MANAGEMENT SCIENCE
Vol. 22, No. 5, January, 1976
Printed in U.SA.

LINE SEARCH TECHNIQUES BASED ON
INTERPOLATING POLYNOMIALS USING
FUNCTION VALUES ONLY*}

ARIE TAMIR}

Northwestern University

In this study we derive the order of convergence of some line search techniques based on
fitting polynomials, using function values only. It is shown that the order of convergence
increases with the degree of the polynomial. If viewed as a sequence, the orders approach the
Golden Section Ratio when the degree of the polynomial tends to infinity.

Introduction

Most efficient methods for unconstrained minimization utilize a one-dimensional search
along directions generated by the method. If f is the function to be minimized, X the current
vector of decision variables, and S the search direction, then the one-dimensional search
problem is to choose a > 0 yielding the first local minimum of f(X + aS). A significant
portion of the total computational effort is expended in this search. The problem can be
particularly difficult when f is an interior or exterior penalty function. This is a situation of
great practical importance because penalty functions are widely used.

The most popular one-dimensional search procedures for use in unconstrained minimiza-
tion utilize quadratic {2}, {7] or 2 point cubic [1], [5], [7] interpolation of f. When applied to
penalty functions these interpolation approaches have serious deficiencies. Quadratic in-
terpolation has the drawback that its order of convergence is approximately 1.3, significantly
less than that of 2 point cubic interpolation, which is 2 [8]. The 2-point cubic, however,
requires the computation of Vf. This is usually time consuming and is often difficult to code.
In some cases Vf may not be available analytically.

A one-dimensional search based on quadratic and cubic interpolations using functions
values only is studied in [3). The performance of this procedure on several test problems
involving penalty functions has been significantly better than that of competing methods. The
algorithm in [3] has motivated this study on order of convergence of related search techniques
based on fitting polynomials, using functions values only.

The algorithm studied in this paper is as follows.

Let x be a scalar variable, and f(x) the function to be minimized, assumed differentiable.
An isolated minimum of f is assumed to occur at a, where

f(a)=0. m

Let n be a fixed integer greater than 1. If x;, x; _,,..., x;_, are n+ | approximations to a,
and P,(x) is the unique polynomial of degree less than or equal to n which satisfies

. Pxi)=flxi-p), Jj=01,...,n, @

then the new approximation to a, x;, ;, is chosen to satisfy

Po(xi41) =0. 3

If x;,, # a the procedure is repeated, fitting the next polynomial to x,,,, X;, . . . Xi(n—1y

This algorithm is henceforth referred to as the Sequential Polynomial Fitting Algorithm

(SPFA).

We note that the SPFA is different from the algorithm discussed in [3), in that the points
through which the polynomial passes need not bracket a minimum of f. However, the
bracketing algorithms do not lend themselves to the difference equation approach used in
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POLYNOMIAL INTERPOLATION: LINE SEARCH METHODS 577

most convergence order derivations. Further, the two procedures are closely related. Other
authors [4], [8] give intuitive arguments that the rate of convergence of sequential and
bracketing algorithms is the same, then proceed to analyze the convergence order of the
SPFA for the special case n = 2. We know of no proof that the convergence orders are the
same, although the conjecture seems reasonable.

Convergence and Convergence Orders

In this work speed of convergence of line search methods is measured in terms of
the following concepts. (See [8], [9].)

DEFINITION.  Let the sequence {¢,} converge to 0. The order of convergence of {e,}
is defined as the supremum of the nonnegative numbers p satisfying 0
< lim sup,_, . {lex+]/]e]”} < oo. (The case 0/0 is regarded as finite.) The average
order of convergence is the infimum of the numbers p > 1 such that lim sup,_, o led'? *
= |. The order is infinity if the equality holds for no p > I.

Let

J={x]|x—a/ <L} (4)

throughout this section, f is assumed to satisfy the following conditions. (The notation
f9(x) denotes the ith derivative of f.)

Assumption 1. 1. f®(x) # 0 for all x € J. Note that this is equivalent to fP(x)
>0 for all x €J, since fP(a) # 0 and the minimality of a imply f®(a) > 0. 2.
fO*tYa) # 0. 3. f"*? is continuous on J. 4. If we define constants My, M, and M,
such that, for ¢ll x € J,

|f @ > My, [fO*Px)/(n+ DI < My, [fO*2(x)/(n+2)] < M, (5)

then the interval width L in (4) is small enough to satisfy

1/(n—1)

T'=L[2(M,L+(n+ 1)M))/M,] <1 and (6)

Ty = (1/ML)(M,(2L)"" " + M(n+ D(2L)") < } . (7

We note that if the constants My, M, and M, are defined as the sharpest possible
bounds for a given L, then M, and M, are nondecreasing in L and M, is nonincreas-
ing in L. Since I' and T', are increasing functions of L, approaching zero as L
approaches zero, an L satisfying (6) and (7) can always be found. Assumption 1
insures that the sequence {x; — a} i1s well defined and converges to zero (Theorems 1
and 2).

We also require the assumption that the convergence rate of the sequence {¢;)} is at
least of order 1, where

e =x — a. (8)

Assumption 2.
kli_,n;, {ecri/a} =B ©)

where £ is finite. In particular it is assumed throughout that the ratios e, /e, are
well defined, 1.e., ¢, # O for all k. (Note, however, that ¢, = 0 for some k implies that
the SPFA converges in a finite number of steps.)

The main result of this section is

THEOREM 1.  Under Assumptions 1 and 2, the order of convergence of the SPFA,

! The stronger version of this assumption, i.e., superlinear convergence, is made for the case n = 2 in [8, p.
143]. A discussion on the motivation and validity of Assumption 2 is provided in Appendix C. It is our
conjecture that Assumption 2 is redundant and implied by Assumption 1. ’



578 ARIE TAMIR
using polynomials of degree n, is equal to the unique positive root, a,, of the polynomial
C,(x)=x"*1—= > xnJ, (10)
j=1

The sequence of roots {o,} is increasing, approaching the Golden Section Ratio T =
(14 5% /2~ 1.618 as n approaches infinity.

A table of positive roots of C,(x) is given below

n root o, o,/
2 1.324 0.81
3 1.465 0.90
4 1.534 0.94
5 1.570 0.97
6 1.590 0.98

Cubic polynomials (n = 3) yield 90% of the maximum attainable convergence order,
and the ratio g, /7 increases slowly for n > 3. Given the added complexity of dealing
with polynomials of degree greater than 3, there is little reason for considering such
polynomials in practical interpolation schemes.

In the remainder of this section, we give a number of results leading to a proof of
Theorem 1. The following two theorems, proved in Appendix A, insure that the
sequence {x;} is well defined, and converges to the minimal point a. Note that
Theorems 2, 3 are independent of Assumption 2 and applicable for all SPFA’s.

THEOREM 2. Define J = {x| |x — a| < L} and suppose that a is the unique minimum
of fin J. Let x;, x;_y,...,X,_, in J define the polynomial P,(x) of degree < n
satisfying P,(x;_;) =f(x;_) j=0,1,2,....n If f and J satisfy Assumption 1 then
P/(x) has a real root in J.

THEOREM 3. Suppose that the conditions of Theorem 2 hold and let x;,, in J be a
real root of the derivative of the interpolating polynomial P,(x) determined by
Xiy X;_ 1y - - - » X;_,. Then the sequence {x,} converges to o and

|x, — a| < KT © (11)
for some constant K where I' < 1 (defined in (6)), and
r(n, k) = n*/¢+D, (12)

Hence, for all SPFA’s, the sequence {e,} converges to zero with average order of
convergence greater than or equal to n'/"'* b,

We now derive results cn the (stepwise) order of convergence of the SPFA. In
Appendix A, it is shown that

N [ P(E(x)) fUPM(x) L
Pn(x) —'f()C) ( + 1)‘ kzo j]~=—I. ( l'“j) (n + 2)’ jl;[o('x xf—j)
J*k
(13)
where §(x) and 7(x) are in the interval determined by x;, x,_,, . . ., x;_,, x. Substitut-

ing x = x;,, into (13), and using the relations P,(x;,,) =0, (x;,, — X_)=(€4—
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e;_;) and f'(x;,,) = €, fP(8(x;, ) where §(x,_ ) is in the interval [x,,,, a], yield

f("+ 1)(§(xi+ D)

ei+1fu)(9(xi+l)) = é H (eie1— ei~j)

(n + 1)’ k=0 j=
Jek
f{"+2)(n(xl+l))
T T ) ,I} a1 T ) (1)
Suppose that €_; #0,/=01,...,n
2 _ - f("+l)(§(xz+1 :
€1 fP(0(xi0 1)) = j]::]l:ei~j{ (n+1)! {;[]; 1)
* 2 ( el' k )H( )
k=1 - =N
J*Ek
f("+2)(n(xi+1)) _Ltl_ _
s CRE e)_H( - 1)} (14)

To prove results on the order of convergence we will require that Assumption 2 be
satisfied. (See Appendix C.) We first derive lower and upper bounds on the order of
convergence applying a relatively elementary result due to Ostrowski [10]. To
strengthen the result and obtain the exact order of convergence we adopt an entirely
different approach using more advanced results in the context of complex variable
theory. Although the weak result is implied by the stronger conclusion, we present
both approaches, since to our understanding, Ostrowski’s result (Lemma 1), in spite
of its elementary nature, is of great value in studies of convergence. Thus we start by
demonstrating its applicability, hoping that the insight afforded compensates for the
lack of brevity.

By Assumption 2 (i.e. ¢, ,/e;— B), the ratios ¢, ,/¢; i, in (14) approach f
i — oo, while (e, , — ¢) approaches zero.

Defining 4, , by

/+l

ei+l=Ai+lHei—j (15)
j=1

it is next proved that the linear convergence assumed above implies superlinear
convergence (i.e. 8 = 0). Further, it is demonstrated that 4,,,—~> A4 # 0. From (14)-
(15) it follows that

A = Y(B) N a)/(n+ 1) fa) = A4 (16)

where

¥(x) =TT =)+ 3 (et = x4 IT (1= 1),
j=1 k=1 Jj=1
jrk
Suppose 8 # 0, then ¢,_,/e,— B ! and (15) yields

e.
+1 1
A R ) ”e ;—0.

€ € =2

Thus 8 =0 and ¥(B) = ¥(0) # 0. By Assumption 1 (conditions 1, 2), 4 # 0. For i
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sufficiently large and € > 0, (15) yields
(1= T jer ) < el < (i + 9 TTe (17)
or, defining j :
5= lel(41+ 97y =leiA1 = 9", by < TTo vy > [T,
=

j=1
(18)

Since ¢; # 0 for i sufficiently large, we may take logs of the inequalities (18) yielding
the difference inequalities

n n
G S 2 C_j Gy > 2 ¢y, Where (19)
j=1 =1
¢G=Iné, ¢ =Iny,. (20)
We apply the following theorem, due to Ostrowski [10, p. 98], to (19).
LemMA 1. Consider x" — J'-';O‘pjxj =0 withp; >0, j=0,...,n— 1, having posi-
tive root o, and the infinite sequence {u;} satisfying the difference inequality

n—1
- Zop,.u,.+j>0, i=1,2,..., @n
-

ui+n

where u,, ..., u, are positive. Then we have u; > yo', i=1,2,..., where y
= min1<j<n(uj/oj) > 0.

By following Ostrowski’s proof, it is easy to verify that, if the reverse inequality
holds in (21) then < 8o’ where 8 = max, ., ,(4;/0’) > y. Since |¢| >0 we can
assume without loss of generality that ¢,,...,c,,, and ¢,, ..., c¢,,, are negative.
Then, applying Lemma 1 to the sequences { —c;}, { —¢;} yields — ¢, > yo', —¢; < 80’
where y = min, . ;,41(— Ej/of), 6= maxKKnH(—cj/oj), and o is the unique posi-
tive root of the polynomial C,(x) in (10) as shown in Appendix B. Thus, using (20)
and (18)

(4] - c)_l/("_”exp(f 80’y < |e) <(14] + €) " Vexp(— yo'). (22)

Hence
leisl/lel’ < giexp{o’(8t = yo)}, where g, < oo. (23)

In Appendix B we show that ¢ > 1. Hence the right-hand side of (23) is finite for all i
if (8t — y0) <0, 1.e, if # < yo /8. Again using (22) we obtain

le;il/lel > gexp{o’(vt — d0)},  £,>0,

which approaches infinity as i — oo if y# — 80 > 0, i.e., if ¢ > 80 /y. Hence the order of
convergence of the SPFA is less than or equal to do/y and greater than or equal to
ya /4.

To show that the order of convergence is exactly o, we use the following lemma [10,
p. 92].

LEMMA 2. Consider the linear difference equation wu;, =k, ,+ PR AN —
i=n,n+1 ..., where the a; are constants and (k;} is a specified sequence. The
associated characteristic polynomial is Q(x) = x"*' — Zj’; o@;x" /. Letr, ..., 1, be
the roots of Q(x), with |r)| > |ry| > - - - >|r,,\|. Assume that |r,| > 1 > |r,| and, for
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- some s, 0 < s <|r |, k; = O(s") which means |k,|/s'— c for some constant ¢ as i — .
Then there exists ) such that, as i — o, u,/ri — a,. In addition, if s > |r,|, ;= a;r{ +
O(s"). If s = |r,| .and m is the maximum multiplicity of all zeros of Q(x) with modulus
|r,| then u, = a,r{ + O™ |r,|").

A careful examination of the proof in [10] shows that Lemma 2 is true even if the
condition |r | > 1 > |r,| is replaced by the weaker condition |r)| > 1, |r|| > |r,|. Taking
absolute values and logs of (15), and defining d, =Inle,|, B; =In|4, we obtain
dy =B, +2/.d_; i=nn+1,... . Further defining u; =d,/(In|l4|+ S), k;
= B,/(In|4| + S) where S = — 1 if |4| < 1 and S = | otherwise, yields

U=kt 2w,  i=nmn+l ., (24)
j=1
where, for i sufficiently large

kil < 1. (29%)

The characteristic polynomial of (24) is C,(x) in (10). Consider first the case where
n+ 1 is odd. It is shown in Appendix B that, in this case, the roots of C,(x) satisfy
|r,] > 1> |r,|. By (25), we can apply Lemma 2 with s = 1 to obtain u, = a,r{ + O(1)
implying |e,| = exp{ — B,r; + O(1)} where B, > 0 since |¢]| —0. This implies that

leisil/lel” = exp{ B,ri(t — r)) + O\(1) + tOy(1)}

which implies that the order of convergence of the sequence {e;} is r;. Suppose now
that n + 1 is even. Then, from Appendix B, r, > 1 and r,= —1. The comment
following Lemma 2 justifies its use in this circumstance and, using s = |r)| =1 we
obtain u; = a;r{ + O(i™|r,'). As shown in Appendix B, m =1, so u; = a,r|{ + O(J)
which implies

lei| = exp{yir{ + O(i)}. (26)

Since |¢]—0, vy, < 0. If y, =0 then |e,| = exp{O(i)}, which contradicts (11). Hence
v, <O0. It is then easily verified that (26) implies that the order of convergence of the
sequence {¢;} is again r,. Theorem 1 follows from the preceding discussion and
Appendix B.

A concluding remark is in order. The above discussion depends substantially on the
assumption that f@(a) # 0. In fact we can weaken this assumption as follows.
Suppose that f(a) =0, r=1,...,k—1,and f®(a) # 0, where n + 1 > k > 2. The
minimality of « implies that & is even and f®)(a) > 0. It is easy to verify that Theorem
2 is still valid if M, is the minimum of f®)(a) on J and (7) is replaced by

n+1

[(k — 1)1/ ML* (ML) + My(n + DQ2L)") < 4.

Theorem 1 is also valid if o, is replaced by 8, where 8, > | and is the unique positive
root of the polynomial (k — 1)x"*! — x"~1 — x"~2 — . . . — 1. The sequence of roots
{8} is increasing and converges to § = {1+ [1 +4/(k — 1)]'/?} /2.

We also note that 7, the bound on the convergence rates of interpolating poly-
nomials using function values only, is easily exceeded when derivative values are
incorporated to define the polynomial. For example, the quadratic obtained using the
False Position method converges with rate equal to the Golden Section Ratio 7 (see
[8])- This method utilizes values of the function and its first derivative only. Newton’s
method uses second derivatives and has rate equal to 2.
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Appendix A. Existence Theorem of a Zero of the Derivative of the
Interpolation Polynomial

In this appendix we prove Theorems 2 and 3, assuring that the sequence of roots {x;},
generated by the algorithm, is well defined in the neighborhood of «, and converges to a.
PROOF OF THEOREM 2. Since f"*(x) is continuous, it is well known (e.g. [12, p. 61]) that

fOP(E(0)

x) = P,(x +—————H( (A.1)
169 = Pa)+ =g 1T
where £(x) lies in the interval determined by x;, x; _,, . . ., x;_,, x. To derive an expression
for P,(x) we apply a result due to Ralston [11], which states that

T e [N = G S () (A2)

where 7(x) is again a mean value in the interval of interpolation. Differentiating (A.1) and
using (A.2) yield

(n+1) n n n+2)
Pi(x) = f(x) - L————-(n fgf;)) 2, L G=nop- ﬁ————( i"z()’j)) H(x—x,n (A3)
J#k

We now show that under the assumptions of the theorem P,(x) has a zero in J. Note first
that f@(x) >0 Vx €J since a is a minimum point and hence f@(«a) > 0. The theorem
follows when we prove that Pj(a — L)<0 and P,(a+ L)> 0. f'(a)=0 implies f'(x)
= f'(x)— f(a) = (x — a)f(z)(y(x)) where y(x) is in J. Substituting x = a — L in (A.3) yields

’ _ 5 _ f(n+1)(£(a _ L)) n n
Pila=D=-Lo0a-1) - —Fnme 2 1 - L-x)
J# k
f(n+2)(.,7(a _ L)) n
- Tﬁ)—'— j1=_10(a - L- x',_j),
P/(a - L) is negative if
_ 1 N j(n+1)(£(a - L)) n B )
= Lf®(y(a — L)) (n+ 1) k§0j I;Ik(a L—x;_))

ARSIV § PO P
i—j .

(n+2)! j=0

But T < |T| < (My/ M)(@L)"™*'/ L)+ (M(n+ 1)/ MX(QLY"/L) < 1. Similar arguments
lead to the conclusion that P,(a + L) > 0, and hence the theorem follows.
PrOOF OF THEOREM 3. Substituting x = x, ., in (A.3) we obtain

. f(n+l)( l) f(n+2)(02)
f(xi+l) (n+ 1)' IEOJEI (X,+| —])+ ( +2)| H( 1+l i—j)
J#EI
where 0, =£(x;,,), 0,=n(x;,,). Defining ¢, = x, ~a, k=1,2,..., and noting that
f e = ei+lf(2)(03)’ 0y = v(x;,,) yield
Maberoal < M 2 JleweL7'@ = 1)+ T lel] + M/ b s27@7 = 1)+ T e
1=0 j# I j=0

Hence,

M, L) M, (L) "'
|e,-+,|<{ i ez &2 }n "

+ M (n+1) Max le,_|"+ My Max |e;_|"*!
M, o<j<n '/ My o<j<n '
By Assumption 1, (M,/ M)QLY'(n+ 1)/ L)y + (M,/ M}(QL)"*'/L) < i. Thus,
le; 4l < Colzljéijnle.-_jl” (A5)
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where C = 2(M(n + 1)/ My + M,L/ My). Define z,, , = |e;4,/C"/¢~". Then (A.5) yields

i+1
i+l 0<ja<xnel»"
We show that if k=t(n+ 1)+, t>1,1=0,1,...,n, then (A.6) implies that & < r
where I' = LC '/~ 1. The proof is by induction on k.
Let t=1, /=0 and consider &,,,, then &,,, < Max{&§, &}, ...,&’'} <I". Let k=

t(n+ 1) + [ and suppose that the result holds for indices smaller than k. If / =0, then
€ = 8uiny < oyﬁx,,[é('—lxnﬂ)ﬂ]" < =17
Let / > 1, then

5 = 3 =n . n n' ni+! nt
& = &+ < Max{ Olldj?li&’[e, 1y 7] 15’[,-‘%‘2‘.,[@“*'*””*!]} < Max{.I‘ R A SR A

Hence &, <I"" where k=1t(n+ 1)+, t>1,1=0,1,...,n, so |g|=¢&C~ /"N
< CVeO t=k/(n+1)—1I/(n+1) and T < | (Assumption 1) imply that |e|
< C~V/=Dpr(n k) and the theorem follows.

Appendix B. The Roots of the Indicial Equation

In this appendix we study the properties and roots of the polynomial
Co (2)=zk—z5"2—-2%¥3— ... (B.1)

We will show that C,_,(z), k > 3, has a unique simple positive root, o, _,, with modulus
greater than 1, and that all other roots are also simple with moduli less than or equal to 1. In
fact, it will be proved that if k is odd o, _, is the only real root and that the other k£ — 1 roots
are inside the unit disc. If k is even z = —1 and o, _, are the only real roots and the other
k — 2 roots have moduli less than 1. It is also shown that the sequence {g,}, k=2,3,...,1s
increasing and tends to the Golden Section ratio, 7 (i.e., 72— 7—1=0, 7 > ).

LeMMA B.1. Let C,_(2), k > 3, be defined by (B.1). C,_ (z) has a unique simple positive
root, o, .\, and 1 < o, _| < 7, where 7 is the Golden Section ratio. If k is odd o, _, is the only
real root, and if k is even z = — 1 is the only other real root of C, _(z) and is simple.

PROOF. C,_(2)=z¥—(* 1= 1)/ z-D=[z%"12*—-z-D]/(z—= 1)+ 1/(z—]). Let
7 be the Golden Section ratio, i, 72— 7—1=0, 7> 1. C,_ () =752 — 7= 1) /(r -
D+ 1/(r=1D=1/(r—1)>0. It is easy to verify that for k > 3, C,_ (1) <0, and hence
there exists a positive root 1 < o,_; < 7. To see that g, _, is simple and also the unique
positive root observe first that

Coo(@)=(z =0, _)(z* T+ a,z% 2+ ayz% 3+ - - - + a9,

=01 =G +1)/o_, k>i>3, g =1/0_,

Thus @; >0, i=2,3,...,k, and the result follows. Suppose that k is even, then C,_(z)
=@+ =22 zk=4— ... — ). Hence z= —1 is a simple root. It is easily
verified that C, _ (1) is negative for —1 < ¢t < 0 and positive for t < ~1. Hence z = — 1 is the

unique nonpositive real root. Suppose now that k > 3 is odd:
Co (D)=zF—(@+DEF3+25+ - + D)=z -z=-1)/- D)+ 1/(z ).

From the first expression we see that C,_(#) <0 for —1 < ¢ < 0. Now let t < — 1. Clearly
t2=t=1>0 and C,_,(¢) <0. Hence C,_,(t) <O for all nonpositive ¢ and o,_, is the
unique real root.

LeMMA B.2.  All the roots of C;_((z) are simple.

ProOF. Define D, _,(z)=(z — )C,_y(2) =z¥(z— 1) — z*¥" 1+ 1. If z # 1 is a multiple
root of C,_(2) it is also a multiple root of D, _,(z) and D;_,(2) =0, (k + l)z* - kzk=1 -
(k—~1)z¥"2=0, z =0 is not a root and we have (k + 1)z2 — kz — (k — 1) = 0 which implies
that z is real. The preceding lemma assures that real roots are simple and the lemma follows.

The following lemma shows that the sequence {g,} is an increasing one.

Lemma B3. {o;}), k=2,3,..., is an increasing sequence and lim, o, = 1.

PrOOF. To show the monotonicity property we prove that C,(o,_,) < 0. Lemma B.1 then

583
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assures that g, > 0, _ .

c FH Yz -1 - zk+1 1 1
W(2) = . =:(C- A5 )+ 2
C o _)) =0 0-— 1 + 1 =-1
k\ Ok —1 k-1 0 -1 o1 —1 .
The sequence {o,} is a bounded increasing sequence and hence lim,o, = 8 exists.
ok Not_ =0 —D=-1,1<0, <7, =B>—B—~1=0 and 8 =, the Golden Section
root.

To prove that the (k — 1) roots of C,_,(z) that differ from o, _, have moduli less than or
equal to 1, we introduce the following two results.

THeoreM B.1 (Traus [12, p. 51]). Let fi(z2)=z*—a(z* "+ 2z5" 24+ ... 41), ka> 1
and k > 2. Then f,(z) has one positive simple root, v, and max(l, a) < v, < 1 + a. All other
roots are also simple with moduli less than 1.

LeMMA B.4 (OsTtrRoWSKI [10, p. 222]). Let B be a closed region in the z-plane, the boundary
of which consists of a finite number of regular arcs, and let f(z) and h(z) be regular on B.
Assume that for no value of the real parameter t, running through the interval a < t < b, the
function f(z) + th(z) becomes zero on the boundary of B. Then the number N(t) of the zeroes of
f(2) + th(z) inside B is independent of t for a < t < b.

We are now ready to prove the main resuit.

THEOREM B.2. If k is odd the k — 1 roots of Cy,_(2)/(z — 0, _;) have moduli less than 1. If
k is even the k — 2 roots of ¢, _(2)/(z — 0,_ Xz + 1) have moduli less than 1.

ProoF. Let ¢ > 0 be arbitrarily small and k > 3 and consider the polynomial C,_,(z) ~
tz*~ ' for t € [¢, 1] where C, _\(2) = z¥ — z¥=2 — zk=3 — ... — |, We show that C,_,(2) -
1zk=1 £ 0 for all z in {z| |z| = 1}. Since C,_ (1) — t <0 V¢ E[¢, 1] it is sufficient to show
that (z — 1){C,_y(2) — 1z~ '} £ 0 for all z # 1 and |z| = 1. Suppose (z — 1){C,_,(z) —
tz¥=1} = 0 for some z # 1 and |z} = 1. Then

{(F" 22—zt + D - (1 -]+ 1) =0,
[z |22 = z(t+ )= (1= D)= |- =22 -zt + D=1 -0)|=1.

If z=cos#+ isin, then [cos 26 — (¢t + 1)cos 8 — (1 — )]?> + [sin 28 — (¢ + 1)sin )? =1,
which yields —2(1 — f)cos? 8 — (¢ + tDcos 8 + (1 + 13 + (1 — 1) = 0. Let y = cos 8 then it is
clear that y = 1 is one root of the quadratic

20— Y2+ (t+ )y —(2—1t+2)=0. (B.2)

For t =1,y =1 is the only root and we obtain cos § = 1 which contradicts the assumption
z # 1. Let t €[¢, 1), then the second root of (B2) is y(f)= — (12—t +2)/2(1 — £), y(¥)
< @2t—-2)/2(1 — t) = — 1. Thus we have the contradiction cos § < —1. Observing that for
t =1, C,_(z) — tz*~! yields the polynomial f,(z) with a = 1, discussed in Theorem B.1, we
apply Lemma B.4 to conclude that for any positive ¢ arbitrarily close to zero the polynomial
Cy—1(z) = 1z¥~! has k — 1 roots inside the disc {z| |z| < 1}. Continuity arguments (see for
example [10, Appx. A]) lead to the conclusion that C,_(z) has k — 1 roots in {z] |z| < 1}. By
substituting ¢ =0 in (B.2) we easily verify that the only possible root of C,_,(z) on the
boundary of the disc is z = — 1 which is a root if and only if k is even. Hence, the theorem is
proved.

Appendix C. On the Linear Convergence Assumption

In Theorems 2 and 3 it is shown that the error sequence {¢;} is well defined and converges
(with average order of at least n'/("*+1) to zero, provided the initial estimates of a, the zero of
f'(x), are close enough to a (Assumption 1). To obtain results on the (stepwise) order of
convergence we have assumed that (Assumption 2) {¢;} is “well behaved”, i.e., ¢, /e, tends
to a finite limit.

Although we cannot provide a rigorous proof, covering an arbitrary distribution of the
initial estimates of « in a small enough locality, it is our conjecture that Assumption 2 is
implied by the conditions of Assumption 1. To strengthen and motivate the above statement
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we appeal to the result of Theorem 3 that applies to all SPFA’s satisfying Assumption 1 only.
We sketch a proof of the validity of the conjecture for some choice of initial estimates.
It is shown in Appendix A (A.5) that

; C Ma g C.1)
lel+l[ < Ozifii(n'e'»j' (

where C=2(M(n+ 1)/ Mo+ M,L/Mp). In fact (C.1) can be improved as follows. Using
(13a) we define N, M2, M}, ... M/ by
n
M’_I: H €, (C.2)
o o
j=0;
j#k
where N, —,fP(a) and MF = fC N @) /(n+ D) fork=0, 1, ..., n.
From Assumption 1 (conditions 1, 2) it follows that these sequences of coefficients
converge to nonzero limits. Thus the asymptotic behavior of e, is determined by that of

Do .o, # «€—;- Hence, for the sake of this (heuristic) discussion we assume that for i
sufficiently large:

n
Nie =k2

n n
e =A% IT ¢,_; where 4 # 0. (C3)
k=0 j=0,
jtk

To simplify the discussion, let us further assume that 4 = 1 (otherwise a normalization
procedure similar to {A.5—(A.6) would have been applied).

To motivate our conjecture we show that if (C.3) holds (with 4 = 1), and if the initial
(n + 1) estimates are on oue side of @ and monotonically improving (i.e., ¢, > ¢, >0,
k=0,1,...,n—1) then ¢,,/¢; tends to a finite limit. We comment that the above
assumption is not (intuitively) very optimistic since the initial estimates do not bracket the
minimum «.

We first note that it is sufficient to demonstrate that {e;} is a decreasing sequence since
then (C.3) (with 4 =1) implies e\ =1Ilj.e_;(1+e/e_y+ - - +e/e_p)
=R, 716, where 1 < Ry < n+ 1. As shown in the main text (by applying Lemma 2)
the above difference equation with the boundedness of R, suffices for ¢;,;/¢/ to converge
when ¢ > 1 is the only positive root of (10).

It is easy to verify thatif ¢,, k=0, ..., n, are small enough (e.g. less than (n + 1)~ 1), then
O<e1<e, k=0,1,...,n—11f also ¢, ; < e,, then ey, e;,...,e,,, is a decreasing
sequence of n + 2 consecutive iterates. It is then implied by (C.3) that {¢;}% is a decreasing
sequence and the result follows. Hence suppose e,, | > e,. (C.3) then yields e, , > e, 141>
k=1,2,...,n. Repeating this argument it can then be proved by induction that for all
integer ¢ > 0,

0<e, <€ tm+r<i<(t+n+t (C4)
and e, ,, < €,.,_, for £ > 1. To complete the proof we will show that there exists a

decreasing sequence of (n + Z) consecutive iterates. By the above discussion it clearly suffices
to demonstrate that for some ¢

i+ n+e+1) < €get D+t (C.5)
The sequence {¢;} converges to zero, hence,
e(l+l)n+t_?0- (C.6)
Thus, there exists t, such that
€(to+ W+ 10> E(to+2n+(ro+ 1) €7
Using (C.3) for i + 1, i + 2 and subtracting yield
n—1 n—1
eiva— 1= (€s1—€_p) hX I €i—jr (C8)
k=0 j=0;
J* k

Choosing i= (1o +2)n + 1, to have i— n=(t5+ 1)n+ ¢, (C.7) and (C.8) yield
€(ro+ Dm+(0+2) — E(tg+ Dn+(ro+1y < 0 which proves (C.5) for t=t,+ 1. Thus the proof is
complete.

Assuming (C.3) we have proved that for sets of (n+ I) initial est.mates eg ..., e,
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satisfying 0 < e, < e, k=0,...,n—1, the generated sequence of error terms {e¢;} is
decreasing for i sufficiently large and hence Assumption 2 is satisfied.

A final comment is in order. It seems that a rigorous proof of the conjecture, along the lines
suggested above, will require an argument justifying the substitution of 4 for the sequences
M¥ /N, in (C.2) to yield (C.3).

We note that such substitutions for linea: difference equations are discussed in [8], [10].
Also note that in the derivation of the order of convergence we in fact applied Lemma 2 to
allow the substitution of 4, ; by 4 in (15). Unlike (15) which can readily be transformed to a
nonhomogeneous linear difference equation, (C.3) involves sums of nonlinear terms and
hence a different approach may be needed.
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