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Abstract

Isotonic regression models have been used extensively with various objective functions. In this paper
we consider the isotonic regression model with the minmax criterion. The model is presented and
interpreted as a multi-center location problem on the real line, with precedence constraints on the
locations of the centers. Viewed as a location problem, this model generalizes the classical (weighted)
1-center problem on the line. We obtain an explicit expression for the optimal objective value, and
use it to develop an efficient subquadratic algorithm for solving the problem. Finally we present and
discuss a generalization which unifies the above model and other location problems with distance
constraints.

Introduction

Consider a set of n demand points (customers), v, v,, ..., 1,, on the real line. Each
customer v;, i = 1,...,n, has to locate a service center, represented by a point x; on the
line. x; will serve v; exclusively, and the nature of the service is such that v; prefers x; to
be as near to it as possible. Therefore, with no constraints on the locations of
X1,...,Xn, €ach x; will be established at v;. We assume that there exists a feasible set S,
and each vector of locations (x4, ..., x,) must be in S. In particular, we focus on the
case where S reflects precedence constraints on the locations of the n centers. Such
location models have been discussed in the literature under the title of isotonic
regression [2]. Several objective functions have been considered. For example,
[4,13,22,25] consider the isotonic mean regression where the objective is to minimize
the weighted sum of squared distances between the customers and their respective
centers. The isotonic median regression model has been studied in [3, 5,6, 18-21]. The
objective there is to minimize the weighted sum of distances (absolute values) between
the demand points and their respective centers.
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In this work we concentrate on the bottleneck criterion and wish to minimize the
maximum weighted distance. To facilitate the discussion, suppose that w,,...,w, are
positive weights, and consider the following model:

Minimize Maximum {w;|x; — v;}},
(X1,.e0y Xn) 1<i<n (1)
subject to (xq,...,X,)ES.

The set S is defined by precedence constraints. Specifically, given is a directed graph
G = (V,E), where V = {0,,...,0,}. An arc in E is an ordered pair (7;,7;), i #j. (In
general E is allowed to contain both (v;,7;) and (9}, 7;).) S is now defined by

S={(x1,....xy)|forall 1 <i,j<n, x; <x;if (5;, 5;,)€E}. (2)

The constraints in S are also recognized as variable upper bound constraints [23]. The
isotonic regression model (1)—(2) generalizes the classical weighted 1-center problem
studied in location theory [12]. In the latter the objective is to select a single point
(center) x on the line that will minimize the maximum weighted distance,

Minimize Maximum {w;|x — v;] }. (3)

X 1<i<n

To obtain (3) from (1) set G to be a directed cycle. That would imply
Xy =X, = -+ = X,. (3) can be formulated as a 2-variable linear program,

z¥ = Minimum z,

subject to  wi(x —v;) < z,
—wilx —v) <z i=1,...,n @)

Using the linear programming techniques in [16], the optimal solution to (4), (x*, z*),
can be computed in O(n) time. It is known that this model satisfies an interesting
separability property. For each pair, i, j let z¥ be the solution value of the 1-center
problem restricted to the points v; and v;:

z} = Minimum  z;;,
subject to  wi(x —v) < zyj,
—wi(x — v;) < z;5, (3)
wi(x —v;) < z;;,
—wj(x — v;) < zy.

Then z*, the optimal solution value, is given by z* = Maximum, <; j<.{z%}.
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Since z§ = [v; — v;|/(1/w: + 1/w)),

) [v; — vj] }
z* = Maximum { ——~— . 6
1<i,j<n {1/Wi+ 1/w; (6)

We conclude that the 2n-constraint linear program (4) is decomposed into n(n — 1)/2
4-constraint linear programs. Our goal here is two-fold. First, we will show that the
general model defined by (1)—(2) possesses the same separability property, which
implies an explicit expression for its optimal value. Second, we will use that expression
to derive an efficient algorithm to locate x4, ..., Xx,.

We formulate (1)—(2) as an (n + 1)-variable program,

Minimize z,

subject to  w;(x; — v;) < z,
—wilx;—vy) <z, i=1,...,n, (7)
x; <x; if(p,0;)eE, 1<i,j<n.

We note in passing that (7) can be solved efficiently as a parametric linear flow
problem. However, the algorithms that we will develop have a lower complexity
bound.

The algorithms

Given the precedence constraint graph G = (V, E), V = {0y, ...,0,}, we define its
transitive closure G* = (V, E*), by setting

E* = {(7;, ;)| there exists a directed path in G from o; to 7;.}
For each pair i, j, 1 <i,j < n, with (3;, v;)e E* define
zf; = Minimum  z;;,
subject to  wi(x; — v;) < z;5,
—wi(x; — ;) < zij,
wilx; — v;) < zij, 8)
—wj(x; — vj) < zij,

X; < Xj-
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It is easily observed that

0, if v; <vj,
zh = 9)
_BTb otherwise
I/W“ + l/Wj, '
Define
Z = Maximum {z}}. (%a)
(ﬁi,ﬁj)GE*

Let z* be the optimal value of (7). We claim that z* = Z. Reformulate (7) as
z* = Minimum z,

subject to  w;(x; — ;) < z,
—wilx;— 1)<z, i=1,...,n, (10)

x; <x;if (0;,0;)eE* 1 <i,j<n
Lemma 1. z < z*.

Proof. Let (x%,...,x¥) and z* be an optimal solution to (10). Then, for each i, j with
(0;, 0;) € E*, (xF¥, x¥, z*) constitute a feasible solution to (8). Therefore, z} < z*. Thus,
z<z¥, O

To prove that z > z* we constructively generate a feasible solution to (10) with

Z =2

Algorithm 1.

Step 1. If Zz=0, set x; = v; fori=1,...,n and stop.

Step 2. (a) Fori=1,...,n, define ¢; = v; — Z/w;.
(b) Sort the numbers {c;}, i=1,...,n, into a list X.
(c) Define all elements i, i = 1,...,n, to be unlabelled.

Step 3. Consider the largest entry in X, say c;. If i is labelled, delete c¢; from X and go
to Step 5. Otherwise, go to Step 4.

Step 4. (a) Label i, and set x; = ¢;.
(b) For each unlabelled j with (v;, V;)e E* set x; = x; and label j.

Step 5. If X is nonempty return to Step 3. Otherwise stop.

Proposition 2. Let (x4, ...,Xx,) be defined by Algorithm 1. Then (x4, ..., x,) and Z consti-
tute a feasible solution to (10).

Proof. It is sufficient to consider the case when z > 0. We will first show that if (7;, 7)),
isin E* then x; < x;. Consider the iteration when x; is assigned its value in Step 4. If x;
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was also assigned a value in this iteration, (Step 4(b)), then x; = x;. Otherwise, x; had
been defined in an earlier iteration. But since the values assigned to the variables by
the algorithm form a nonincreasing sequence we must have had x; > x;.

Next we prove that w;|x; — v;] < z for i = 1,...,n. If x; is defined in Step 4(a), then
wilx; — v;| = wi|v; — Z/w; — v;| = Z. Otherwise, there exists some k, 1 < k < n, such
that (7, 0;) € E*, and x, and x; were defined in Step 4(a) and Step 4(b), respectively, of
the same iteration, i.e., x, = Xx; = C.

Consider two subcases:

@D x; < v;.

am x; > v;.

Since x, and x; are labelled in the same iteration, and since X, is defined in Step 4(a),
we have c¢; < ¢,. When subcase (I) holds, x; < v;, and therefore,

wilvy — x;| = wi(v; — x;) = wi(v; — ¢)

z
SW,'(U,'— Ci)"_‘ w; (Ui— Ui+_)= Z.

i

Finally suppose that (II) holds. Then,
z
w. [y — x| = wilx; — v;) = wiler — vi) = w; (Uk - Ui)
il Wk
vy — U; 1 + 1 z
=wi| — | — | =
Lwe + 1/w; \w, — w; w,
1 1 2
enfafld)-5)
Wi w; Wy
where the last equality follows from (9). Since, by definition, Z > z§;, we obtain
(1 1 z _
Wilvi—x,'lswi Z\—+— ) —— =2z
Wi W Wi
and the proof is complete. [

The above lemma and proposition imply the following result.

Theorem 3. The optimal solution value to (10) is given by z, defined by (9a), and an
optimal set of locations (x, ..., x,) is defined by Step 1 or 4 of Algorithm 1.

To analyze the complexity of Algorithm 1 we first note that it requires, as input, E *,
the arc set of the transitive closure graph G* = (V, E*), as well as the value of Z. When
E* is given, 7 is computed in O(|E *]) time, and the algorithm is easily observed to
consume O(nlogn + |E*|) time.
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There are at least two different approaches to construct E *. The first is by applying
a depth first search from each node of the precedence constraint graph G = (V, E) to
find all nodes which are reachable from that node. The total effort involved is O(n|E|).
The second approach is to use matrix multiplication techniques, as explained in [1],
to find E*. If we use the technique given in [8], which has the lowest complexity
bound to date, E* is produced in O(n?37°) time.

We conclude that the total time to solve the location model (1)—(2) with the first
approach is O(n|E| + |E*|) = O(n|E|). The respective complexity using the second
method is O(n?-376).

The bottleneck term in the complexity bound of Algorithm 1 comes from the effort
to compute the transitive closure graph G* = (V, E*). We will now present a more
elaborate algorithm, Algorithm 2, which solves (1)—(2) without explicitly generating
G*. The complexity of Algorithm 2 is only O(nlog?n + | E|log n).

Algorithm 2 is based on an efficient search in a well-structured set which is known
to contain z*. (It avoids the computation of z*, as suggested by Theorem 3, since that
will require knowing E* explicitly.) Specifically, we consider the set R,

lsi,an}.

From Theorem 3 it follows that z* is indeed an element of R. Thus, z* can be
characterized as the smallest element z in R, such that there exists a set of locations
(xy,...,X,), which together with z constitute a feasible solution to (7). An element z for
which there is such a set (x4, ..., x,) will be called a feasible element of R. z* is therefore
the smallest feasible element.

Given an element z >0 in R, we first develop a feasibility test. For each i,
i=1,...,n, define a; = v; — z/w;, and b; = v; + z/w;. z is feasible if and only if the
following system is feasible,

R = Ui—vj

a;<x;<b;, i=1,...,m

x,-ij

if (171', ﬁj)EE, 1< l,] <n (1 1)

Each constraint x; — x; < 0 in (11) has at most one positive coefficient and at most
one negative coefficient. Therefore, it follows from [9,24], that if (11) is feasible then it
has a least element X = (X4, ..., X,): X is a feasible solution for (11), and every other
feasible solution x = (xy, ..., x,,) satisfies

X < X.

(Although we do not use this property, we note that (11) also has a largest element.) To
test the feasibility of (11) consider the relaxed system

x;>a, i=1,...,m

xX; < Xj if (5,‘, 5j)€E, 1 < l,] <n. (12)
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Since (12) is feasible it has a least element, say x. Thus, (11) is feasible if and only if
X; < b;,i = 1,...,n. To summarize, given a positive element z in R we test its feasibility
by computing the least element of (12) and comparing it with (b4, ...,b,).

The feasibility test (Computing the least element).

Step 1. Sort the numbers {a;}, i=1,...,n, into a list X.

Step 2. Define all elements, i = 1, ..., n, to be unlabelled.

Step 3. Consider the largest entry in X, say a;. If i is labelled, delete a; from X and

go to Step 5. Otherwise, proceed to Step 4.

Step 4. (a) Starting at node 7; of G, perform a depth first search on G to find
V(i) = {v;| there exists a directed path from #; to ¥; consisting only of
nodes with unlabelled indices}.

(b) Set x; = a; and x; = x; for all j such that ¢; € V'(i). Label i and all j such
that ;e V (i).
Step 5. If X is nonempty return to Step 3. Otherwise stop.

The complexity of the feasibility test is easily observed to be O(nlogn + |E|). To
validate the feasibility test we need the following lemma.

Lemma 4. Consider the set V (i), defined in Step 4 of the feasibility test. If (v;,0;)e E*
and v;¢ V (i), then j has already been labelled.

Proof. Suppose that j has not been labelled. From the fact that (;,7;)e E* but
v;¢ V(i), it follows that there exist indices k and u, such that k is labelled, u is not, and
(tx,0,) € E. However, this is not possible since u should have been labelled together
with k in the same iteration. [J

Proposition 5. The feasibility test finds the least element of the linear system (12).

Proof. For each iteration ¢ of the feasibility test let i(¢) be the index selected at Step 3.
It will suffice to prove by induction on ¢, that for each j in V(i(t)) (defined in Step 4),
the value g, assigned to x; in Step 4 is a lower bound on this variable for any feasible
solution to (12), and x; > a;, for each k with (7;,7,) € E* and any feasible solution x to
(12).

Since (0;(y, U;) € E* we must have x; > x;4) = a;(, for any feasible solution x to (12).
Next consider some k with (7}, ;) € E*. If 9, € V'(i(t)), then x, is also assigned the value
i), SO certainly x; > a;, for any feasible solution. Otherwise, since (7;,0,)€ E* it
follows from Lemma 4 that there exists an index u, labelled in Step 3 of an earlier
iteration and (7,, ;) € E *. By the induction hypothesis x; > a, for any feasible solution
to (12). Since a, > a;, we obtain x; > a,,) and the proof is complete. [

Having established a feasibility test for an element z in R, we now present our
procedure, Algorithm 2, to find z*, the smallest feasible element in R. We directly
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apply the sophisticated search procedure described in the appendix of [17] with the
further improvement suggested in [7]. Since each feasibility test consumes
O(nlogn + |E|) time, it follows from [7,17], that the total effort to find z* is
O(nlog?n + |E|logn). Finally, given the value of z*, we note that a set of optimal
locations (x¥,...,x¥) can be generated by the feasibility test with a; = v; — z*/w;,
i=1,...,n

To conclude, we consider the unweighted case of (1)—-(2), where w; = 1,i=1,...,n.
In this case z* is given by

z* = Minimum z,
subject to v,—z<x;<v;+2z i=1,...,n,
x,-ij lf(ﬁl,ﬁj)EE,ISl,JSn

Substitute y;=x; +z, i=1,...,n. Let y =(y;,...,J,) be the least element of the
system
yi=zv, i=1,...,m

vi<y;, if(0,0;)€eE, 1<i,j<n. (12a)
Then for any positive z, the vector (y; — z, ..., y, — z) is a least element of the system
x;=>v;—z, i=1,...,m
x; <x; if(0;,0,)€E, 1<i,j<n.
Using the above discussion
z* = Minimum z,
subject to y;—z<v;+2z, i=1,...,n

Therefore, z* = Maximum{(y; — v;)/2|i = 1,...,n}, and the unweighted version of
(1)-(2) can be solved in O(nlogn + |E]) time, as follows:

(a) Compute y, the least element of the system (12a).

(b) Calculate z* = Maximum{(y; — v;)/2|i=1,...,n}.

(c) Calculate the optimal solution x* by x* =y, — z*,i=1,...,n.

Generalizations and concluding comments

We have focused in this paper on the isotonic regression model with the criterion of
minimizing the maximum weighted distance. However, we note that some of the
results can be extended to more general forms of the set S in (2). Suppose, for example,
that each directed arc (v;,7;) of the precedence constraint graph G = (V, E) is asso-
ciated with a real number g;;. Define S by

S={(x1,...,xy)|for all 1 <i,j<n, x; <x; + a; if (v;,0;)eE}. (13)
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This definition unifies the isotonic regression model, i.e., a;; = 0 for all (v;, 7;) € E, as
well as the distance constraint systems (Jx; — x;| < a;;) discussed in [10]. In our
definition g;; can be of any sign. Also, unlike [10], we allow a;; # a;; if both (;, ;) and
(0;, 0;) are in E. The result stated in Theorem 3 can be extended to the generalized
model. Consider the transitive closure graph G* = (¥, E*) defined above. For each
directed arc (7;, ;) € E*, let d;; denote the length of a shortest directed path from #; to
7; in G with respect to the arc weights {a;;}. (If S in (13) is nonempty the graph G has
no negative cycles. Therefore, the “distances” d;; are well defined.)
For each pair i, j with (#;,7;)e E* define

0, lf U; < Uj + dij9

ZE: Ui —U: — d;: (14)
A A— herwise.
l/w,- n l/w] , otherwise

We now state without a proof the generalization of Theorem 3 above.

Theorem 6. Let z* be the optimal value of the generalized model defined by (1) and (13).
Then

z* = Maximum {z}}. (15)

(0i,0;)eE*

The generalized model can be solved in strongly polynomial time by computing
z* from (15). The complexity of this approach is dominated by the effort to compute
the “distances” {d;;}. If we use the algorithm in [11], the time is O(n|E| + n*logn).
We do not know how to improve upon this bound, by extending the approach
of Algorithm 2 above. The difficulty lies in explicitly identifying an equivalent of
the set R above which will contain z* and at the same time enable an efficient
search.

At this point we do not know how to extend the explicit representation of
z* in (14)—(15) to incorporate a more general feasible set S. However, we note
that a strongly polynomial time algorithm exists for the following generalization of
the model.

Suppose that S is defined by a given system of linear inequalities in the variables
(xy,.-.,X,), where no inequality contains more than two variables. The feasibility of
such a system can be verified in strongly polynomial time by the algorithm in [15].
Thus, optimizing (1) over such a system can also be done in strongly polynomial time
using the novel binary search idea in [14].

The isotonic regression model (1)—(2) and Algorithm 1 can be easily extended to the
multi-valued case. Multi-valued cases are also discussed in the isotonic mean regres-
sion and isotonic median regression models mentioned in the introduction. We briefly
define this model for our minmax criterion.
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In the multi-valued case each service center, i, should serve t(i) customers located on
the real line at v; 4, ...,v; ,;. The bottleneck criterion problem is:

Minimize Maximum {w; ;|x; — v; ;|}, o (16)
(X15005Xn) 1<i<n
1<j<t(i)

subject to  (xq,...,X,) €S,

where S is defined in (2).
Algorithms 1 and 2, and the treatment suggested above for the unweighted case, can
all be easily extended to solve (16).
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