Tamir [12] proved
that problem (1.2) is NP-hard and gave a pseudopolynomial algorithm for its solution.
Hakimi et al. [6] considered also the discrete versions of (I1.1) and (1.2), where the
selected subtree facility is further restricted to be discrete. They observe that the dis-
crete versions are NP-hard since they generalize respectively, the minimization and the
maximization knapsack problems.

In this paper we focus on the above discrete problems and present fully polynomial
approximation algorithms. We note that such algorithms for the knapsack problem have
already been presented in the literature [4, 10, 13]. Thus, our results can also be viewed
as a generalization of these studies.

Let F* denote the optimal objective value of the discrete version of (1.1) ((1.2)).
Let ¢ be a positive number. A discrete subtree Y is called a {1 + &)-approximation
solution ((1 — &)-approximation solution) if it satisfies the constraints of (1.1) ((1.2)),
and F(Y)<(1 +e)F* (F(Y)=(1 — £)F™).

The algorithms we present generate a (1 + ¢)-approximation and a (I — ¢)-approxi-
mation for the minimization and maximization versions respectively, in O(n?/c) time.
The algorithms are based on an application of the interval partitioning method sug-
gested in [13]. A main ingredient of this method is a dynamic programming algorithm
which solves the given problem exactly in pseudopolynomial time. For that purpose
we implement the “left-right” dynamic programming technique of {8]. Our main con-
tribution in this general approach is the preprocessing, where we improve upon the
obvious factor of » heuristics and efficiently compute a 2-approximation and a 1/2-
approximation for the minimization and maximization problems respectively. These
improvements yield a running time speedup of a factor of » over the straightforward
“left-right” approximation scheme, from O(n*/¢) to O(n?/e).

1.1. Notation and preprocessing

To facilitate the discussion we introduce the following notation. Suppose that the
tree T=(V,E) is rooted at node v, and let vj,vs,...,v, be a depth-first ordering of
the nodes in V. For each node v; in V' define V}, the set of descendants of v;, to be
the set of nodes v in V having 1; on the unique path connecting them to the root
vy. Define S;, the set of children of v, to be the subset of descendants of v; that are
connected to v; with an edge. Note that 1 is in ¥; but not in S;. Set s, =|S;|. For
any f, t=0,...,s;, let T{j,7] be the subtree of T induced by v;, the first ¢ children (in
order of index) of v;, and all the descendants of these t children. Similarly let T'{/,]
be the subtree of T induced by 7/,¢} and all nodes in ¥ with indices lower than that
of v;. Note that 7T'[,¢] is a subtree rooted at v;. Let V[/,t] and V'[},t] denote the
node sets of T[j,¢] and T'{},1], respectively.

Let 77 be a discrete subtree of T containing the root v;. A node v; of T’ is called a
leaf of T', if it has no children in T’. The edge ¢;, connecting v; to its parent f(v;), is

232 A. Tamir| Discrete Applied Mathematics 87 (1998) 229-243

then called a leaf edge of T'. For each node v; in ¥ define

W, = Zwi’ A;= Za,- and D;= Zwid(viavj)~

vEY vEW v EY

For convenience we set a; = 0. For each j=2,...,n, we also define Dj.' to be the sum
of weighted distances of the nodes in ¥; to the parent of 15, f(v;). Thus, D} =D;+Wa;.
We obtain the following recursive equations:

Wi=wi+ Y W, Aj=aj+ Y A and Dj= > (Di+ Hiar).
UAESJ UkES/ l/‘kES,‘

Starting with the leaves of the tree we recursively compute W}, 4;, D, and D;F, for
all j=1,...,n, in O(n) time.

2. The minimization model

In this section we discuss the discrete version of (1.1). We start by considering the
following restricted version, where the selected subtree must contain a distinguished
node.

Min F(Y)=) wd(y,Y)
j=1
st. L(Y)<d4,

2.1)

Y is a discrete subtree of T containing v,.

We note in passing that (2.1) generalizes the knapsack minimization problem, and
therefore it is NP-hard.

Let WD(A) denote the optimal objective value of (2.1). Given £>0, we present
an O(n?/e) algorithm that finds a (1 + ¢)-approximation for problem (2.1). (Such
an algorithm is called a fully polynomial approximation scheme [2].) For compar-
ison purposes the fastest known algorithm for the knapsack minimization problem
is also of the same complexity [4]. We start by producing a 2-approximation
solution.

2.1. A 2-approximation

Consider first the relaxation of (2.1) where the selected subtree is not restricted to
be discrete. This relaxed problem has a greedy-type polynomial algorithm which is the
natural extension of the algorithm in [11] for the case where v; is the centroid of the
tree and w; =1, j=1,...,n. (Recall that a node v€ V is a weighted centroid of T if
no connected component obtained from 7 by the removal of v has a total node weight
exceeding 37, w;/2.)

A. Tamir ! Discrete Applied Mathematics 87 (1998) 229-243 233

The Greedy Algorithm

Y(A) will denote an optimal solution to the relaxation of (2.1) where the selected

subtree is not required to be discrete.

Step 0: Set i=1, A'=0, Y(4")={wn}.

Step 1: Let E; CE be the set of all edges that are adjacent to Y(4'), i.e., have exactly
one node in Y(A4').

Step 2: Select an edge ej(;) in E; such that W)= Max(, ez} {W}-

Step 3: Set At =A4' + aj;), and let Y(A'T!) be the subtree defined as the union of
Y(A4") and the points (x, j(i)), 0<x<1, on ey;.

Step 4: If i + 1 =n stop. Otherwise set i+ i+ 1 and go to Step I.

We claim that the greedy algorithm correctly finds an optimal subtree for the relaxed
problems with 4 =A', i=1,...,n. (Note that A" = ZE,EE a;.) Furthermore, let 4 be a
positive number and A4’ <4 <A™ for some i=1,...,n — 1. Then the optimal subtree
for the relaxed problem is the union of Y(4') and the set of points (x, j(i)), 0<x <
(A - Ai)/aj(,-), on €j(y.

The validity proof of the greedy algorithm can be derived from a reformulation of
the problem as a continuous knapsack problem. First, each edge e; in E is associated
with a variable x;. x; is bounded between O and 1, and it represents the partial edge
of e; extending from f(y;) to the point (x;,) on e;. The relaxation of problem (2.1)
can now be written as

Min Z Wa;(1 — x;)

j=2
d 2.2
s.t. Zajxj$A, ()
j=2
O$Xj<1, j=2,...,n,
if f(y)=v;, i#], and x;>0, then x;=1, j=2,...,n

Deleting the last constraint, we obtain the following continuous maximum knapsack
problem.

n
Max E Wa;x;
Jj=2
n

s.t. Z ajxj $A,
J=2

ngjsl, j=2,...,n.

(2.3)

From the nature of this particular continuous knapsack problem, it follows that an
optimal solution can be obtained by first ranking the variables according to descending
order of the {#;} coefficients, and then, following this ranking, successively assigning
the largest possible values to the variables. In such a solution all variables but possibly
one, will be equal to 1. From the definition of the {#;} coefficients it follows that if v;
is the parent of vj, then W= ;. Thus, we can assume without loss of generality that

234 A. Tamir| Discrete Applied Mathematics 87 (1998) 229-243

the optimal solution to (2.3), generated above, coincides with the solution generated
by the Greedy Algorithm. In particular, it is also feasible, and therefore, optimal to
problem (2.2). This validates the Greedy Algorithm.

The above algorithm finds the best subtree containing a distinguished node, v,. It
can easily be modified to find an optimal subtree containing any prespecified connected
and closed subset of A(T). This is achieved by first contracting the given subset to
one of its points, and then applying the above algorithm.

The Greedy Algorithm can be implemented in O(nlogn) time. Throughout the al-
gorithm we maintain the numbers {W;}, ¢; € E;, in a heap. Since each edge enters the
set E; at some iteration / and departs at a later iteration, the total number of insertions
and deletions performed on the heap is 2(n — 1). Thus, the total effort is O(nlogn).

We note that problem (2.3) can actually be solved in linear time, by using the
linear time algorithm of [1] for the continuous knapsack problem. However, in the 2-
Approximation Algorithm we will need the ranking of the variables (edges), produced
by the Greedy Algorithm. We are now ready to present a scheme for generating a
2-approximation.

A Z-approximation algorithm

The following 2-phase scheme generates a collection S of at most (# — 1) feasible
subtrees to problem (2.1). We will show that the best of these solutions constitutes
a 2-approximation solution. To understand the formal description of the procedure,
note that in the first phase we apply the Greedy Algorithm until we generate the
first subtree Y!, and the first critical edge, i.e., until we exceed for the first time the
length upper bound A4. The second phase generates a collection S={Y',Y2%,...,Y'},
t<n — 1, of subtrees and a respective sequence E¢= {em(1),€m2),---,ems} of edges
that we call critical. The t subtrees in S satisfy the constraints of (2.1). We will
of (2.1).

Since we will deal only with discrete subtrees, in the sequel we refer to a subtree
as a set of edges that satisfy the connectivity property. We assume without loss of
generality that L(7')>A, since otherwise the approximation algorithm will output T
itself and thus be optimal.

Phase 1

Step 0: Set i=1, X'={v}, 4'=0, and E' =0.

Step 1: Define E; CE to be the set of all edges that have exactly one node in X’.

Step 2: Select an edge e in E; such that W)= Max(, ez {#}. Insert the edge
ej;y into E'.

Step 3: Set A+ =A' +a;;). If A1 >4 proceed to Step 4. If A <4 let X'+ be the
union of X' and the set of points on ej;). Set i« i+ 1 and go to Step 1. If
A1 =4 let Y* be the union of X' and the set of points on e;;). Stop. (Y'*
is an optimal solution of problem (2.1).)

Step 4: Define Y!=X" and m(1)=(i). Stop.

A. Tamir| Discrete Applied Mathematics 87 (1998) 229-243 235

Let E' ={ejq),---. ¢}, (€j(p) =em(1)), be the sequence of edges generated during
the first phase. This phase also outputs the subtree Y', which is feasible to problem
(2.1). Y' is the first subtree in the collection S. Recall that Y' consists of the edges
{eji1),---»ej(p—1y}. In the second phase we scan the sequence of edges £ ' backwards,
and delete certain edges to generate at most p — 1 additional subtrees.

Phase 1T

Step 0: Set El = {e}-“),...,ej(p)}, Ec:{em(\)}, k:2, i= l, A= Z€j€E‘ aj, and F =
F(Y') — Wy »)aj(). Go to Step 4.

Step 1: If the edge ej(,—; is a leaf edge of T', and A’ — a;,—i)> 4, delete the edge
€j(p—i) from El, set A’ A" — Aj(p—i)s FeF+ M(p_i)aj(p_i) and [i+ 1.
Go to Step 4.

Step 2: If the edge ej,—; is a leaf edge of T!, and A’ — aj p-iy <A, define m(k)=
j(p—i)and Y¥=E' — {enu)}. Insert the edge e into ES. Let F(Y*)=F
+ Wy p—iajp—i)- Set k—k + 1, and i i+ 1. Go to Step 4.

Step 3: If the edge ej(,—;) is not a leaf edge of T', set i —i -1, and go to Step 4.

Step 4: Let T' be the subtree whose edge set is E'. If p —i=0 stop. Otherwise, go
to Step l.

The second phase generates a collection S={Y!,..., Y}, t<p, of feasible sub-
trees and a respective sequence E€ = {em1),... em} of edges that we call critical.
The subtrees in S satisfy the following nestedness property. For each k=1,...,1 — 1,
Y ! C Y*U {emus)}. The algorithm also outputs the sequence of values {F(Y'),...,
F(YHY}.

Proposition 2.1. Let Y* be an optimal subtree solving problem (2.1). Let E° be the
set of critical edges produced by the 2-Approximation Algorithm. Then there exists
a critical edge in E° which is not contained in Y*.

Proof. The subtree 7' defined at the end of Phase II is the minimal subtree containing
the root v, and the entire set of critical edges. Since the algorithm stops at this iteration
we must have L(T')>A4. Thus, if Y* is assumed to contain all critical edges we have
Y* DT, L(Y*)>L(T')>A, which in tum contradicts the feasibility of Y*. [

Proposition 2.2. For k=1,...,t, let E{ ={em1),...,emk)}. Set E§=0. Define Ti as
the subtree consisting of Y* and the set of points on the critical edge ey Let Y
be any subtree containing vy and the critical edges in E{_,. If L(Y)<L(TX) then
F(Y)Y=F(T!).

Proef. At each iteration £ of Phase II, we delete an edge having the lowest possible
value of W, which is not in the minimal subtree containing the root vy, and the edges in
E§_,. Therefore, it follows from the validity of the Greedy Algorithm and the definition

236 A. Tumirl Discrete Applied Mathematics 87 (1998) 229-243

of T%, that T* has the lowest possible value of the objective F amongst all subtrees
Y (not necessarily discrete) containing v; and Ef_,, and satisfying L(Y)sL(Ti), O

Theorem 2.3. Let {Y',...,Y*}, t<p, be the collection of subtrees generated by the

,,,,,

Proof. Let Y* be an optimal subtree solving problem (2.1), i.e. F(Y*)= WD(A4). Using
Proposition 2.1, we let k& be such that Y™ contains the critical edges Em(1)s+ - »Cmik—1)s
but not ey). Let T* be defined as in Proposition 2.2. Since we have L(T%)>A4>L(Y*)
it follows from Proposition 2.2 that

F(TY)<F(Y™). (2.4)
From the definitions,

F(T%)=F(Y*) — Wy amep)- (2.5)
Since e,y is not contained in Y*, we have

F(Y™) 2 W)@t (2.6)
Thus, combining (2.4)—(2.6) we conclude that

2F(Y*)2F(TE) + Wopyampy =F(Y*). O

It is easy to observe that the 2-Approximation Algorithm can be implemented in
O(nlogn) time, since the complexity bounds of Phases I and II are O(nlogn) and
O(n), respectively.

2.2. (1 + &) approximation schemes

In this section we present a fully polynomial approximation scheme for problem
(2.1). Specifically, we present an algorithm which given an instance of the prob-
lem and a positive ¢, generates in O(n?/¢) time, a subtree Y such that L(Y)<4 and
F(Y)<(14+&)WD(A). We apply the interval partitioning approach suggested in [13]. To
implement this approach we first introduce a dynamic programming algorithm which
solves problem (2.1) in pseudopolynomial time. This algorithm is based on the non-
standard “left-right” approach of [8]. It solves (2.1) in O(nMin{4, WD(A4)}) time.
(Alternatively we could have used two other dynamic programming algorithms. The
first is based on the standard “bottom-up” approach (see [12]), and it solves (2.1) in
O(n(Min {4, WD(4)})*). The second algorithm is based on the nonstandard “bottom-
up” approach of [3]. Its running time is O(nMin {4, WD(4)}).)

The left-right approach of [8] uses the subtrees T'[j,¢], defined in Section 1.1.
Following [8] we order these subtrees such that T'[j,¢] precedes T'[j,¢ + 1] for all
nodes v; and ¢t=0,1,...,s;, and so that if vy, is the tth child of v;, then 7[j,¢ — 1]

A. Tamir | Discrete Applied Mathematics 87 (1998) 229-243 237

precedes T'[(),0] and T'[(¢),s;u)] precedes T'[j,¢]. For each triple [j,¢,L] define
problem (2.7):

Min Z wid(v;, Y)
eVl 2.7
st. L(Y)<L,

Y is a discrete subtree of 7'[j,f] containing v; and vj.

We note that with the above definitions, although T'[/,¢] and T'[j(¢),5})] are iden-
tical as trees, a solution to the problem corresponding to the second must include vy,
while a solution to the problem corresponding to the first may not. Let g[j, ¢ L] be the
optimal solution value to problem (2.7). For each pair [j,¢] we maintain a (sorted)
list G[J,t] of pairs (g[j,t,L],L), L<A and g[j,t,L]<D, where D is some known pre-
computed upper bound on the objective value of (2.1). (Note that g is a nonincreasing
function of L, and therefore the ordering of the pairs is well defined.) The list will
consist of the nondominated pairs only. Thus, its size will be O(Min {4,D}).

The following recursive algorithm, which we call the Left-Right Algorithm gener-
ates all these lists.

1. If j=1 and + =0, then G[j,¢]={(0,0)}.

2. If j>1 and =0 suppose that v; is the kth child of v;. Consider the list G[i,k —1].
The list G[,0] is obtained from G[i,k — 1] by first adding the constant g; to the
L component of each pair in G[i,k — 1], and then omitting from this list all pairs
for which the L component is larger than 4.

3. If t>0 and vy is the rth child of v; then the list G[/,¢] is generated as follows.
Let G'[j,t — 1] be the list obtained from G[j,# — 1] by adding the constant Dj‘(‘l)
to the g coordinate of each pair in G[j,t — 1]. Delete from G'[f,¢ — 1] those pairs
with a g coordinate exceeding D. Next, let G be the list of pairs obtained by
merging the list G'[j,r — 1] with the list G[(¢),s;], according to the value of
the L component. Finally, delete all dominated pairs, i.e., if two pairs (g',L') and
(g%, L%) in G satisfy L' <L? and g' <g?, delete the pair (g%, L?). G[j,1] is defined
as the resulted list.

The optimal value of problem (2.1) is given by the smallest g component of a pair in
the list G[n,s,]. (Note that the node v, is a leaf of 7', and therefore s, =0.) It is easily
observed that the time needed to compute any list G[j,¢] is O(Min {4, D}). Therefore,
the total time to solve problem (2.1) by the above algorithm is O(n Min {4,D}). From
the results in Section 2.1 we can compute in O(nlogn) time a value of D which
is at most twice the optimal value of problem (2.1). Thus, problem (2.1) can be
solved in O(nMin {4, WD(A)}) time, where WD(4) is the optimal value of (2.1). We
note in passing that the O(nd4) and O(nD) bounds can also be achieved by using
the nonstandard bottom-up dynamic programming approach in [3], designed to solve
the knapsack problem with in-tree precedence constraints.

The above dynamic programming methods which solve problem (2.1) exactly
can be used by the interval partitioning method in [13] to yield a fully polynomial

238 A. Tamir! Discrete Applied Mathematics 87 (1998) 229-243

approximation scheme. The time bound for generating a (1 + ¢) approximation with
these approaches is O(n?/¢). For the sake of brevity we present the details only for
the approach in [8].

The (1 + ¢)-Approximation Algorithm

Let F%(4) be the 2-approximation value for (2.1) computed in Section 2.1. Given
a positive &, we partition the interval [0, F%(4)] into [2n/¢] consecutive subintervals,
cells, each but possibly the last one of length £F°(4)/2n. The approximation algorithm
follows the steps of the above Left-Right Algorithm. For each pair [/,] the algorithm
produces a list H[j,t] of at most [2n/e] subtrees of T'[,], {Y'}, containing v, and ;
such that the objective value of Y? with respect to problem (2.7), F(Y'), is in the ith
cell. In general, any subtree Y will be recorded by the respective pair (F(Y),L(Y)).
In the first step of the algorithm where j=1 and =0, the list H[1,0] contains only
the pair (0,0) corresponding to the subtree consisting of the node vy only. Recursively,
suppose that t =0 and v;, j> 1, is the kth child of v;. Consider the list H[i,k — 1]. The
list H[j,0] is obtained from H[i,k — 1] by adding the constant a; to the L component
of each pair and then removing all pairs such that the new value of L is greater than 4.
Next suppose that £>0 and let vy, be the ¢th child of v;. The list H[/,¢] is generated
as follows. Let H'[j,¢ — 1] be the list obtained from H[j,¢— 1] by adding the constant
DJ?(L,) to the F coordinate of each pair (F,L) in H[j,¢— 1]. Delete from H'[} ¢ — 1]
those pairs with an F coordinate exceeding F°(4). Place each of the remaining pairs
into the appropriate cell of the interval [0, FO(4)]. Let H be the union of H'[},t — 1]
and H[j(t),s;n) Each cell of the interval [0,F%4)] contains at most two F values
corresponding to two pairs in H. If a cell contains exactly two then remove from the
list H that pair with the higher L coordinate. Thus, H will contain at most [2n/e]
pairs, one for each cell of the interval [0,F%(4)]. Define H[j,t] to be equal to H.
The algorithm terminates with the final list H[n,0] corresponding to the leaf node
vp. Consider a pair (F*,L*) in this list with the smallest F coordinate. Let Y’ be
the respective subtree. The claim is that Y’ is a (1 + ¢)-approximation solution, i.e.,
F*<(1 +&)WD(A).

To validate the claim we first define an optimal solution to a subproblem (2.7)
defined by the triple [J,¢, L] to be relevant if L<A4, L is not smaller than the length of
the path connecting v; and v;, and the objective value is at most F°(4). It is clear that
only relevant solutions should be considered for optimizing (2.1). Indeed, in the above
approximation algorithm only the relevant solutions of the O(n) subproblems [, ¢] are
represented in the lists. If subproblem [/,] is processed at the kth step of the algorithm
and (F(Y),L(Y)) is any one of its relevant solutions, then it is represented by some
pair (F,L) in the list H[j,f] where |F(Y) — F|<keF%(4)/2n and L(Y)<L. (At every
step of the algorithm we introduce an additive error term of eF%(4)/2n whenever we
delete a pair corresponding to a cell containing exactly two elements.)

This proves that the pair (F,L) that we select in the last list H[n,0] satisfies L <4
and F <WD(4) + enF%(4)/2n<(1 + ¢)WD(A), since F®(4)<2WD(A). Thus, Y’ is a
(1 + &)-approximation solution.

A. Tamir| Discrete Applied Mathematics 87 (1998) 229-243 239

We have presented an O(»?/) algorithm to obtain a (1+¢)-approximation solution to
problem (2.1). However, (2.1) is a restriction of the original problem, since the optimal
subtree was restricted to include a distinguished node, namely v,. We can clearly solve
the original problem by solving # restricted problems. In the jth restricted problem, the
subtree is required to contain node v;, j=1,...,n. This approach takes O(n’/e) effort.
There is, however, a better implementation, which is based on a divide and conquer
approach, [12].

Suppose without loss of generality that v; is a centroid of the original tree T, i.e.,
no connected component of T, obtained by the removal of vy, contains more than
n/2 nodes. If the optimal subtree does not include vy, it is contained in a component
having at most n/2 nodes. Hence, it is sufficient to approximate the problem where the
optimal subtree must include v;, and then make recursive calls to problems of size at
most n/2+ 1. This fact implies that the total effort of obtaining a (1 + ¢)-approximation
for the unrestricted discrete version of problem (1.1) is also O(n?%/e).

3. The maximization model

In this section we briefly discuss the solution of the maximization version of (2.1).

Max F(Y)= wid(v;, V)
; 7 (3.1)

st. L(Y)=4,
Y is a discrete subtree of T containing v,.

Let WD(A) denote the optimal objective value of (3.1). We note that the left-right
dynamic programming algorithm of [8], and the nonstandard bottom-up algorithm of
[3], mentioned in Section 2, can easily be modified to solve problem (3.1). The com-
plexity bound for (3.1) obtained with these approaches is O(nMin {4, D}), where D
is some precomputed known upper bound on WD(4). We will show next how to find
in polynomial time a feasible solution ¥ to (3.1) such that WD(4)<2F(Y). Setting
D=2F(Y), we note that D is bounded between WD(A4) and 2WD(A). After we de-
rive such a solution we can mimic the approach in Section 2 and modify it to find a
(1 — ¢)-approximation solution to (3.1) in O(n?/e) time for every ¢ less than 1. Recall
that a feasible solution ¥ to (3.1) is a (I — &)-approximation if F(Y)>=(1 — e)WD(A).

3.1. A 1/2-approximation

First we note that we cannot apply the approach in Section 2.1. That approach is
based on an efficient algorithm to solve the relaxation of the minimization problem
(2.1), where the selected subtree is not restricted to be discrete. The respective relax-
ation of the maximization model (3.1) is NP-hard [12].

240 A. Tamir! Discrete Applied Mathematics 87 (1998) 229-243

Given a subtree Y containing v; and L(Y)>4, let N(Y)={yq),..., ()} denote
the set of nodes of V\Y that are connected to Y with an edge. These nodes are called
the neighbors of Y. Then we have,

P 14
> Au<Ad and F(Y)=) Di,
k=1 k=1

where A=A, — A. (Recall from Section 1.1 that 4, = 3} , a;.)
Thus, Y is fully characterized by its neighbors and we can use the above expressions

to reformulate (3.1).

Max Z D

nEeS

st Y Ae<Ad, (3.2)

RES
where S C V is a subset of distinct nodes

such that no node in .S is a descendant

of another node in §.

We assume without loss of generality that 4 is smaller than A, since otherwise A
in (3.1) is nonpositive and the optimal solution is trivial. If 4; is greater than A then
node v; cannot be in any feasible solution to (3.2). Thus, we assume that 4; is oo
whenever 4; is greater than A

The following heuristic for problem (3.2) is based on a simple intuitive greedy
approach. At each step we select a node with the highest contribution to the objective
per unit of the constraint (resource).

A 1/2-Approximation Algorithm for Problem (3.1)

Step 0: Set A'=0, D’=0 and let V'=0 and V"=V — {v}. For j=2,...,n, let
C, =D} /A;, 4;=4; and D/ =D},

Step 1: Select a node v; in V" with a largest C; coefficient. Delete v; and all its
descendants from V".

Step 2: If A' + A <A, insert v; into ¥’ and delete all the descendants of v; from V.
Add 4] to 4’, add D] to D' and go to Step 3. Otherwise, stop.

Step 3: For each node v; € V" having v; as one of its descendants subtract 4; from
A}, subtract Dj’ from D; and redefine Ci by C; =D;/A;. Go to Step 1.

Let V' ={vj),...,Up } be the subset of nodes which is output by the algorithm and
let v; be the respective node which has resulted in the termination of the algorithm in
Step 2. Note that V' is feasible for problem (3.2). Without loss of generality we may
assume that A4; <A since otherwise Aj = oo, and by the choice of 1 in Step 1, 4y =co
for every node v, which is not a descendant of a node in V' so that the solution
defined by V' is optimal. Define C =Maximum{D; |i=2,...,n, and 4;<A4}.

A. Tamir | Discrete Applied Mathematics 87 (1998} 229-243 241

The claim is that D =Maximum{3"7_, D;,,C} is the value of a 1/2-approximation
solution for (3.2). First note that D does indeed correspond to a feasible solution to
(3.2). To verify that WD(A4)<2D it will suffice to prove the statement that if ¥/(j)
is the set obtained from ¥’ by deleting all the descendants of v, then V'(j)U {y}
optimally solves problem (3.2) with 4" = anmeV’(j)A/'(k) + 4; replacing A. (Note that
A">A4.)

Indeed if the latter statement holds then

14
WDUHDUY = S Dy < Dy
By €V (J) k=1
<D+ C<L2D.

Formally, we need to prove the following proposition. (We will show that the heuris-
tic provides an optimal solution to a relaxation of (3.2) with 4” replacing A4.)

Proposition 3.1. Let ¥/ = {vq),...,)} be the subset of nodes generated by the al-
gorithm at the end of the t-th iteration. Then V! maximizes (3.2) with A= 3", _, Aiw-

Proof. We use the following integer programming formulation for (3.2):

n
Max E Wiax;
Jj=2

n
8.t Zajxj <A, (3.3)
j=2
x;<x; if vy is a descendant of v; (for every pair of nodes v; and v;),

x;€{0,1}, j=2,...,n

(Note that in the above formulation, x; =1 if and only if the node v; is a descendant
of some node in the selected set S.)

Consider the linear programming relaxation of (3.3) obtained by replacing the integer
binary constraints by restricting the variables to be between 0 and 1. Let j be an
index satisfying Dj+/Aj 2Dy /A for k=2,...,n. It is easy to sh(zw that for any positive
value of A there is an optimal solution where x; =Min {1,4/4;} for every i such
that v; is a descendant of v;. Arguing inductively, we then conclude that the greedy
approach used in the above approximation algorithm solves the linear programming
relaxation. In particular if we set A= 3",_, 4jx), we get an integer solution which in
turn must solve (3.2) for this particular value of 4. This completes the proof of the
proposition. [

To summarize, we have presented a greedy algorithm which finds a 1/2-approxi-
mation solution to problem (3.1). The running time of the algorithm is certainly O(n?).
As mentioned above, having found a 1/2-approximation solution we can then mimic the

242 A. Tamir| Discrete Applied Mathematics 87 (1998) 229-243

approach in Section 2 and find, for every ¢ bounded above by 1, a (1—¢)-approximation
solution to (3.1) in O(n%/e) time. For the sake of brevity we skip the details.

4. Final comments

We have presented above fully polynomial approximation schemes for problems
(2.1) and (3.1). In these problems the selected subtree Y is restricted to be discrete. As
mentioned in the Introduction, when we remove the discreteness assumption problem
(2.1) can be solved in polynomial time [11], while problem (3.1) remains NP-hard
{12]. In both cases there is an optimal subtree which is almost discrete. Consider
the variant of (3.1) when Y is now an almost discrete subtree of T containing the
distinguished node v;. Using the standard bottom-up approach, it was shown in [12]
that this problem can be solved in O(nd?) time. We note in passing that the latter
bound can be improved to O(nd) if we adopt the left—right dynamic programming
approach. Moreover, the fully polynomial approximation scheme for the discrete case
can be easily modified to find (1 — ¢)-approximations for the almost discrete case in
O(n?/e) time.

Finally, we note that the above approach can easily be modified to yield fully poly-
nomial approximation schemes even for some nonlinear objective functions commonly
used in location theory. For example, consider the following covering problem, [7].
Suppose that each node v; € V' is associated with two nonnegative integer parameters;
a radius #; and a penalty term p;.

Define

0 ifd(,Y)<n,
p; otherwise.

()= {

Thus, there is a penalty of p; if the node v is not within a distance of 7 from
the selected subtree Y. The objective function is to minimize the total penalty cost,
F(Y)= Z}':l fi(Y), subject to a length constraint as in (1.1).

More generally, our approach can be used to obtain fully polynomial approximation
schemes for any objective function F(Y)= Z;z‘ Si(Y), where fi(Y), j=1,...,n, is
a nondecreasing integer-valued function (not necessarily linear or stepwise linear) of
the distance d(v;, Y). It is easy to verify that the left-right procedure of Section 2.2
can be adapted to solve the general case, provided that we have an initial approx-
imation like the one we find in Section 2.1 for the linear case. However, it is not
yet clear whether the results of Section 2.1, where we obtain a 2-approximation for
the linear case can be extended to the general case of nondecreasing functions of
the distances. Instead, we can initiate the process for the general case by finding an
n-approximation solution. Such a solution can be obtained by minimizing the objective
tion for the minimum of F(Y). Starting with an n-approximation solution the running
time that we achieve for this general and unifying model is O(rn*/e). (The reader is

A. Tamir | Discrete Applied Mathematics 87 (1998) 229-243 243

referred to Labbé et al. [9] where the authors presented approximation schemes for
other nonlinear versions of the knapsack problem.)

References

[17 E. Balas, E. Zemel, An algorithm for large zero-one knapsack problems, Oper. Res. 28 (1980)
1130-1154.
[2] R. Garey, D.S. Johnson, ‘Strong’ NP-completeness results: Motivation, examples, and implications,
JACM 25 (1978) 499-508.
[3] G.V. Gens, Resource allocation in hierarchic systems, Eng. Cybernet. 22 (1984) 122-128.
[4] G.V. Gens, E.V. Levner, Computational complexity of approximation algorithms for combinatorial
problems, in Lecture Notes in Computer Science, vol. 74, Springer, Berlin, 1979, pp. 292-300.
5] A. Goldman, Optimal center location in simple networks, Transport. Sci. 5 (1971) 212-221.
po!
[6] S.L Hakimi, E. Schmeichel, M. Labbé, On locating path - or tree-shaped facilities on networks,
Networks 23 (1993) 543-556.
[7]1 V. Hutson, C. ReVelle, Maximal direct covering tree problems, Transport. Sci. 23 (1989) 288-299.
8] D.S. Johnson, K.A. Niemi, On knapsacks, partitions and a new dynamic programming technique for
q
trees, Math. Oper. Res. 8 (1983) 1-14.
{9] M. Labb¢, E.F. Schmeichel, S.L., Hakimi, Approximation algorithms for the capacitated plant location
problem, Oper. Res. Lett. 15 (1994) [15-126.
[10] E. Lawler, Fast approximation algorithms for knapsack problems, Math, Oper. Res. 4 (1979) 339-356,
[11] E. Minieka, The optimal location of a path or tree in a tree network, Networks 15 (1985) 309-321.
[12] R. Rabinovitch, A. Tamir, On a tree-shaped facility location problem of Minieka, Networks 22 (1992)
515-522,
[13] S. Sahni, General techniques for combinatorial approximations, Oper. Res. 25 (1977) 920-936.
[14] A. Tamir, Obnoxious facility location on graphs, SIAM J. Discrete Math. 4 (1991) 550-567.
[15] S.S. Ting, A linear time algorithm for maximum facility location on tree networks, Transport. Sci. 18
(1984) 76-84.

