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OBNOXIOUS FACILITY LOCATION ON GRAPHS*

ARIE TAMIRY

Abstract. This paper discusses new complexity results for several models dealing with the location of
obnoxious or undesirable facilities on graphs. The focus is mainly on the continuous p-Maximin and p-Maxisum
dispersion models, where the facilities can be established at the nodes or in the interiors of the edges. For the
general (nonhomogeneous) case it is shown that both models are strongly NP-hard even when the underlying
graph consists of a single edge.

For the homogeneous p-Maximin model it is proven that even the problem of finding a -approximation
solution is NP-hard, and a polynomial heuristic which provides a 1 -approximation to the model is presented.
Tree graphs are considered, and new algorithms with lower complexity bounds for several versions of the model
are presented.

For the p-Maxisum problem we show that the homogeneous case is NP-hard on general graphs. Turning
to the homogeneous case on trees, a certain concavity property is identified and then utilized to improve upon
the best known methods to solve this model.
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1. Introduction. Let G = (V, F) be an undirected graph with node set V =
{vy, -+, v,} and edge set E. Let | E| = m. Each edge has a positive length and is
assumed to be rectifiable. We refer to interior points on an edge by their distances (along
the edge) from the two nodes of the edge. Let 4(G) denote the continuum set of points
on the edges of G'. The edge lengths induce a distance function on 4(G); for any x, y
in A(G), d(x, y) will denote the length of a shortest path connecting x and y. Also, for
any subset Y < A(G), d(x, Y) = Infimum {d(x, y)|ye Y}.

Let X = {x, - -, X, } bea finite set of points in 4( G). Define the following matrices
D(X, X) and D(V, X):

D(XaX)Z{d(xi:xj)}7 lél,jép
DV, X)={d(v;,x)}, 1=i=n, 1=j=p.

Let f(X)=f(D(V,X),D(X, X)) be areal function which is isotone in the components
of the matrices D(V, X) and D(X, X). (A real function g defined on R* is isotone if for
any w and z in R, w = z implies g(w) < g(z).) A variety of location models in the
literature are defined by optimizing various forms of fover classes of subsets X < A(G),
| X| = p. For example, the unweighted 1-center of the graph G is obtained by setting
p = 1 and minimizing the function

f(D(V,X),D(X,X))=Maximum {d(v;,x;)|1 ZiZn)}

over all points x; in A(G).

Using location theory terminology, the set X is referred to as the set of new facilities,
e.g., suppliers, that must be set up, and the set Vis identified as the set of existing facilities,
e.g., customers. Conventional or ordinary location models are frequently defined by
minimizing an isotone objective f, since the goal is to minimize some function of the
distances between all facilities.

In this paper we consider the location of obnoxious or undesirable facilities, e.g.,
garbage depots and nuclear reactors. Thus, our interest is in studying maximization
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models with isotone criteria. The reader is referred to the recent papers by Moon and
Chaudhry [25] and Erkut and Neuman [11], which survey analytical models and ap-
proaches as well as various applications for the location of obnoxious facilities.

In this study we focus on maximizing the following two particular objective functions
which seem to be the most popular among researchers interested in obnoxious facility
location. The last section of this paper will be devoted to two other related optimization
criteria.

Leta;, 1=i=n,1=j=p,andB;, | =i,j= pbe nonnegative weights.

The p-Maximin problem. This model, which has also been labeled as the p-Dis-
persion model, has the following objective function to be maximized:

S1(X)=Minimum {Minimum {a;d(v;,x)|1 Si=n,1=j=p},

1.1
(-0 Minimum {B;(d(x;,x)| 1 Si#j=p}}.

The p-Maxisum problem. This maximization model is defined by the objective

(1.2) fz(X)=[ 2 2 od(v, )+ 2 2 6:'jd(xiaxj)]-

i=1j=1 i=1j=1

By the homogeneous versions of the above models we refer to the case where the
new facilities { x;, - - -, X, } provide and receive identical services. Formally, in the ho-
mogeneouscase ;= 1,1 =i,j=p,and qy = oy, forl =i=nand 1 =j = p.

2. The p-Maximin problem. The p-Maximin problem is NP-hard when defined on
a general graph, even for the homogeneous case in which 8, = 1, 1 =i # j=p, a;; =
0,1 =i=n,1 =j= p;that is, we want to maximize the minimum distance between
new facilities. Note that if each x;, 1 =i =< p, is further restricted to a node, then the p-
Maximin model generalizes the independent set problem [14]. Therefore, the discrete
version 1s also NP-hard. For the continuous case we show that if there exists a polynomial
procedure to find an ¢-approximation solution with ¢ > %, then P = NP.

PROPOSITION 2.1. Let ¢ be a real number satisfying e > %. Let z* denote the optimal
solution value of the p-Maximin problem. The problem of finding a set X = {x;, -+ , X, }
in A(G) such that f,(X) Z ez* is NP-hard. (X is called an e-approximation solution.)

Proof. Consider the case where a;; = o0, | = i=n,1 =j=p,andg;=1,1=
I # j = p. We reduce the independent set problem on a graph G [14] to the p-Maxi-

min problem. Given an undirected graph G = (V, E), V = {vy, ---, v,}, suppose
that each edge is of unit length. Consider the graph G' = (V'!, E'), where V! = VU
{wy, -+, un}, E' = EU {(vy, ), -+, (U, Up)}. For 1 =i = n let the length of the

edge (v;, u;) be 1.

To complete the proof we show that G has an independent set of cardinality p if
and only if every e-approximation solution X for the p-Maximin problem on G' satisfies
fi1(X) > 2. Suppose first that G has an independent set of cardinality p, i.e., there exist
V<V, |V| = p, and for each pair of distinct nodes, v;, v; € V, d(v;, v;) Z 2. Define
V*< V'by V* = {w|v;€ V}. Then, if u; and u, are two distinct nodes in V' * we have
d(u;, u;) Z 3. In particular, the optimal solution to the p-Maximin problem on G is at
least 3. Therefore, if X is an e-approximation with ¢ > %, fi(X) = 3¢ > 2.

Next suppose that X = {x;, -+, x,} is some e-approximation solution with
Si(X)>2.Ifx;, | =i=p,isonsome edge (v, ), | =t = n, replace x; by u,. If x; is
on some edge (v,, v,), where d(x;, v,) = d(x;, v,), replace x; by u,. Let X ' be the solution
obtained in this process. (Note that by the construction all the elements in X ' are distinct.)
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It is easily seen that f;(X') > 2. Therefore, f;(X') = 3. Define V < V by
I7= {v,-lu,-GXl}.

Then V is an independent set of G of cardinality p. O

The above proposition suggests that unless P = NP there is no polynomial e-ap-
proximation algorithm for the homogeneous p-Maximin problem on a general graph
with e > 2. However, there exists a simple polynomial greedy algorithm which generates
a 1-approximation solution. We will consider a slightly more general model for this
homogeneous version of the p-Maximin problem.

Let D and S be two nonempty compact subsets of 4(G). The homogeneous p-
Maximin and p-Minimax problems are defined as follows.

The homogeneous p-Maximin medel on D. Find X, = {x;, ---, x,}, a set of p
points in D, such that Minimum; <;» <, {d(X;, X;) } is maximized.

The homogeneous p-Minimax model on D and S. Find X, = {x;, -+, x,}, a set
of p points in S, such that Maximum, p {d(x, X,)} is minimized.

Let R, and r, denote the optimal solution values of the above two models, respec-
tively.

We also introduce the following related problems. Let r > 0.

The r-cover problem on D and S. Find p = p(r), the smallest integer value, and
points x;, - - -, x, in S, such that d(x, X,) = r, forevery xin D. (X, = {x;, *** , X,}.)

The r-anticover problem on D. Find g = q(r), the largest integer, and points x;, - - -,
Xgin D,suchthatd(x;, x)2r, 1 Si#j=gq.

The open r-anticover problem on D. Find g = ¢*(r), the largest integer and points
X1, ,Xgin D, such that d(x;, ;) >r, 1 =i #j=q.

The above types of cover problems generalize and unify several models cited and
discussed in the literature, e.g., [11], [20], [25].

LEMMA 2.2. Let D and S be two compact sets of A(G), and let p 2 1. Then
the solution values to the homogeneous p-Maximin and p-Minimax models satisfy

Rp+] é 2rp.
Proof. Letr> 0. Let X; = {x;, -+, x,}, g = ¢*(2r), be a solution to the open
2r-anticover problem, and let Y, = {y;, --- ,3,}, p = p(r), be a solution to the r-cover

problem. Since d(x;, x;) > 2r, | =i # j =< q*(2r), we need at least ¢*(2r) points in .S
to ensure a covering of a distance not exceeding r to each point in X,. Thus, p(r) =
q*(2r), for every r > 0.

Let r = r,. Since p(r,) = p we obtain ¢*(2r,) < p. There exist p + | points in D
such that the distance between each pair of distinct points is at least R, . If R, ; were
strictly greater than 2r,, we would have ¢*(2r,) = p + 1, contradicting ¢*(2r,) = p.
Hence, R, = 2r,. O

We now introduce a 1-approximation heuristic to the p-Maximin problem on D.
This heuristic is motivated by the 2-approximation procedure for the p-Minimax model
given in Dyer and Frieze [9]. The idea of the procedure is to construct a sequence of p
points such that each point is as far apart from the preceding set of points as possible.

ALGORITHM 2.3
Step 0. Choose an arbitrary point x; in D. Let X; = {x,}.
Step 1. While j < pdo .
Determine x; ., in D by d(x;+1, X;) = Max,cp {d(x, X;)}.
Let Ry =d(xis1, X;))and set Xip = X;U {x;41}.
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THEOREM 2.4. Let X, = {xy, - -+, X, } be the set of points generated by Algorithm
2.3. Then X, is a §-approximation solution to the p-Maximin problem on D, i.e.,

d(x:,x)Z iR, 1<i#j=p.

Proof. Let X, = {x,, -+, x,} be the set of points generated by the algorithm.
Consider the subset X,_; = {x;, -+, x,_ }, and view it as a feasible solution to the
(p — 1)-Minimax problem with .S = D. By construction, for each xin D, d(x, X, ) =
d(x,, X,_1) = R,. Therefore, R, Z r,_;.

From Lemma 2.2 we obtain

R-pg p—1 = %Rp
Again, by construction, d(x;, x;) Z R,, | =i # j = p, and the result follows. O

It should be noted that when G is a tree and S = A(G), the homogeneous
p-Maximin problem is equivalent (dual) to the homogeneous (p — 1)-Minimax prob-
lem, [2], [20], [27], more commonly known as the (p — 1)-center problem. The
inequality in Lemma 2.2 holds as an equality. There exist several polynomial algo-
rithms to solve the p-Minimax problem on a tree network for various cases of D. Fo-
cusing on the case studied in this paper, i.e., D = A(G), and using the above duality re-
sult to solve the (p + 1)-Maximin model, we can use any of the known algorithms that
solve the p-Minimax model, [1], [2], [13], [22], [32]. The algorithms with the
known lowest complexity bounds appear in [13], [22]. The algorithm in [22] has an
O(n log? n) bound when we implement the improvement in [7], while that of [13] is
O(n min (p, n)log (max (p/n, n/p))). Note that the latter bound dominates the
former only when p = O(log n).

The only published algorithm that solves the p-Maximin problem on a tree graph
directly appears in [1]. While the algorithms for the p-Minimax problem use a simple
O(n) procedure to solve the main subroutine, the r-cover problem, the algorithm in [1]
for the p-Maximin relies on an O(#n log n) scheme to solve the r-anticover problem.

Due to the importance of the r-anticover problem, we next present a very simple
linear time algorithm to solve this problem on tree graphs. We will consider the following
generalization of the r-anticover problem studied also by Moon and Goldman [26].

The generalized anticover problem. Let rand r;, 1 = i = n, be a collection of n +

1 positive numbers. Find g = g(r), the largest number, and points x;, - - - , x,in A(G),
such that

(2.1) d(v,xj)zr; forl=i=nand 1=j=gq,

(2.2) d(xi,x)zr forl=i#j=q.

Moon and Goldman [26] have presented a complicated algorithm to solve the above
problem on a tree. However, the exact complexity of their algorithm is not specified. In
contrast, our algorithm is quite simple and has a linear complexity. :

The first phase of our algorithm identifies the feasible set for the points { x; } induced
by the constraints (2.1). It is easy to see that the intersection of this feasible set with any
edge of the tree is a segment (subedge ) of the edge. Therefore, we characterize in linear
time the endpoints in A(G) of all those subedges. We augment all these endpoints to the
node set of the tree (note that at most 2(# — 1) nodes are added), and update the edge
set accordingly.

In the second phase we solve an r-anticover problem with the additional supposition
that the points { x;} can only be located on a distinguished specified subset of edges.



554 ARIE TAMIR

Tree terminology and notation. Let 7= (V, E), V= {v, - - - ,v,}, be an undirected
tree with n 2 3. We define the following partial ordering on the nodes and edges of 7.
Suppose that T is rooted at some node which is not a tip (leaf), i.e., its degree is at least
two. Without loss of generality let v, be the root. Let v; and v; be a pair of distinct nodes.
v; 1s a descendant of v; if v; is on the unique path connecting v; to v,. Furthermore, if v;
and v; are also connected by an edge in E we say that v; is a son of v;, and v; is the father
of v;. v; is the son endpoint of this edge, and v, is its father endpoint. Note that v, has
no father and every tip node of 7T has no sons. For each node v;, which is not the root,
we use e(i) to denote the edge of T connecting v; to its father.

For each node v; which is not a tip we let C; denote its set of sons. If all nodes in C;
are tips then C; is called a cluster.

If (v;, v;) and (v, vy) are two distinct edges in E, and v, is a father of v; and a son
of vy, then we say that (v;, v;) is a son of (v}, vx), and (v}, vs) is a father of (v;, v;). An
edge (v;, v)) 1s called a tip edge if its son endpoint v; is a tip of the tree.

Phase 1. Identify the feasibility subedges. Suppose that the tree T = (V, E) is rooted
at some node, say v;. Given the constraints (2.1) our task is to identify for each edge in
E, the subedge which is consistent with (2.1). Such a subedge, if it is not empty, will be
identified by its two endpoints. Using the father-son relationship induced by the rooted
tree, we label these two endpoints as the son and father endpoints, respectively.

The procedure to identify the subedges is based on scanning the tree twice. First,
starting with the tips of the tree we recursively compute the son endpoints for all edges.
The father endpoints are also computed recursively while starting at the root, scanning
all its descendants according to the partial ordering and terminating at the tips.

Step 1. Let v;be anode in V.

If v; is a tip of the rooted tree set §; = r;.

If v; is not a tip set

6; = Maximum { r;, Maximum {§; — d(v;, v))|v;€ C;}}.
Step 2. Let v;be a node in V.

If v; is the root of the tree set ¢; = §;.

If v; 1s not a root let v; be the father of v;.

Set ¢; = Maximum {4;, ¢; — d(v;, v)) }.

We are now ready to compute the endpoints of all the feasibility subedges. Let
(v;, v)) be an edge of the tree, where v, is the father of v;. If §; + ¢ > d(v;, v;) the feasi-
bility subedge is empty. Otherwise, the son endpoint of the subedge is the point x; on
(v;, v)) satisfying d(v;, x;) = §;, and its father endpoint is the point y; on (v;, v)) satisfy-
ing d(y;, v;) = ¢;. If x; = y; the feasibility subedge is reduced to a point.

It is clear that the above procedure yields the endpoints of all subedges in O(n) total
time. We augment the endpoints to the node set of the tree and update the edge set
accordingly. In particular, if an original edge has a nonempty subedge it will be replaced
by either two or three new edges in the augmented tree. We then solve a modified r-
anticover problem on the augmented tree.

Phase 11. The modified r-anticover problem. This phase corresponds to constraints
(2.2). Let T = (V, E) be a rooted tree. Let V! be a subset of ¥ and let E! be a subset of
E. Given a positive real r, find g = g(r), the largest integer, and points x,, - - - , x,, where
xi, | £i=gq,isin V' or is on some edge in E', such that d(x;, x;,) Z r,for 1 =i #
J=q.

ALGORITHM 2.5. The algorithm starts with the rooted tree and recursively processes and
eliminates its clusters. (Without loss of generality assume that no node in ¥'! is on an
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edge in E'.) The main step, the elimination of a cluster, is an improved and modified
version of the O(n log n) procedure presented by Chandrasekaran and Daughety [1] for
the standard case, i.e., E! = E. Our algorithm will run in O(#n) time.

Consider a cluster with a father v;, and let C; be the set of its sons. (Note that each
son of v; is a tip of the current updated tree.) Let v, be the father of v;.

Vi

The cluster elimination procedure.

Step 1. For each v; in C; apply the following: Suppose first that v; is in V''. If
d(v;, v;) Z r, add v; to the set of selected points and remove the edge (v;, v;) from the
current tree. If d(v;, v;) < rset \; = d(v;, v;). Next, suppose that v, is not in Vi If the
edge (v;, v;) is not in E', remove it from the current tree. Otherwise, compute

tJ.:[d(”f’”")],

r

(As usual, | a | is the largest integer that is smaller or equal to a.) If ; = 1, select ¢; points
on the edge (v;, v;) as follows: The first point is v; itself and the others are selected such
that the distance between consecutive ones is r. Update the tree by reducing the length
of (v;, v;) by r¢;. If the modified length A, is zero, remove the edge (v;, v;) from the cur-
rent tree.

Step 2. Define J; = {j|\; <r/2} and J, = {jlr> \; = r/2}. (If both J, and J,
are empty the cluster is eliminated. Stop.) If J; is nonempty let j(1) in J; be an index
satisfying \;(;, = Maximum { X\;| j € J,}, and for each j € J;, j # j(1), remove the edge
(v, v;) from the current tree. Set J; = {j(1)}. If J, is nonempty let j(2) in J, be an
index satisfying Aj(2y = Minimum {\;| j€ J,}.

Step 3. If J, is empty, then for each j € J,, j # j(2), add the tip of the modified
edge (v;, v;), obtained after the above length reduction, to the set of points already
selected and remove that edge from the current tree. Go to Step 5 with u = v;(;) as the
only son of v;, and d(u, v;) = \j2). If J; is nonempty and J; is empty go to Step 5 with
u = Vj(1y as the only son of v;, and d(u, v;) = A;(;). Otherwise, go to Step 4.

Step 4. (J, and J, are nonempty.) If \;;) + N2y < r, remove the edge (vj1y, v;)
from the current tree, set J, = ¢ and go to Step 3. If \;;) + A\j2) 2 r, then for each j €
J>, add the tip of the (modified) edge (v;, v;) to the set of points already selected and
remove that edge from the current tree. Go to Step 5 with u = v;(,) as the only son of v;,
and d(u, v;) = Ny).

Step 5. (u is the only son of v;, and d(u, v;) is the length of the edge (u, v;).)
Consider the edge (v;, v;), connecting v; to its father. If (v;, v¢) is in E' or if d(u, v;) +
d(v;, v) < r, replace the pair of edges (v;, vy), (¥, v;) by a single edge (u, v;) having the
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length d(u, v;) + d(v;, v¢), and augment this new edge to E' if it is not already there.
Stop.

If (v;, v¢) is not in E! and d(u, v;) + d(u, vi) = r, add the point u (the tip of the
edge (u, v;)) to the set of points already selected, and remove the edges (u, v;) and
(v;, vy) from the current tree. Stop.

The complexity of the cluster elimination procedure is linear in its size. Therefore,
when we apply this procedure recursively to the original tree until we reach its root, it
terminates in O(n) time. g(r) is given by the cardinality of the set of points selected in
this process.

The validity of the above algorithm follows from the arguments given in Chandra-
sekaran and Daughety [1] who provided an O(n log n) algorithm to solve the standard
r-anticover problem, i.e., E! = E.

We note that the above O(n) procedure for solving the generalized r-anticover
problem can be implemented, as in [2] and [22], to yield a polynomial algorithm to
maximize the following homogeneous p-Maximin problem on a tree T = (V, E).

Find a set of points X, = {x,, - - -, X, } in A(T) maximizing the objective
(23) fi(xi, -+ ,x,)=Minimum [Minimum { a;d(v;, X,) }, Minimum {d(x;,x,)} ]
l=i=n 1<i#j=p

We demonstrate the approach with the case p = 1. We show how to use Phase I of
the above algorithm to improve the complexity of the best known algorithm to solve the
1-Maximin problem on a tree. Drezner and Wesolowsky [ 8] have solved this model on
a path graph in O(n®) time. Tamir [ 30] has presented an O(n log n) algorithm for paths,
and an O(H(T) log? n) algorithm for a general tree graph T, where H(T) is a parameter
depending on the topology of the tree. (H(T') is always bounded between n and n?.)

We now provide an O(n log? n) algorithm, using the above. Let x* be an optimal
solution to the 1-Maximin problem. Then there exists a pair of distinct nodes v; and v;
of the tree such that x* is on the unique path connecting v; and v; and «;d(v;, x*) =
a;d(vj, x*). (Since p = 1, we write x* for x71, and «; for a;;, | =i = n.) Thus, we have
the following proposition.

PROPOSITION 2.6. Let z* be the optimal solution value to the 1-Maximin problem
on a tree. Then z* is an element in the set R,

(2.4) Rz[—_{(,vi’v’)

a; -l-aj_1

léi#jén].

z* is fully characterized by the following property. Let z be a positive real and consider
the problem of finding whether there exists an x in A(T') such that

(2.5) d(vi,x)2z/a,, l=i=n.

Then, z* is the largest element in the set R, defined by (2.4), such that the system (2.5)
is feasible.

Given a positive real z, the feasibility of (2.5) can be solved by Phase I above. Setting
r,=z/a;, | =1 = n,we note that (2.5) is feasible if and only if Phase I identifies at least
one nonempty feasible subedge. Thus, the feasibility of (2.5) can be tested in O(#n) time.

With this linear time test we can implement the sophisticated search procedures of
[7]and [22] and locate z* in R in O(n log? n) total time.

We have presented above a polynomial time algorithm to solve the homogeneous
p-Maximin problem on a tree. In contrast, the next result shows that the general (nonho-
mogeneous ) case is NP-hard even on a single edge.
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PROPOSITION 2.7. The p-Maximin problem is strongly NP-hard even when the un-
derlying tree consists of a single edge.

Proof. Let G = (V, E), V= {v,, ---, v,}, be an undirected graph with unit edge
lengths. We reduce the Hamiltonian path problem on G [14] to the n-Maximin model
on a single edge tree. Let d(v;, v;), | =i # j = n be the distance between v; and v;on G.
Consider the problem of locating a set of # points {x;, - - -, x,} on the (real) interval
[0, n — 1], such that | x; — x;| 2 d(v;, v)), | i Fj=n.

We claim that G' has a Hamiltonian path if and only if the above location problem
is feasible. Suppose first that (v;(y), * - - , Vi) indicates the node permutation on a Ham-
iltonian path. Define the » points on the interval by setting x;xy =k — 1, k=1, -- -, n.
Using the triangle inequality for the distance function on G, we obtain | x; — x;| =
d(v;, v)), forall 1 =i # j = n. Conversely, suppose that x;(;) < Xj2) * - * < Xi(n) indicates
the locations of the n points on [0, n — 1]. By the constraints x;x) — Xik-1) =
d(U,'(k), Uik - 1)) = l, k= 2, R /R and Xitn) — Xi(1) =n-— l, we must have Xi(ky — Xi(k-1)
=1,k=2, -+, n. Therefore, (v, -+ , V) indicates a node ordering of some Ham-
iltonian path on G. O

Remark 2.8. We have not dealt here with exact algorithms to solve the p-Maximin
problem on general graphs. We briefly note several related references and results.

Consider first the homogeneous case of (1.1), where a;; = 00, 1 = i=n, 1 =j=
D,B;=1,1=1i, j= p. We can use the approaches in Tamir [28] and [29] for the related
homogeneous p-Minimax problem, and derive similar results for this case of the p-
Maximin model. In particular, we have obtained a result, similar to [29, Thm. 5], iden-
tifying a finite set containing the optimal objective value. Exact algorithms to solve the
discrete version of this case, where the points selected must be nodes, appear in Erkut
[10] and Kuby [21].

Referring next to the general form of (1.1) we note that the model can be solved in
polynomial time when p is fixed. We have derived such an algorithm by adopting the
approach used in [28] for the p-Minimax problem. We skip the details since the algorithm
is practically inefficient due to its high complexity bound, which is exponential in p. For
small values of p the algorithm can be significantly accelerated by using recent devel-
opments in linear programming. For example, it 1s shown in Tamir [30] that for p = 1,
the optimal solution can be obtained in O(mn) time.

Remark 2.9. We have mentioned above that Algorithm 2.3 is based on the heuristic
of Dyer and Frieze [9] which generates a 2-approximation solution to the continuous
symmetric p-Minimax model. We note in passing that the proof of Proposition 2.1 can
be used to show that if there exists a polynomial heuristic to find an e-approximation
solution, with ¢ < %, to the p-Minimax problem, then P = NP. We conjecture that this
result actually holds for any ¢ < 2. Similarly, we conjecture that the result in Proposition
2.1 holds for any ¢ > 1.

3. The p-Maxisum problem. We start by showing that the general model is NP-
hard even for the trivial case where the graph consists of a single edge. We need the
following lemma.

LEMMA 3.1. Let T = (V, E) be a tree graph. Then there is an optimal solution X *
to the p-Maxisum problem, where each x € X * is a tip of T .

Proof. Let X be an optimal solution to the p-Maxisum model. Let #( X ) denote the
number of points in X that are not tips of 7. Among all optimal solutions to the model
let X * have the additional property that u(X) is minimized.

Suppose x € X * is not a tip of X *. Fix all points in X * but x, and view the objective
/> as a single variable (x) function. For every fixed point y on the tree, the function
d(y, x)1is convex on every path in 7". Thus, f,(x)is convex on every path in 7". Therefore,
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its maximum is attained at a tip of 7. This contradicts the minimality property of
X*. O

PROPOSITION 3.2. The p-Maxisum problem is NP-hard even when G is a graph
consisting of a single edge.

Proof. Consider the model with «;; = 0,1 =i =n, 1 =j = p. From Lemma 3.1
there is an optimal solution X *, where each x; € X * coincides with v, or v, the two
nodes of G. Therefore, the p-Maxisum model reduces to the following Maximum cut
problem, which is known to be NP-hard [14]:

Find a subset S={1,2, ---,p}, such that >, > (; is maximized. O
ieSjeS

For comparison purposes, it is interesting to note that the minimization of (1.2) on
a tree graph can be performed in polynomial time by solving a sequence of O(7) minimum
cut problems on a graph with O(p) nodes [19].

We will later show that the homogeneous model can be solved in O(np) time on
tree networks. However, on general graphs even the homogeneous model is NP-hard.
Hansen and Moon [16] have considered the discrete version of the homogeneous case
(with the additional supposition that o;; = 0, 1 =i = n, 1 = j = p), where the points
X1, *** , X, must be selected among the nodes of G. They have shown that the independent
set problem [14] on a general graph is reducible to their model. Combining their reduction
with the construction in the proof of Proposition 2.1, we obtain the following result for
the (continuous) p-Maxisum problem.

PROPOSITION 3.3. The p-Maxisum problem (1.2) is NP-hard on a general graph
even whena; =0,1=i=n,1=j=p,B;=1,1=i,j=p.

Proof. Let G=(V, E), V={v,, ---, v,}, be a graph with unit edge lengths.
Let G' = (V, E'), be a complete graph with V" as its node set. If ¢ is in E let its length
be one, otherwise set it equal to two. Extend G’ to G” = (V", E") as follows: V" = V' U
{uy, -+, un}, E"=E'"U{(v), 4), -, (Vn, ) }. For 1 =i = n, let the length of the
edge (v;, u;) be one. Consider the homogeneous p-Maxisum problem on G”, with all the
a-coeflicients being equal to zero. It is easy to verify that the graph G has an independent
set of cardinality p if and only if the solution value to the above p-Maxisum problem on
G"isequal tod4p(p — 1). O

When p is fixed (1.2) can be solved in polynomial time on general graphs. Consider
first the single facility case, i.e., p = 1. Church and Garfinkel [ 6] have studied this model
and provided an O(n?*) algorithm to find the optimal location of the new center x;. We
can improve this bound by using the following observation. Suppose that we restrict the
new center to be located on a given edge. Then for each node v;, a;;d(v;, x,) is a concave
piecewise linear function on this edge, and it has at most one breakpoint there. Thus,
the objective f,(x,) is piecewise linear and concave. The maximum point of f; on a given
edge can be obtained in O(n) time using the recent general algorithms developed by
Zemel [35]. Therefore, we conclude that the 1-Maxisum problem on a general graph
can be solved in O(mn) time, provided that the distances between all the nodes
are given.

The case p = 2 can also be solved by using a similar approach. In this case the
objective takes on the following form:

n 2
(3.1) Llx,x)= 2 2 a;d(vi, X)) + (B2 + B21)d(x1,x2).

i=1j=1
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When a;; = a;, = 0 for 1 = i = n, the problem reduces to the problem of finding
the generalized diameter of a graph. The latter has been solved by Chen and Garfinkel
[5]. They have identified a discrete finite set of points that will include at least one
optimal solution. Specifically, there is an optimal solution where X;, j = 1, 2, is either a
node, or else there exists a node v; and a simple cycle containing v; and x; whose length
is 2d(v;, x;). To maximize (3.1) we solve O(m?) restricted subproblems. A subproblem
is obtained by restricting x; and X, to be located either on the same edge or on a given
pair of edges. In either case we can easily verify that f5(x;, x,) is piecewise linear and
concave over the restricted domain. Furthermore, due to the nature of £;(x;, x;), the
algorithms in Zemel [35] are applicable in this case and the optimal solution to a sub-
problem can be obtained in O(n) time. Therefore the global maximizer of (3.1) can be
computed in O(m?n) time.

The above approach can be generalized to yield an O(m?”n) algorithm to solve the
p-Maxisum problem ( 1.2) for every fixed p.

In light of Propositions 3.2 and 3.3 we focus now on the homogeneous case when
the graph is a tree. The objective takes on the following form:

(3.2) H(X)= 2 2 ad(vi,x)+ 2 2 d(x;,x)).

i=1j=1 i=1j=1

Ting [34] has presented an O(np?) algorithm for this model. Hansen and Moon
[16] have studied the case where o; = 0, 1 = i = n, and restricted the p new facilities to
the nodes, allowing no two to be located at the same node. Their algorithm also has the
O(np?) complexity bound.

We improve the above complexity bound by reformulating the objective (3.2). The
new formulation will identify useful concavity properties.

Using Lemma 3.1, we may assume that each of the p points x;, - - -, x, is a node
of the given tree. For 1 = [ = n, let y; denote the number of new points (facilities)
established at node v;. The optimization model is now formulated as:

MaXimizefé(yl’ ot ,J’n)
subject to
(33) ﬁ(yla Ut ,yn): z z aid(vbvj)yj+ Z Z d(viavj)yiyj
i=1j=1 i=1j=1
2. ¥j=Dp,y; nonnegative and integer, j=1, - - - ,n.

Jj=1

LEMMA 3.4. Let T = (V, E) be a tree with nonnegative edge lengths, {w,}, e € E.
Then the quadratic f,(y,, -+, y,) defined by (3.3) is concave when restricted to the
hyperplane '

[nyER", 2 J/j=p}-

J=1

Proof. 1t is sufficient to establish the concavity for the quadratic portion of f,.

Suppose that the tree is rooted at node v, and v, is not a tip. Consider an edge ¢ €
E, and let V¢ be the subset of V' consisting of all nodes that are disconnected from v,
by the removal of e. It is easy to verify that w,, the length of e, will appear exactly
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2(2 (i evey 24 jloje v—vey ¥iy;) times in the quadratic expression. Therefore,

n

> ﬁ: d(vi, ) yy= 2 2We( > > yt‘yj)

i=1j=1 ecE {ilvie Ve} {jlvje V—V¢}
=2 2we( > yi)( > yj)-
ecE {ilvje V¢} {jlvje V—Ve}
Using the constraint
n
2 Yi=p,
j=1
we obtain
n n 2
> 2 dv,v)yy= 22we(p > yi‘( > yi) )
i=1jj=1 ecE {ilvje V€} {i|vie V¢}
which is a concave function. O

The concavity result of Lemma 3.3 can be utilized to yield an O(np) algorithm to
solve (3.3). The objective in (3.3) is now formulated as:

fz(y,,---,yn)-—-Ewe[( D }aj) > yi+( > }aj)(P‘ 2> J’i)]

eekE {jlvjeV—-Ve {ilv;e V¢} {Jlvje Ve {i|lv;e V¢}

+ 2 2pw. 2 yi—Z2we( 2 yi)2-

ecE {ilv;e V€} ecE {ilvie V¢}
Letting
We=we( > a— 2 aj)+2pwe, ecE,
{Jlvje V- Ve} {Jlvje Ve}
2
(34) ﬁ(yl, Tt ayn)= 2 we( Z yi)— Z 2we( E yi)
ecE {ilvie V€} ecE {ilvie V¢}

+p 2 we( > a,-).
ecFE {ilvie Ve}
Note that the coeflicients { W, }, e € E, can easily be computed in O(n) total time.

To simplify the presentation we augment a node v, to the given tree 7 = (V, E)
and connect vy to v, the current root of 7', by an edge which is consistently labeled
e(1). We view v, as the super root of the augmented tree, 7' = (VU {vp}, EU {e(1)}).

For each ein E, let T, = (V*¢, E€) be the subtree induced by V' ¢. In particular, we
note that T,y = T = (V, E) = (V¢", E¢(1)), We maximize (3.4) recursively by considering
its restriction to the subtrees { 7, }. We will start at the tips of the tree and recursively
proceed until we reach the super root of the tree. (To simplify the notation we delete
and ignore the constant term in (3.4) while maximizing £ (y,, -, ¥n).)

For each edge z of the augmented tree 7' that is not a tip edge define

(3.5) f(zy)= 2 We< 2 yi)- 2 2we({ 2 yi)2,

eeE? {ilv;e V¢} ec E* ilv;e V€}
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and

(3.6)

Fy(z:k)=Maximum [fz(z:y)l > yi=k,y;nonnegative and integer | =i =< n] .

{ilvje V)

The solution value to our model is given by F,(e(1):p).

PROPOSITION 3.5. For every edge z, F,(z:k) is concave in k, i.e., the difference
Sfunction Fy(z:k + 1) — Fy(z:k) is monotone nonincreasing.

Proof. The result follows directly from the concavity of the function f,(z:y). O

ALGORITHM 3.6. To compute the optimal solution value to our model, F,(e(1l):p),
we give the recursive equations for computing F,(z:k) for all edges z and integer 1 =
k=p.

We use the tree terminology presented above. We start the recursion by defining F,
for edges z having the property that their son endpoint, say v;, is such that C; is a cluster.
Consider such an edge z = e(i), and let v; be its son endpoint. (Recall that for each son
v; of v; e(j) denotes the edge connecting v; to v;.) Then

(3.7) Fz(z:k)ZMaximum{ > Wi vi— 2 2wenyvil T yi=k,

{JjlvjeCi} {jlvie G} {jlvje C)
y; nonnegative integer, | =j = n] .

In general, when v; is a node and C; is not a cluster, we have the following:
Suppose that v; is the son endpoint of an edge e(i). Then

(3.8) Fz(e(i):k)=Maximum[ > (Fa(e()): k) + Wenki—2we k)| > ki=k,

{Jlv;e Gy} {Jlvje Cy}
k; nonnegative integer 1 =j= n] .

Using Proposition 3.5 we note that the maximization defining F,(e(i):k) s a special
case of the standard discrete resource allocation model with a separable concave objective
function. Using known algorithms for the latter model (see, e.g., [18, Chap. 4]), we
conclude that the complexity of computing F,(e(i):k) for all values of k =1, ---, p
combined is O(]C;| p). Therefore, the total effort for computing the optimal solution to
the homogeneous p-Maxisum problem on a tree is

0(1) 2 |C1|)=0(np).

i=1

The above O(np) algorithm was motivated by the case where p is relatively small.
For example, the complexity is linear when p is fixed. We now show that the model is
polynomially solvable even when p is a variable integer given as part of the input.

Consider the representation of the objective function in (3.4). For each edge e(})
of the rooted tree define

Zj= 2 Yi.

{ilvje veu)
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The homogeneous p-Maxisum problem is now formulated as an integer quadratic pro-
gram with a separable objective.

n

n
. . — 2
Maximize D) Wez,— 2. 2We(j)Zj

j=1 j=1
subject to
(3.9) ziZ2 2, z,1=j=n,and v is not a tip node,
{ilveC)
Z\=p,

z; 1s a nonnegative integer, | =j=n.

We note in passing that Lemma 3.1 implies that there is an optimal solution

{ Vi, o, yk } to (3.4) where y! = 0if node v;is not a tip. Therefore, there is an optimal
solution {z{, -+ -, z}} to (3.9) with
z;= 2 z;,1=j=n,andv;isnot a tip node.
{ilvie G}

It is now easy to observe that the constraints in (3.9) represent a flow problem on the
tree where p units of a single commodity are to be transferred from the tips of the tree
to its root v,. Therefore, (3.9) is a special case of the flow model discussed in Minoux
[24]. Applying his approach to our tree flow problem yields an O(#n? log p) algorithm.
By implementing more sophisticated data structures we were able to reduce the bound
to O(n?log n log p). For the sake of brevity we skip the details and present, instead, a
polynomial algorithm whose bound is independent of p.

Consider first the fractional relaxation obtained from (3.9) by deleting the integrality
constraints on the variables. Let zZ be an optimal solution to the fractional relaxation and
let 7 be the complexity bound to compute z.

We apply the proximity results in the recent paper by Granot and Skorin-Kapov
[15]. Specifically, given z, the problem of finding the integer solution to (3.9) is now
reduced to a flow problem of the same type, where p, the number of units that must flow
into the root node, is replaced by some polynomial in z. Thus, the linear constraints,
defined by a totally unimodular flow matrix, are independent of p. (Note that p appears
only in the linear portion of the objective in (3.4) and (3.9). Therefore, p will appear
only in the linear portion of the objective of the reduced problem.) The solution to the
reduced integer quadratic program can be obtained by the algorithm in Minoux [24],
mentioned above. The running time will depend (polynomially) on n only, ie.,
O(n?log? n).

To conclude we now have an O(+ + n? log? n) algorithm to solve (3.9), where 7 is
the complexity bound to compute a solution to the fractional relaxation of (3.9). To
solve the latter we apply the algorithm in Chandrasekaran and Kabadi [4]. Since p does
not appear in the quadratic portion of the objective, 7 is independent of p. It depends
(polynomially) on z and the sizes of the edge lengths.

The algorithm in [4] is a general quadratic programming algorithm. We have de-
veloped a special purpose, strongly polynomial algorithm to solve the fractional relaxation
of (3.9) with 7 = O(n?). This algorithm is presented in [31].

Remark 3.7. The above algorithm for the (continuous) p-Maxisum problem is
based on Lemma 3.1, which limits the search for the optimal solution to the set of tip
nodes. This algorithm can easily be modified to the case where the solution is originally
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confined to any other discrete set of points on the tree. We can even allow upper bounds
on the total number of points in {x;, - - - , x, } that can be established at each one of the
points in the given discrete set. The version of the problem discussed by Hansen and
Moon [16] is of that nature. They have confined the p new facilities to the node set, but
allow no pair of these to be located at the same node. Therefore, their model can also
be solved in O(np) time.

Remark 3.8. The O(np) bound applies to a general tree graph. Improvements are
possible for several special cases. For example, suppose that T'= (V, E) is a star tree, i.e.,
T is a cluster where v, its root, is the only node which is not a tip. In this case the
solution to the problem is given by F,(e(1):p) where F,(e(1):p) is defined by (3.7) for
z = e¢(1) and k = p. Therefore, the p-Maxisum problem is reduced to the standard
discrete effort allocation problem with a separable concave quadratic objective. The latter
problem can be solved in O(n) time [18].

Remark 3.9. For exact algorithms to solve the discrete version of the homogeneous
p-Maxisum problem with a;; =0, 1 £i = n, 1 =j = p, on a general graph the reader is
referred to Erkut, Baptie, and Von Holenbalken [12], Hansen and Moon [16], and Kuby
[21]. There are also several related papers cited in [16].

4. Related optimization models. We have studied above the two most common
objectives used for locating obnoxious facilities, the p-Maximin and the p-Maxisum
criteria. There are several other models mentioned in the literature (see the surveys in
[11] and [25]). In this section we discuss briefly two models that we find to be more
challenging combinatorially. We report on some of our results and pose a few open
problems.

The first model that we consider has been introduced and motivated by Moon and
Chaudhry [25]. They have labeled it as the p-Defense problem.

Find points {x,, - - -, x,} in 4(G) that will maximize the following objective:

p
(4.1) fi(x1, o, x,)= 2 Minimum {d(x;,x)|1 S j<p,j#i}.
i=1

The second model has been recently suggested by Ting in his Ph.D. disserta-
tion [34].

Find points {x;, - -+, x, } in A(G) that will maximize the following objective:
n 14 p
(42)  falxi, -+ ,x)= 2 a;Minimum {d(v;,x)| 1 =j=p}+ 2 X d(x;,x).

i=1 i=1j=1

We are not aware of any analytic or algorithmic results for these two models. How-
ever, few results and approaches discussed above in §§ 2 and 3 can be modified and
applied for models (4.1) and (4.2). For example, both models are NP-hard when defined
on general graphs. (The same result holds even when we consider the discrete versions
and confine the points { x;, - - - , X, } to the node set of the underlying graph.)

Turning to tree graphs, the recursive solution approach of § 3 seems to be applicable
for (4.1) and (4.2) as well. However, this recursive approach is discrete in nature, and
therefore it requires the optimal points to belong to some prespecified discrete set of
points. Moreover, this set must be of polynomial cardinality if we wish the solution
procedure to be of polynomial complexity. If such a set is identified we reduce the model
to its discrete version by augmenting the points in this set to the node set of the tree.
Indeed, we have used the recursive approach and constructed polynomial algorithms of
complexity O(p*n3) and O(p*n?) for the discrete versions of (4.1) and (4.2), respectively.
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Therefore, to obtain polynomial procedures for solving the continuous version we need
to identify a discrete set that includes at least one optimal solution. Such a set is called
a finite dominating set (FDS).

There are several continuous network location models for which an FDS of poly-
nomial cardinality has been found. More recently, Hooker, Garfinkel, and Chen [17],
have unified most of these models by identifying common convexity-concavity properties.
However, we could not see how to apply their framework to (4.1) and (4.2). Even for
tree graphs the objectivesin (4.1) and (4.2) do not seem to possess the convexity conditions
needed in the general framework of [17]. By using a direct approach we have been able
to prove that the set of tip nodes of a tree constitutes an FDS for the following general-
ization of (4.2):

n

(4.3)  fs(xy, -+, %)= 2 a; Minimum {d(v;,x)|1=j=p}+ é é Bid(x;,x)).

i=1 i=1j=1

LEMMA 4.1. Let oy, 1 =i =n, B;, | =i, j= p, be nonnegative numbers. Suppose
that G = (V, E) is a tree graph. Then there exists an optimal solution {xT, SRR G
maximizing fs(x, - -+ , X,) such that x} is a tip of the tree, 1 < j < p.

For the sake of brevity we skip the details of the proof. Unlike the proof of Lemma
3.1, which exhibits a similar result, our proof of Lemma 4.1 is fairly involved. In fact,
we have not been able to identify any convexity property, which usually suffices for the
existence of a maximum solution at the extreme points. Surprisingly, (4.2) might have
isolated maximum solutions which contain some nontip nodes even for the case where
the tree is a path connecting a pair of nodes.

Example 4.2. Consider the four node path tree depicted in Fig. 4.1, with
d(v,, 1) =d(v3,v4) = 1,and d(v,, v3) = 2. Letp=3. Leta; =as =0, as = a3 = 1,
B;=1,1 =1, j = 3. An optimal solution satisfying the property in Lemma 4.1 is x; =
V), X = X3 = v4. An isolated optimal solution that contains a nontip node is x; = v,
X, = ¥4, and X3 is the midpoint of the path connecting v, and v,.

Next we turn to the p-Defense problem, defined by (4.1), on tree graphs. As men-
tioned above, we have constructed a polynomial recursive algorithm to solve the discrete
version of the model when the p points are restricted to the node set of the tree. So far
we have not been successful in our attempt to obtain an FDS of polynomial cardinality
(in n and p) for the continuous problem on a general tree. For a star tree we have
identified an FDS of O(n>p?) cardinality.

When the graph is a path connecting two tip nodes the solution to the p-Defense
model coincides with the unique solution to the homogeneous p-Maximin problem. It
has been conjectured that this result holds in general. However, this is not the case even
for star trees. First, we observe the following simple result for the p-Defense model.

PROPOSITION 4.3. Let {x}, ---,x}} be an optimal solution to (4.1). Define I =
{ilx]! = x, for some | £j=<p,j#i}. Suppose that I is nonempty. Then there exists
a point x* in A(G), called a barrier, such that the set {y,, -+ , y,}, defined by

x* ifiel,
yi= " )
X; otherwise

is optimal for (4.1).

FiG. 4.1
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FIG. 4.2

If G is not a path and p is sufficiently large, every optimal solution to the p-Defense
problem has a barrier point. No optimal solution to the p-Maximin problem has a pair
of points x;, x;, i # j, with d(x;, x;) = 0. The following example demonstrates that the
two problems might have different optimal solutions even if the solution to the p-Defense
problem has no barrier point.

Example 4.4. Consider the star tree in Fig. 4.2. Let the edge lengths be d(v,, v;) =
6,d(v,, v3) = 2,d(v,, v4) = 1. The unique solution to the 3-Defense problem consists
of the nodes v,, v3, and v4. The unique solution to the 3-Maximin problem consists of
v, v3 and the midpoint of the path connecting v, and vs.

5. Summary. We have considered obnoxious facility location on graphs using the
p-Maximin and p-Maxisum criteria. These criteria are defined by (1.1) and (1.2), re-
spectively.

For the general (nonhomogeneous) case we have shown that both models are strongly
NP-hard even when the underlying graph consists of a single edge.

The other main results for the homogeneous p-Maximin problem are as follows.
Unless P = NP there is no polynomial e-approximation algorithm for the problem on a
general graph with ¢ > 2. A J-approximation for the same model is given by the following
greedy heuristic. Construct a sequence of p points such that each point is as far apart as
possible from the set of points selected before.

Turning to tree graphs we present a linear time algorithm for the (homogeneous)
r-anticover problem and apply it to get polynomial time algorithms for the homogeneous
p-Maximin problem. For example, we improve upon previous results and solve the single
facility case in O(n log? n) time.

For the p-Maxisum problem we have shown that the homogeneous case is strongly
NP-hard on general graphs. Focusing on the homogeneous case on tree graphs we have
presented an O(np) dynamic programming scheme for its solution. We have then iden-
tified useful concavity properties and reformulated the model as a maximum concave
separable quadratic flow problem. This formulation has led to polynomial and strongly
polynomial algorithms for this homogeneous p-Maxisum problem.

In § 4 we briefly discuss two other models dealing with the location of obnoxious
facilities.

Acknowledgment. The current simple and elegant proof of Proposition 2.7 is by
Brandon. It improves significantly upon the original proof that was based on a complicated
reduction.
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