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LEAST MAJORIZED ELEMENTS AND GENERALIZED
POLYMATROIDS

ARIE TAMIR

We prove that a bounded generalized polymatroid has a least weakly submajorized
(supermajorized) vector. Such a vector simultaneously minimizes every nondecreasing (nonin-
creasing), symmetric and quasi-convex function defined on the generalized polymatroid. The
same result holds also for the set of integer vectors of a bounded integral generalized
polymatroid. We then extend these results to more general sets, and discuss several
computational aspects.

1. Introduction. Veinott (1971) has shown that for any feasible linear network
flow model, there is a flow which simultaneously minimizes every symmetric and
quasi-convex function of the flows emanating from a single distinguished node called
the source. (The symmetry concept introduced by Veinott is weaker than the
conventional definition which requires the function to be invariant under permuta-
tions of its arguments.) Important applications of this result to deterministic produc-
tion-distribution models, inventory redistribution models and several maximum likeli-
hood estimation problems are discussed in Veinott (1971). Using the results by Dutta
and Ray (1989) we can also claim that the core of a convex game, which is known to
be nonempty (Shapley 1971), possesses a vector which simultaneously minimizes every
symmetric and convex function defined on the core. Related results are also discussed
by Megiddo (1974, 1977) and Fujishige (1980). We unify and extend the above results
to generalized polymatroids, which have been introduced by Hassin (1978, 1982) and
Frank (1984). We then extend these results to more general polyhedra, and discuss
related computational aspects.

2. Notation and basic definitions. . For any x = (x,,...,x,) in R, let x, >

> x;, denote the components of x in decreasing order, and let x| = (xm, . x[”])
denote the decreasing rearrangement of x. Similarly, let x., ..  x,, denote the
components of x in increasing order, and let x, = (x, ..., X,,) denote the increas-
ing rearrangement of x. For any x = (x,,...,x,) and y = (y,,...,y,) in R" we say
that x is lexicographically less than or equal to (greater than or equal to) y if x =y or
there exists an index ¢, t = 1,..., n, such that x, <y, (x, >y,) and x; =y, for any
i < t. We say that x is majorized by y, x <y, if

k
me< Zym, k=1,...,n—1,

i=1 =1

and

n n
Z Xy = Z Y-

i=1 i=1
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(If x is majorized by y we also say that y majorizes x.) We say that x is weakly
submajorized by y, x <, y, if

k k
me< Z}'m, k=1.....n
i=1

i=1
Similarly, x is said to be weakly supermajorized by y, x <" y, if

k Kk
Zx(i)> Z)’(,-), k=1,...,n.

=1 =1

It is easily verified that x <y if and only if x <, y and x <" y. We also note the
following proposition which we need for future reference.

ProposITION 2.1. (1) If x <, y then x, is lexicographically less than or equal

toy,.
(2) If x <" y then x , is lexicographically greater than or equal to y . .

The next results characterize the above terms of majorization (Marshall and Olkin
1979).

THEOREM 2.2. The following conditions are equivalent.

(1) x < y.

Q) T f(x) < X, f(y,) for all continuous convex functions f.

3) X' ,x; =Xy, and L'  max(0, x; —a) < L!_, max(0, y;, — a) for all real
numbers a.

THEOREM 2.3.  The following conditions are equivalent:

M x <, y.

(2) i f(x) < 8 f(y,) for all continuous nondecreasing convex functions f.
(3) £, max(0, x; — a) < L}, max(0, y; — a) for all real numbers a. ‘

THEOREM 2.4. The following conditions are equivalent:

(1) x <* y.

@) i, f(x) < Zi, f(y,) for all continuous nonincreasing convex functions f.
(3) &7, max(0,a — x;) < ', max(0, a — y,) for all real numbers a.

Least majorized elements. Let § be a subset of R". A vector x in § is said to be a
least majorized element of S if x <<y for all vectors y in §. A vector x in S is a least
weakly submajorized (supermajorized) element of S if x <, y (x <” y) for all vectors
y in S. There are several results in the literature proving the existence of least
majorized elements for certain subsets S. Veinott (1971) considers a linear flow
problem in a directed network. Defining S to be the projection of the set of feasible
flows on the subset of outflows from the source, he proves that S has a unique least
majorized element. He also proves that S§*, the subset of integer points in §, has a
least majorized element. (An integer least majorized element is not necessarily
unique.) A similar flow problem is considered by Megiddo (1974), where it is shown
that the respective set S constitutes a polymatroid. In his later paper (Megiddo 1977)
Megiddo presents a strongly polynomial algorithm which finds the unique lexico-
graphically maximum element x* in §, i.e., x% is lexicographically larger than or
equal to y, for all vectors y in S. (From Veinott’s results and Proposition 2.1 it
follows that x* is in fact the unique least majorized element of §.) Special cases of
the above models are discussed in Barel and Tamir (1981) and Granot et al. (1993).
Fujishige (1980) extends the results of Megiddo to a general polymatroid and presents
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an algorithm to find a lexicographically optimal base of the polymatroid with respect
to an arbitrary positive weight vector d. This weighted model is closely related to the
concept of d-majorization introduced by Veinott (1971). Neither Megiddo nor
Fujishige relate their results on lexicographically optimal bases to the stronger
concept of majorization. (From Proposition 2.1 we note that if an arbitrary set has a
least majorized element it is clearly lexicographically optimal. However, every convex
and compact set S has a unique lexicographically maximum element, but might not
have a least majorized element.) The fact that a polymatroid has a least majorized
base is shown by Dutta and Ray (1989). They consider the core of a convex game as
defined by Shapley (1971), which corresponds to a polymatroid. (Strictly speaking the
former is defined as a contra-polymatroid; see next section.) We will extend and unify
the above results by proving that a bounded generalized polymatroid contains both
least submajorized and least supermajorized elements.

3. Generalized polymatroids and least majorized elements. Let E be a finite set
and let b: 2% > R U {+x]} be a set function defined on the power set of E, with
b(¢) = 0. We say that b is submodular if the submodular inequality

B(X) +b(Y) > b(XNY) +b(XUY)

holds for every subsets X and Y of E. A set function p is supermodular if —p is
submodular. The set functions, p and b are compliant if the following cross inequal-

ity
b(X) —p(Y)2b(X-Y) —p(Y -X)

holds for every subset X and Y of E. A pair (p, b) is called a strong pair if —p and b
are submodular and p and b are compliant. For a strong pair ( p, ) the polyhedron

Q(p,b) = {x EREIP(A) \< x(A) <b(A) forevery A C_;E}

is called a generalized polymatroid (g-polymatroid). We use the common notation
where x(A) = L, . aX;-

If p and b are integer-valued, Q(p, b) is called an integral g-polymatroid. General-
ized polymatroids were introduced first by Hassin (1978, 1982) and independently by
Frank (1984). The reader is referred to Bouchet (1987), Bouchet and Cunningham
(1993), Chandrasekaran and Kabadi (1988), Dunstan and Welsh (1973), Frank and
Tardos (1988), Fujishige (1984, 1991), Kabadi and Chandrasekaran (1990), Nakamura
(1993), and Qi (1988), for structural and algorithmic results concerning g-poly-
matroids and related concepts. Important special cases are polymatroids, contra-poly-
matroids, base polyhedra and submodular polyhedra (Frank and Tardos 1988). If p is
identically zero and b is submodular and monotone increasing, i.e., b(X) > b(Y) if
X 2Y, then Q(p, b) is a polymatroid (Edmonds 1970). If p is supermodular and b is
identically = +%, then Q(p, b) is a contra-polymatroid (Frank 1992, Frank and
Tardos 1988). Note that the latter coincides with the core of a convex game (Shapley
1971). If b is submodular and p is identically = —o, Q(p, b) is a submodular
polyhedron (Fujishige 1991). Finally when b is submodular and p is defined by
p(A) = b(E) — b(E — A) for any subset 4 of E, Q(p,b) is a _base polyhedron
(Fujishige 1991).

Our main result is that a bounded g-polymatroid Q(p, b) contains both a least
weakly submajorized element and a least weakly supermajorized element. Moreover,
if O(p,b) is integral and Q*(p, b) is the set of all integer vectors in Q(p, b), then
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O*(p, b) possesses a least weakly submajorized element as well as a least weakly
supermajorized element.

Suppose first that Q(p, b) is a bounded integral g-polymatroid. To simplify the
notation we assume that £ = {1 .. . =l Sincc majcrization is not affected under an
addition of the same constant to each component of every vector x, and since Q(p, b)
is bounded, we will assume without loss of generality that p({i}) is nonnegative for

each i in E. Next, consider the set

1
=

b({iPI0<x; ;<1

! b . .
Q = Xyl = 1,...,n;J

b({i})
and ). x; ;=x,i=1,...,nforsome x € O(p, b)

j=1

It follows from Frank and Tardos (1988) that Q' is a bounded integral g-polymatroid,
i.e., there exists an integral valued strong pair (p', ') such that Q" = Q(p’, b").

THEOREM 3.1. Let Q(p, b) be a bounded integral g-polymatroid. Then Q*(p, b), the
set of integer points in Q(p, b), has a least weakly submajorized element.

PrOOF. From Theorem 2.3 it is sufficient to prove that there is an integer vector
in Q*(p, b) that will simultaneously maximize any function of the form 7., f(x;)
where f is nonincreasing and concave. We can assume without loss of generality that
every such function f is also piecewise linear with integer breakpoints. Maximizing
the above function is equivalent to maximizing the following function,

b({i)}
L (0) 1= D)

u'Ma

over the set of integers points in Q'. Since the function f is nonincreasing and
concave, it follows that all the coefficients of the above linear function are nonposi-
tive, and f(j) — f(j — 1) > f(j + 1) — f(j) for every positive integer j. In particular,
there exists an ordering of the variables {x; ;} according to the size of their respective
coefficients, and this ordering is independent of the specific function f. Using the
greedy algorithm in Hassin (1978, 1982) we conclude that there is an integer vector
(xf;) in Q' that simultaneously maximizes the above ObjCCthC over Q for all such
functions f. Therefore, it follows that the vector x*, defined by x} = L?{x*
i=1,...,n,is a least weakly submajorized element in Q*(p, b), the set of integer
vectors in Q(p, b). «© :
Using similar arguments we can also conclude the following theorem.

THEOREM 3.2. Let Q(p, b) be a bounded integral g-polymatroid. Then Q*(p, b), the
set of integer points in Q(p, b), has a least weakly supermajorized element.

To prove the continuous analogues of Theorems 3.1 and 3.2 and show that Q(p, b)
has both a (unique) least weakly submajorized element and a (unique) least weakly
supermajorized element we use a similar approach. For the sake of brevity we
mention only the main differences between the proofs. Consider, for example the
existence of a least weakly submajorized element in Q(p, b). In the integer case
discussed above, we have proved that there is an element that simultaneously
maximizes the function X7_, f(x;) for all nonincreasing concave functions f, and
transformed the maximization to the set of integer points in . In the continuous
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case we use the result in Theorem 2.3 and look at the case where f(x;) = min(0,a —
x,) instead. Again, we transform the maximization problem to " and apply the
greedy algorithm in Hassin (1978, 1982) to conclude that Q(p, b) has a least weakly
submajorized element.

We summarize the above discussion with the following corollary.

COROLLARY 3.3. If O(p,b) is a bounded g-polymatroid and p(E) = b(E), then
O(p, b) contains a unique least majorized element. Moreover, if Q(p, b) is integral, then
the set of integer points in Q(p, b) has a least majorized element.

4. Extensions and final comments. We note that least submajorized and least
supermajorized elements of a bounded g-polymatroid can be computed in polynomial
time by the ellipsoid methods in Grotschel et al. (1988). For example, assuming
without loss of generality that Q(p, b) is in R’}, and using Theorem 2.3, we note that
the unique least submajorized element of a bounded g-polymatroid Q(p, b), say x*,
is the unique minimizer of the quadratic

) = Lo

over Q(p, b).

Also, from Proposition 2.1, x*} is lexicographically smaller than or equal to y, for
all vectors y in Q(p, b).

x* can be found in strongly polynomial time by modifying the procedure in
Fujishige (1980) and Groenvelt (1991) which is applicable to polymatroids. The latter
procedure can now be implemented to solve any convex separable quadratic over a
polymatroid in strongly polynomial time since its complexity is dominated by the
effort to minimize a (strongly) polynomial number of submodular functions. As shown
in Grotschel et al. (1988), the minimization of a submodular function can be
performed in strongly polynomial time. ‘

The existential results in §3 hold for a class of bounded polyhedra (polytopes)
which is larger than the class of bounded g-polymatroids. Let S be a nonempty
polytope in R", and let ¢ be a vector in R". Consider the maximization of the linear
form c¢’x over S. Suppose that S has the property that the greedy algorithm Dunstan
and Welsh (1973), gives an optimal solution for every vector c¢ satisfying ¢ > 0 or
¢ < 0. Combining our results in §3 with those in Dunstand and Welsh (1983, §5), we
conclude that § has both a least weakly submajorized vector and a least weakly
supermajorized vector. As an example of such polytopes consider the class of
bounded delta-submodular polyhedra (Bouchet 1987, Bouchet and Cunningham 1993,
Chandrasekaran and Kabadi 1988, Kabadi and Chandrasekaran 1990, Nakamura
1993, Qi 1988). It follows from Chandrasekaran and Kabadi (1988), Kabadi and
Chandrasekaran (1990), and Nakamura (1993) that if S is such a polyhedron, then the
greedy algorithm gives an optimal solution for every vector ¢ in R". Also, note that if
S is a bounded integral delta-submodular polyhedron, then S§*, the discrete set of
integral points'in S, has a least weakly submajorized element and a least weakly
supermajorized element. We conjecture that this latter property holds also for
bounded jump systems considered in Bouchet and Cunningham (1993).

As noted-above Veinott (1971) has introduced a generalization of the majorization
concept to positive weight vectors. Let d be a given positive vector in R". An n X n
matrix P is called d-stochastic if P> 0, 'P =1 and Pd = d. (1 is the vector in R"
all of whose components are equal to 1.) If x and y are vectors in R”" we say that x is
d-majorized by y if x = Py for some d-stochastic matrix P. It is well known (Marshall
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and Olkin 1979) that when d = 1, 1-majorization coincides with the majorization
definition given in §2 above.

Veinott (1971) proves that for any positive vector d the network flow polymatroid
defined above contains a least d-majorized element. (See Galo et al. (1989) for a very
efficient algorithm to find this element.) Using the above techniques we can general-
ize his results and conclude that it holds for arbitrary polymatroids. In fact, the least
d-majorized base of a polymatroid is the unique lexicographically optimal base
discussed by Fujishige (1980).

Finally, we note that unlike the case d = 1 (see Corollary 3.3), even the set of
integer bases of a network flow polymatroid might not possess a least d-majorized
element for some positive vector d. Consider the (flow) polymatroid defined by the
set {(xy, x))x; = 0, x5, > 0, Xy <land x; +x; < 3}. Let(d,, d,) = (1,4). The unique
least majorized base is (2, £). There are only two integral bases: (1,2) and (0, 3). It is
easily verified that none of them is d-majorized by the other.

Acknowledgements. I am indebted to Sergiu Hart for bringing Dutta and Ray
(1989) to my attention.
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