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ABSTRACT

We characterize the matrices A for which X(b)={x|x€ER", x=0, Ax>Db,
Z'_,x, =1} contains a least majorized element for all vectors b satisfying X(b)+* @.

Given a vector x=(x,,...,x,), let £ denote the n-dimensional vector
obtained by arranging the coordinates of x in decreasing order. A vector y is
said to be majorized by a vector x if for i=1,...,n, 2;'.=1g,. <2§=1f,-, with
equality holding for i=n. Hardy, Littlewood, and Polya [2] proved that y is
majorized by x if and only if y=Sx for some doubly stochastic matrix S. An
extended real-valued fiitiction f on R", f> — 0, is called Schur convex if
x, y €R" and x majorized by y implies f(x) < f(y). For example, a symmetric,
quasiconvex function is Schur convex. Examples of decision models based on
Schur convex functions can be found in [1; 3, 4, 5, 6].

It follows that if x is a least majoﬁzed element of a set XCR", i.e. x€X
and x is majorized by all y€X, then .Tthe minimum of any Schur convex
function defined on X is attained at x. This fact motivates the study of sets
containing a least majorized element. In this paper we focus on polyhedral
sets of the form

X(b)Z{x|xER", x=0,Ax>b, D xiZI}
i=1

and characterize the matrices A for which X(b) contains a least element for
all vectors b for which X(b) is nonempty. The only results, that we know of,
regarding the existence of least elements are in the work of Veinott [6], who
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studied an extension of the majorization concept. In fact, the necessity part of
our characterization will follow from Veinott’s theorem.

To present our main result we need the following definitions.

Let A=(a;;) be an mXn 0,1 matrix. For i=1,...,m let S, be the support
of the ith row, i.e. S;={j|a;;=1}. Also denote N={1,2,...,n}, and M=
{L,2,...,m}.

DEFINITION.

(1) A 0,1 matrix A is called subnested if for any i, kEM one of the
following holds:

(i) $,NS, =4,
(ii) S; US, =N,
(i) S; CSy,
(iv) S CS;.

It is nested if for any i, k€M one of (i), (iii), (iv) holds.

(2) A real mXn matrix B is quasinested if there exist a subnested matrix A
and diagonal matrices D! and D2, D! =0, such that B=DA + D2E, where E
is the mXn matrix with all entries 1.

The main result is formulated as follows:

THEOREM 1. A is quasinested if and only if X(b) contains a least
majorized element for all b for which X(b) is nonempty.

To prove the theorem we need the following lemma.

Lemma 1. Given numbers a,,...,a,, suppose that for any real d the
nonemptiness of

X(d)———{xleR", dax,=d, ) xi:1,x>O}

i=1 i—=1

implies the existence of a least majorized element in X(d ). Then the sequence
{a,...,a,} contains at most two distinct elements.

Proof. By permuting the variables and using the constraint that the
variables sum to 1, we may assume without loss of generality that

2 = =
a,=a, = =a,>0.
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Further, assume by contradiction that for some 1<sk<l<m<n,a;,=---=
A > = =,z a = . It is then easily observed that 1f y
belongs to X(d ), so does §. Thus, 1f x is a least majorized element, we assume
that x=%. Moreover, without loss of generality we can assume that x,
= =X Zx = =%, 2, = ---=x,. It also follows from the
minimality of x that (xy, X3, 1, %;4 1> ;i 1> Xmags---» X, ) Simultaneously mini-
mizes the two linear functions ky, and ky, +(I—k)y;,; over the set of all
(Y1 Ykt 1> Y1+ 1> Ym+ 1> Ym+25- - +» Y ) = O satistying

kalyl+(l_k)ak+lyk+l+(m_l)al+1yl+l+ 2 ay,=d, (1)
i>m
kyy +(I=k)ypry H(m—Dypy + 2 y; =1 (2)
i>m
NZ Y1 Y415 Yms1 = Ume2 = " T Y, (3)

We now choose d such that

a;k+ag, (I—k) ~d> a;k+ag (I=k)+a,, (m—1)
l m

(4)

Due to our assumptions on the sequence {a,,a,,...,a,}, such a scalar d
exists and X(d) is nonempty. We will contradict the existence of the least
majorized vector x by showing that every vector minimizing ky, subject to
(1)-(3) satisfies y, =y, while every vector minimizing ky, +(I—k)y;,,
satisfies y, > y;,,. Consider first the function ky,, and let
(U1> Uk+ 1 Ui+ 1> Im+1> Um+ 2+ > Y) e @ minimum point. Suppose that y, >
Urr1=Ypo1- If 4;,,=0, then y,=0 Vi=Il+1, and ky, +(I—k)y;.,=1.
Hence y;>1/1. On the other hand, the solution vector defined by y, =y,
=1/1, y;=0 Vi=k+1 is in X(d), from (4), and therefore contradicts the
minimality of §. Thus, suppose

Y1 > Yp1 =Yy 0.

Let y, be the smallest positive coordinate of y. Subtract €>0, sufficiently
small, from ¥, ,,¥,,+1,--->¥; and increase y, ., so that (2) and (3) are still
satisfied, with the first component, y,, strictly greater than the second
component of the perturbed solution.

The monotonicity of the sequence {a,,a,,...,a,} implies that this per-
turbed solution, still having y, as its largest component, will satisfy (1) as a
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strict inequality. Thus we can reduce y; and increase the (perturbed) second
coordinate so that (1)-(3) are met, hence contradicting the minimality of y;.
We therefore have to have y, =y, . ;.

Next we turn to a solution minimizing ky, +(I—k)y,,,, subject to
(1)-(3). Again we use y to denote such a solution, and suppose that
Y1 =Yr+1 =Y+, First we show that if y, =y, ; =14,y does not satisfy (1).
Note that ¥, =y, ; =¥+, <1/m. The left-hand side of (1) will not decrease
if we decrease all but the first three components of # to zero and increase
U1, Ux+1> U1 to 1/m. But then, the value of the left-hand side becomes
{a,k+a,, (I—k)+a, (m—1)}/m, which is smaller than d by (4). Thus the
original solution was not feasible. Therefore, we assume y, =9, ; >19;,,. We
now perturb y to reduce ky; +(l—k)y, ;. Increase ky;, by ¢,, and reduce
(I—=k)yi,, by e,>¢,. To maintain (2) increase (m—1)y,,, by €, —¢,. The
perturbed solution meets (1) if a,e, —a;, e, +a;, (e5—€)=0 or ¢=
eari1—ar)/(a,—a; )= & <g,, since a,,<a,. If we choose ¢,
>0 such that (3) is satisfied and then choose ¢; such that &, <e, <e,, the
perturbed solution is feasible, but the objective ky, +(I—k)y, is reduced,
contradicting the optimality of y. Thus we have to have y, >y, ,, and the
existence of a least majorized vector is contradicted. B

CoroLrLarY 1. Let A=(a;;) be an mXn real matrix such that X(b)
contains a least element for any b for which X(b) is nonempty. Given
1 <i<m, there exist e; and f; such that a ; E{e,, f;} forall 1<j<n.

Proof. Given i, 1<i<m, we can choose a vector b with b,, k+#i,
sufficiently small that all but the ith constraints of the system Ax=b become
redundant. The result will then follow from the previous lemma. |

LEMMA 2. Let A=(a;;) be a 2Xn 0,1 matrix such that X(b) contains a
least element for all b for which X(b) is nonempty. Then A is subnested.

Proof. Suppose that A is not subnested. Then by permuting the variables
we may assume the existence of 1<k, 1<I[, 1 <m and k+[+m <n, with

a;=1 for j=k+1,...,k+1,
a,; =1 for j=k+I1+1,...,k+1+m,

a;;=0 for j>k+I,

a,; =0 for k<j<k+I, n=j>k+I+m.
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If x is a least majorized element of X(b), we may assume with no loss of
generality that

u,;, 1<j<k,
u,, k<j<k+l,

! u;, k+l<j<k+l+m,
u,, k+l+m<j<n,

and u, =u, >u,, u; =u;=>u,. Furthermore (u,, u,, u;, u,) simultaneously
minimizes the functions ky, and ky, +ly, +my, subject to the constraints

ky, +1ly, | =b,, ()
ky, +my; >b,, (6)
ky, +ly, + my, +(n—k—Il—m)y,=1, (7)
Y12V NiZYs, Y3, Y3y, >0 (8)

Suppose that we choose b, =b, =(2k+1) /(2k+2). Adding (5) and (6) and
using (7), we obtain

2b, <2ky, +1ly, + my, <1+ky,, 9)
or
2b,—1 1
BT TR
Also,

Y, +y; ty, <ly, + my, -l-(n—k—l—m)y4

and we can replace (8) by

Yo=Yy, Y3 =y, >0. (8)
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Turning first to the minimizer of ky,, we note that y, =y, +y, +y, implies
that (u,, u,, u5, u,) minimizes ky, subject to the constraints

ky, + 1y, =b,
ky, +my,; =b,
1=ky, +ly, +my;,

y, =0, i=1,2,3.

The minimum is attained at ky, =2b, —1, i.e. u; =(2b, —1)/k=1/(k+1).
From (9) it follows that ku, + lu, =ku, +mu,; =b,, and therefore

(kuy, luy, muy,(n—k—I1—m)u,)=(2b,—1,1-b,;,1—b,,0)  (10)

To contradict the existence of the minimal element x defined by
(uy, uy, us, u,), we show that x does not minimize the function ky, +1ly, +
my,. The value of this function at x is 1.

Without any loss we assume that !=m, and consider the point

(yls Yo, Y3, y4) defined by
(kyla lyz, my{}a Ty4):(l+r)—1(2bll+blr"‘l, l(l_bl), l(l_bl)’ T(l—bl))’

where r=n—k—1[—m. It is easily verified that this point satisfies (5)-(8) and
ky, +ly, + my, =(1+b,;r) /(I+7)<1. By that we have contradicted the ex-
istence of the least majorized element x. |

CoroLLARY 2. Let A=(a;;) be an mXn real matrix such that X(b)
contains a least element for any b with X(b)# &. Then A is quasinested.

Proof. Using Corollary 1 and observing that points in X(b) satisfy
2'_,x, =1, we may assume that no row of A is proportional to e, the vector of
1 —s. Furthermore, there exist diagonal matrices D! >0, D2 and a 0, 1 matrix
A! with A=D'A! + D2E. Therefore it suffices to prove the subnestedness of
Al. The assumptions on X(b) and the nonsingularity of D! imply that
{x|x=0, Alx=b', Z7_,x, =1} contains a least element for any b' for which
the set is nonempty. The subnestedness of A! then follows from Lemma 2,
while noting that any constraint can be omitted if the respective right-hand
side coefficient is chosen to be sufficiently small. [ ]
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To complete our characterization of quasinested matrices, Theorem 1, we
apply the results of Veinott [6]. Again, by using the transformation with the
diagonal matrices (as in the above proof), we may assume that A itself is
subnested. We show how to express the set X(b) as

x(b):{x|x>o,b1>A‘x>b2, ExiZI}, (11)

i=1

where A is nested and b' =b? =0. Considering A, we can clearly assume that
fornoi S;=Nor S;= @, and S, # S, if i=k. If there is no pair i, k€M with
S;US, =N and §; NS, % &, then let A=A; otherwise define

T(A)={(i,k)1<i<k<m,S$;NS, # 3,5, US, =N}.

Let (i,k)ET, and let S, be a maximal support containing S;,. Then either
(r,k) €T or (k,r)ET. It is easily observed that if we replace S, by
S, =N-S§,, i.e. replace the rth row (a,,...,a,,) by 1—a,,,...,1—a,,), then
the new matrix A will still be subnested.

We claim that |T(A)|<|T(A)|—1. Suppose that for some t S; NS, % &
and S, US/ =N. Then S, CS,. But S, #§,, thus contradicting the maximality of
S,. This shows that T(A)C T(A). But the pair (k, r) [or (7, k)] is not in T(A).
Continuing this process will yield a nested matrix. We note that each time we
replace a support by its complement, the corresponding constraint, say
27qa,;x; > b, is replaced by 27 ,(1—a,)x; <1-b;

Let X(b) be given by (11).with A nested. Furthermore we may assume
that the set of supports of A, {S:,...,5,,}, satisfies

S;#3, S§;#N for 1<i<m,

S, # S, for 1<i<ks<m.

[Under these assumptions m<<2(n—1).] Since we can add the constraints
0<ux,<1, 1<i<n, we also assume that the supports corresponding to these
constraints are present in {S,, S,,...,S,,}.

To apply the results of [6], we define a directed network as follows. For
convenience denote N=S ;. Associate a node v, with §;,, 1<i<m+1.
Connect v; and v, with an arc going from v, to v, if and only if S, CS, and
there is no S;, l5=1, k, with S; CS,; CS,. The generated network is a directed
tree with n tips corresponding to the n supports containing one element. Also
note that with the exception of v,, ., there is exactly one outgoing arc from
each node. We now augment the directed tree with one more node, v,,, which
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is then connected to each one of the n tips of the tree. Finally we represent
the constraints of (11) as a special case of the flow problem in [6]. The
representation is similar to that given in Sec. 4 of [6]. We define the
exogenous flows at the nodes and the arc capacities inductively, starting with
the n tip nodes and the arcs leaving these nodes. The lower bounds on the
flows are zeroes. [Recall that node v;, 1 <i<m, corresponds to the ith row of
A in (11).] For each tip node v, define the exogenous outflow ¢, =b2. The
upper bound on the flow on the arc leaving v, will be given by b} —b?. Now
let v; be a nontip node, and let T, be the set of nodes v,, k+i, on all the
directed paths from the tips to v,. Define the exogenous outflow at v, by
c; =max(0, b} —2,, er,Cx)- The upper bound on the flow on the arc outgoing
from v, will be given by b} —c, =2, cr1.¢. Finally turning to v,,,, we note
that if 2, o7 ¢y >1, then X(b) is empty. Otherwise define ¢, ,=1—
Euk ET,,,HCk'

Note that the variables x; in (11) correspond to the flows from v, to the n
tip nodes of the network. Furthermore, using the definition of the exogenous
out flows, c;, a simple inductive argument on the nodes of the network shows
that each feasible solution to (11) induces a feasible flow in the network and
vice versa.

Having formulated the constraints of (11) as a flow problem, Theorem 1 of
[6] ensures the existence of a least majorized element in X(b), provided X(b)
is not empty. This completes the proof of our characterization of quasinested
matrices.
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