SHORT COMMUNICATION

ON A CHARACTERIZATION OF P-MATRICES

Arie TAMIR

Case Western Reserve University, Cleveland, Ohio 44106, U.S.A.

Received 22 September 1972

We consider here the linear complementarity problem which is to find vectors $\omega \in \mathbb{R}^n$, $Z \in \mathbb{R}^n$ satisfying

$$\omega = MZ + g$$
, $\omega \ge 0$, $Z \ge 0$, $\omega^T Z = 0$, (1)

where ω^T denotes the transpose of ω , and M, g are given $n \times n$ and $n \times 1$ matrices, respectively. If A is a matrix, we will denote by $A_{.j}$ the j^{th} column of A and by $A_{i.}$ the i^{th} row of A. M is said to be a Q-matrix if (1) has a solution for every $g \in \mathbb{R}^n$. M is said to be a P-matrix if all its principal minors are strictly positive. It was shown in [1; 3; 4; 6] that M is a P-matrix if and only if (1) has a unique solution for every $g \in \mathbb{R}^n$.

Murty [5] refined the above characterization by proving that M is a P-matrix if and only if (1) has a unique solution for every $g \in \Gamma$.

$$\Gamma = \{I_1, ..., I_n, -I_1, ..., -I_n, M_1, ..., M_n, -M_1, ..., -M_n, e\},\$$

where $I_{,j}$ is the j^{th} column of the identity matrix of order $n \times n$ and $e = (1, ..., 1)^{\text{T}}$.

We improve this result and show that M is a P-matrix if and only if (1) has a unique solution whenever $g \in \Gamma_1$, where

$$\Gamma_1 = \{I_{.1}\,,\,...,\,I_{.n}\,,\,M_{.1}\,,\,...,\,M_{.n}\,,\,-M_{.1}\,,\,...,\,-M_{.n}\,,\,e\}\ .$$

The main result

Lemma 1. If (1) has a unique solution whenever $g \in \{M_{.1}, ..., M_{.n}\}$, then $\omega = Z = 0$ is the unique complementary solution corresponding to g = 0.

Proof. Suppose that this is not the case. Then without loss of generality we assume that (ω^*, Z^*) is a solution to (1) corresponding to g = 0, where $\omega^* = (0, ..., 0, \omega_{k+1}^*, ..., \omega_n^*)^T$, $Z^* = (Z_1^*, ..., Z_k^*, 0, ..., 0)^T$, $Z_i^* > 0$, $1 \le i \le k$, and $\omega_i^* \ge 0$, $k+1 \le i \le n$. We can further assume that $Z_1^* = 1$.

Consider now the complementarity problem (1) corresponding to $g = M_{.1}$. It is easy to see that the following are two different complementary feasible solutions to this problem:

$$(\omega^1; Z^1) = (0, ..., 0, \omega_{k+1}^*, ..., \omega_n^*; 0, Z_2^*, ..., Z_k^*, 0, ..., 0),$$

$$(\omega^2; Z^2) = (0, ..., 0, 2\omega_{k+1}^*, ..., 2\omega_n^*; 1, 2Z_2^*, ..., 2Z_k^*, 0, ..., 0).$$

This contradicts the uniqueness of a complementary solution to (1) when $g = M_{11}$, hence the theorem follows.

Theorem 1. If (1) has a unique solution whenever $g \in \{M_{.1}, ..., M_{.n}, e\}$, where $e = (1, ..., 1)^T$, then M is a Q-matrix.

Proof. For every $Z \ge 0$, let $I_+(Z)$ and $I_0(Z)$ denote the sets of indices corresponding to the positive and zero components of Z, i.e., $I_+(Z) = \{i: Z_i > 0\}$ and $I_0(Z) = \{i: Z_i = 0\}$. Lemma 1 and the fact that (1) has a unique solution when g = e imply that the system

$$M_{i.}Z+t=0$$
 for $i\in I_{+}(Z)$,
$$0\neq Z\geq 0,\ t\in\{0,1\}$$
 $M_{i.}Z+t\geq 0$ for $i\in I_{0}(Z)$,

is inconsistent. Following Karamardian [2], we obtain the result that *M* is regular and therefore is a Q-matrix.

Result 1 [4, 4.9, 4.10]. If M is a Q-matrix and (1) has a unique solution corresponding to each $g \in \{I_{.1}, ..., I_{.n}, -M_{.1}, ..., -M_{.n}\}$, then M is a P-matrix.

112 A. Tamir

We now state the main result of this work.

Theorem 2. M is a P-matrix if and only if (1) has a unique solution for each $g \in \Gamma_1$, where

$$\Gamma_1 = \{I_{.1}, ..., I_{.n}, M_{.1}, ..., M_{.n}, -M_{.1}, ..., -M_{.n}, e\}$$

with
$$e = (1, ..., 1)^{T}$$
.

Proof. The necessity of the conditions is a well-known result as mentioned above, while their sufficiency follows from Theorem 1 and Result 1.

References

- [1] R.W. Cottle, "On a problem in linear inequalities", Journal of the London Mathematical Society 8 (1968) 378-384.
- [2] S. Karamardian, "The complementarity problem", *Mathematical Programming* 2 (1) (1972) 107-129.
- [3] A.W. Ingleton, "A problem in linear inequalities", Proceedings of the London Mathematical Society 16 (1966) 519-536.
- [4] K.G. Murty, "On the number of solutions to the complementarity problem and spanning properties of complementary cones", *Linear Algebra and Its Applications* 5 (1) (1972) 65-108.
- [5] K.G. Murty, "On a characterization of P-matrices", SIAM Journal of Applied Mathematics 20 (3) (1971) 378-384.
- [6] H. Samelson, R.M. Thrall and D. Wesler, "A partition theorem for Euclidean n-space", Proceedings of the American Mathematical Society 9 (1958) 805-807.