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Abstract

In the classical p-center problem there is a set V of points (customers) in some metric space, and the objective is to locate
p centers (servers), minimizing the maximum distance between a customer and his respective nearest server. In this paper we
consider an extension, where each customer is associated with a set of existing depots or distribution stations he can use. The
service of a customer consists of the travel of a server to some permissible depot, loading of some package (e.g., a spare part) at
the depot, and the delivery of the package to the customer. This model is called the customer one-way problem. In the round-trip
version of the problem, the service also includes the travel from the customer to the home base of the server. In both problems
the customer cost of the service is a linear function of the distance travelled by the server. The objective is to locate p servers,
minimizing the maximum customer cost (weighted distance travelled by the respective server).

Since the classical p-center problem is NP-hard, so are the one-way and the round-trip models we study. We present efficient
constant factor approximation algorithms for these problems on general networks. Turning to special networks, we prove that
the one-way problem is strongly NP-hard even on path networks. We then present polynomial time algorithms for the round-trip
problem on general tree networks. We also discuss the single center case, and provide polynomial time algorithms for general
networks, tree networks and planar Euclidean and rectilinear metric spaces.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Given is an undirected connected graph G = (V, E). Each edge e € E has a positive edge length, /.. An edge is an image
of a closed interval under a continuous bijective mapping, i.e., a Jordan arc. However, for our purposes an edge e = (v, vs) is
identified with an interval of length /. so that we can refer to its interior points. An interior point is identified by its distances
along the edge (interval) from the two nodes v, and vs. Let A(G) denote the continuum set of points on the edges of G. We
also view A(G) as a connected set which is the union of |E| intervals. The edge lengths induce a distance function on A(G).
For any pair of points x, y € A(G), we let d(x, y) denote the length of a shortest path P(x, y), connecting x and y. For any
Y C A(G) and x € A(G) we letd(x,Y) =d(Y, x) =inf{d(x, y) : y € Y}. A(G) is a metric space with respect to the above
distance function. We refer to A(G) as the network induced by G and the edge lengths {lc} e € E.

V ={vy,...,vn} is viewed as the set of customers. The customers are associated respectively with nonnegative weights
{wy, ..., wn}. There is also a set X = {x1, ..., xn} of points in A(G), representing existing depots, or distribution stations.

Each customer v; is associated with a subset of depots X! C X, that v; can potentially select from and use.
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The goal is to establish p servers, Y = {yi, ..., yp} in A(G), optimizing the following objective. Suppose that a customer v;
places a call for service. If he is served by the server at y ;, the service consists of the travel of the server from y; to some depot
x; € X', loading of some package (c.g., a spare part, etc.), at xi, the travel to v;, dropping of the package there and traveling
back to y;. (Alternatively, we can reverse the tour direction and talk about loading some waste at v; and dumping it at some depot
xg.) The cost of the service is measured in terms of the total tour length of the server, i.e., d(y;, v;) +d(v;, xi) + d(xg, y;).
and the cost of loading and unloading, denoted by #; ;. We assume that ¢; ; 20 forv; € V and x4, € X i The smaller the length
the better is the service. Since there are no capacity constraints on the depots and the servers, the best service v; can get from
the servers is measured by

S (Y)=min  {d(yj,v;) +d(i, xx) +d &k, yj) + k)

y;€Y. xeX!

Equivalently,
S;(Y) = min {d(yj, v;) + min {d(v;, x¢) +d(xg, ¥j) + ti,k}} .
yjeY x €X'’

We assume that the cost of serving v; is w; S; (Y).

We note that in some applications the return portion of the server to its home base after accomplishing the mission, might be
irrelevant and costless. (As an example, consider an emergency service where drugs or blood infusion bags are delivered to the
homes of patients from central distribution depots.) There are two versions.

In the first one the server goes first to the customer, picks up some waste, travels to a depot and dump it there. In this case the
cost of serving v; is wiSiz(Y), where

S?(Y) = min {d(yj, v;) + min {d(v;, xk) +t,-_k}} .
yj€Y xreX:

Itis clear that in this variation each customer v; willuse adepot, say xy ), satisfying d (v, Xk (i) +1i k(i) =min, ¢ xi {d (vi, xk)+
t; k}. Thus, we can assume in this case that Xi= {xk (i)} is a singleton, and

S2(r)= ;‘2", {d(yj, v} + d;, xey) + tiky = d Wi, Y) +d g, Xky) + kG-
J

In the second variation the server goes first to the depot, picks up a spare part, and then delivers it to the customer. The cost of
the service does not depend on the length of the return part from the customer to the home base of the server. Specifically, the
cost of serving v; is w; S?(Y), where

S = min _ {d(yj, xx) +d @, v) + k).
V€Y, xp€X!

In this paper, we consider the MINMAX models corresponding to the three cost terms mentioned above. Specifically, the
objective is to find ¥ € A(G), |Y| = p, minimizing G{(¥Y) = max;=1,  »{w;Si(Y)}, (G2(Y) = max,~=|'m,,(w,'5i2(Y)},
G3(Y)max;=i, . n{w; S?(Y)}). The MINMAX problem with G (Y) is called the round-trip p-center problem. The MINMAX
problems with G2(Y) and G3(Y) are called the depot one-way p-center problem, and the customer one-way p-center problem,
respectively. (In the depot one-way model the tour initiates at the home base of the server and terminates at the depot, while in
the customer one-way model termination is at the customer.) Berman et al. [8], introduce the round-trip model where X i—x,
foreachi =1, ..., n, and they call it the collection depots p-center problem. They consider only the case where p = 1, and
discuss several applications of their model.

When the set of servers Y is restricted to be a subset of V we will call the respective model discrete. Otherwise, it will be
referred to as a continuous model. We call a problem unweighted if w; =1, i=1,...,n.

We let r [’,, rlzJ and rg denote the optimal objective values of the above three problems, respectively.

If for every customer v;, v; € X', and the respective cost of loading and unloading at v; is 0, then S; (¥)=2 minyl.ey {d(yj, v},
and the model (mathematically) reduces to the classical p-center. (The classical continuous center problem is also recognized
as “the absolute center problem”, see [25,37,38].) In the classical models there are practically no depots, and the mission of
the server is to travel directly to the customer, and then back to its home base. (We note in passing that the cost function
w; Sl.z(Y) = w;d(v;, Y) + w;d(v;, x(;y) of the depot one-way model, can be viewed as a variation of the weighted classical
p-center problem. The cost of service is the weighted travel time of the server to v;, w;d(v;, Y), plus a fixed service cost,
a; = w;d(v;, xk(;)).) Another special model which is discussed in the literature (see [10,11,15,29,30]), is the case where each
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customer v; can use only one depot, i.e., for each v;, X’ is a singleton, X/ = {xk(iy}. We will refer to this special case as the
singleton variation.

Since the classical problems are NP-hard on gencral graphs, we conclude that the above three problems are NP-hard.

If forsome i = 1,...,n, the cost terms {t; 4}, x4 € X!, are independent of k, we can assume without loss of gencrality that
the number of depots that v; can sclect from, is bounded above by 2| E|. (For ecach edge having more than two depots of X/, it
is sufficient to consider only the two which are respectively closest to the nodes of the edge.)

We can transform the above models on general graphs into equivalent models where #; y =0foreachi=1,...,n,andx; € X i
We first augment X to the node set. Consider for example the round-trip model. Foreachi =1, ...,n, and x; € X' with tik >0,
augment a new node, x[£, k], to the graph G, and connect it with a single edge of length ¢; 4 /2 to the depot x;. x[i, k] will replace
Xy as a potential depot of v;. It is now easy to see that for each point y; the distances on the augmented network satisfy

d(yj, vi) +dj, x) +d (g, yj) + i, =d(yj, vi) +d v, x[i, k]) + d(xli, k], ).

Similar transformations can be used for the two one-way models. Therefore, throughout the paper we assume that ¢; ; = 0 for
ali=1,....mx e X,and X C V.

In Section 2, we provide efficient constant factor approximation algorithms for the three problems, by reducing them to the
p-center problem with customer weights and facility setup costs [9,23,24,27,43].

In Section 3 we address the single-facility models, and present polynomial time algorithms. (We also consider here the planar
Euclidean and rectilinear cases.)

Section 4 focuses on the p-center problems on tree networks. We show that the depot one-way model reduces to the classical
p-center problem, and is therefore solvable in O(n log2 n) time. In contrast, the customer one-way problem is shown to be
NP-hard even on path networks. Finally, for the discrete and continuous round-trip models on trees we give on? log n) time
algorithms. More efficient algorithms are presented for the 1-center versions of these models.

In Section 5 we discuss some related extensions and open problems.

2. Approximation algorithms

In view of the NP-hardness of the models we next show how to obtain constant factor approximation polynomial algorithms
for the three MINMAX models presented above. We present reductions of these models to instances of the classical p-center
problem with customer weights and facility setup costs.

We consider first the discrete case (Y € V, |Y| = p). In this discrete case we can assume without loss of generality that we
have a complete undirected graph G = (V, E), with edge lengths (weights) satisfying the triangle inequality. In particular, for
any pair of nodes x, y € V, the weight of the edge (x, y) is d(x, y), the shortest distance between x and y on G.

For the depot one-way model we augment to the underlying graph G, the set of nodes U = {uy,...,un}. Fori=1,...,n,
we connect node u; to v; with an edge of length d(v;, xg(;)), Where x(;) is defined above as the closest point to v; in Xi. Let
G’ = (V U U, E’) denote the augmented graph. We then consider the classical p-center problem on G’, where U is the set of
customers, and servers can be located at V only. Fori =1, ..., n, the weight of customer u; is defined to be w;. It is easy to
see that this instance of the classical p-center problem with customer weights and facility setup costs, is equivalent to the depot
one-way model.

3-approximation polynomial algorithms for several versions of the above generalized classical p-center problem are described
in [9,23,24,27,43]. (The first reference considers only the unweighted case where w; = 1 for i = 1,..., n, while the last two
provide 3-approximation schemes even for the case where there are setup costs associated with the nodes in V U U, and an upper
bound on the total setup cost of the selected facilities.) We conclude that there is a polynomial 3-approximation algorithm for
the depot one-way problem.

In the original version of this paper we used more involved reductions to obtain 12-approximation and 9-approximation
polynomial schemes for the round-trip and the customer one-way p-center problems, respectively. Our reductions are obsolete
now, since Ageev [4], has recently shown how to obtain 3-approximations by using simple direct reductions to the p-suppliers
problem [9,23,24,27], for the round-trip and the customer one-way p-center problems. (The p-suppliers problem with weights
and setup costs is actually equivalent to the above generalized classical p-center problem.) For completeness, we briefly describe
his reductions. We provide only the respective edge weights, as proposed by Ageev, but skip the proof that they satisfy the triangle
inequality.

Let H=(V U U, F) be a complete undirected bipartite graph with node sets V = {vy, ..., vp}, U ={uy, ..., u;}, and edge
set F. The edges are associated with positive weights which satisfy the triangle inequality. For each pair of nodesx,y € VU U,
let d’(x, y) denote the length (total edge weights) of a shortest path connecting x and y. Each node u; € U is associated with a
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nonnegative weight w;. The p-suppliers problem is to find a subset S € V, |S|< p, minimizing

. 7

For the reductions of the customer one-way and the round-trip models on G, define the bipartite graph H = (V U U, F) as
follows: V is the node set of G and U = {uy, ..., un} is a copy of V, with u; corresponding to v;, i = 1,...,n. Each node
u; € U is associated with the weight w; that v; has in G. Next, for each pair v; € V, u; € U, define the weight (length) of the
edge (vj, u ;) € F, depending on the particular model, as follows: for the reduction of the customer one-way p-center problem,
Ageev defines d3(v;, u j), the weight of (v;, uj), by

d3(vi, uj) = min {d(v;, xg) +d(xg, v},
xpeX!

while for the round-trip p-center problem, the weight of (v;, u ;), d) (v;, u j), is defined by

di(vi,uj)= me')r}i{d(vi»xk) +d(xg, vt +dy, v) =d3(v, uj) +dj, v;).
Xk

We have considered above the weighted discrete model. The same approximation results hold also for the weighted continuous
case, since the continuous models can be discretized as in the classical p-center problem. Consider, for example, the weighted
round-trip version. From the discussion below (Section 3), on the single-facility model, we conclude that on each edge it is
sufficient to consider only a discrete set of cardinality O(nz), for the location of servers. Specifically, with the notation in
Section 3, focusing on a single edge, it is sufficient to consider only the intersection points of pairs of functions in the collection
{w; 5‘; ()}, i=1,...,n. Since for each pair i, j the equation w,~§,- ¥ =w; 5’j (y) contributes at most 4 points, we have on?)
points in total on each edge. (Berman et al. [8], identify a discrete set for the unweighted problem.)

3. Locating a single facility
In this section, we consider the single-facility one-way and round-trip models.
3.1. The network case

The discrete models can be solved by complete enumeration, i.e., evaluating the respective objectives at each node of G.

Like the classical continuous (absolute) 1-center problem, (see [25]), the continuous single-facility round-trip center problem
is solved by finding the best location on each edge of the network space A(G). We note that Berman et al. [8] identify on each
edge a finite dominating set (FDS) of polynomial cardinality for the unweighted version of this problem. Hence, the best solution
on each edge for this unweighted version can be found in polynomial time. We discuss the weighted version.

Consider an edge e = (vs, v1) of A(G), and let y be a real parameter identifying points along this edge. In particular, y is
bounded between 0, the value corresponding to the node vs, and /., the length of the edge, which is the value corresponding to
the node v;. For each v; define

S;(y) = min {d(y, v;) +d (i, x) +d(xg, )} =d(y, v;) + min {d(v;, x¢) + d(xg, ¥)).
xeX! xpeX!

Our objective is to find a minimum point of the function

Gi = max {wiSy}
over the range 0 < y <.

It is easy to see that cach function S; (y) is piecewise lincar and concave with at most 3 slopes. Moreover, each slope is in the
set {—2, 0, +2}. It takes O(IXi |) time to construct the (at most) 2 breakpoints of S‘i y).

The function G (y) is the upper envelope of the collection of functions {w; S‘,-(y)}. Therefore, G (y) is a piecewise linear
function with at most O(n) breakpoints, (see [41, Lemma 4.2]). One of them is a minimizer of Gl (). Using a standard divide
and conquer approach, all the breakpoints of G1(y) and its minimum can be found in O(n log n) time. We conclude that the
round-trip 1-center problem on a network A(G) can be solved in O(|E|(nlogn + 27—_-1 |X1)) time.

The above results can easily be extended to the two one-way models. For the depot one-way problem the related functions are

S2(y) =d (v, vi) +di, X))
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and

Ga() = max {w; 57 ().
(xk (i) is the closest point to v; in X i) Each function S‘iz(y) is piecewise linear and concave with at most 2 slopes. (Each slope is
either +1 or —1.) éz(y) is a piecewise linear function with at most O(n) breakpoints, (see [25]). As above all the breakpoints
of Gz(y) and its minimum can be found in O(n log n) time. Therefore, the depot one-way 1-center problem on a network A(G)
can be solved in O(| E|n log n) time.

For the customer one-way problem the related functions are

§} () = min {d(y, x) +dGx, v))
xreX!

and

Gy = max {w;§}()).

1 o

The function S? (y) is also piecewise linear and concave with at most 2 slopes: +1 and —1. It takes O(| X {]y time to construct

the (at most one) breakpoint of 313 (y). As with Gz(y), (33()1) is a piecewise linear function with at most O(n) breakpoints.
As in the round-trip model, we conclude that the customer one-way 1-center problem on a network A(G) can be solved in
O(IE|(nlogn + Y7 1X"])) time.

In Section 4, which focuses on tree networks, we provide more efficient algorithms for locating a single facility on such
networks.

3.2. The planar Euclidean and rectilinear cases

Although in this paper we focus on network models, it is interesting to consider the single-facility planar geometric versions
of the above models. The input consists of the set of » demand points in the plane V = {v, ..., vy} (customers), and a set of m
points in the plane X ={x1, ..., x,» } (depots). We consider the continuous versions only, and discuss first the singleton versions.

3.2.1. Planar singleton models

Consider the singleton round-trip problem. Let r be the parameter of the covering problem. (r is an upper bound on the
weighted length of the round trip.) Foreach i =1, ..., n, we denote the (planar) demand point (customer) and its unique depot
by v; and Xy, respectively. To ensure a cover of r, we need to consider all the points y in the planar set ¥; (r) = {y|d(y, v;) +
d(y, xgiy) Sr/w; — d g, Xl

In the Euclidean case Y;(r), is an ellipse. The objective is then to find the smallest value of a parameter r, such that
(i=1.... n1Yi("} is nonempty. This problem can be formulated within the framework of the convex algebraic model in [16].

Therefore, we can find ’11 , the optimal value of r in O(n) time.

Consider next the singleton versions of the one-way problems. (See [10,11].) In the depot one-way version, to ensure a cover
of r,fori =1, ..., n, we need to consider all the points y in the planar set Yi’(r) = {yld(y, vi) <r/w; — d(v;, x¢(;))}. In the
Euclidean case Y/(r) is adisk. The objective is to find the smallest value of a parameter r, such that ();_; ,{¥/(r)} isnonempty.
It is shown in [16] how to find the optimal value of r in O(n) time. An almost identical result holds for the customer one-way
problem since we also deal with a collection of disks, {¥’(r)}, where, ¥;"(r) = {yld (xk(;y, ¥) < r/w; — d(v;, X))

In the rectilinear case, Y;(r), Y/(r) and Y/’ (r) are convex and polyhedral fori =1,...,n. (¥/(r) and Y/'(r) are squares and
Y; (r) is an octagon, possibly degenerate.) Therefore, the optimal value of r can be found in O(n) time by solving a single LP in
3 variables: the 2 components of y and r. (See [33].)

3.2.2. Planar general models
The general single-facility round-trip and customer one-way center problems are more complicated. (Recall that the depot
one-way version coincides with the singleton version since each customer uses the closest depot.)

3.2.2.1. Euclidean case Inthe Euclidean case of the round-trip problem each ellipse ¥; (r) is now replaced by a set, say Z; (r),
which is the union of O(|X!|) ellipses. In the covering problem we now need to determine whether the intersection of the
collection of the n sets {Z;(r)}, i = 1,..., n, is nonempty. Due to the convexity of the ellipses, and the fact that each one of
the O(|X*|) ellipses of Z; (r) contains v;, it follows that Z; (r) is the complement of the infinite single face of the arrangement
of these ellipses. From Theorem 5.7 in [40], we conclude that the boundary of Z;(r) can have at most A4(] X i |) vertices and
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ellipsoidal arcs. (This bound is “almost™ linear, i.e., A4(JX']) = O(X'|2*UX'D), where «(n) is the functional inverse of the
Ackermann’s function.) We can check whether ();_| . ,{Z;(r)} is nonempty by constructing the planar arrangement of all the
k= ?:l |X¢| = O(mn) ellipses involved, and using a sweep line algorithm on the arrangement. This can be implemented in
O(k? log k) time by the algorithms in [17] and Section 6 in [40]. (We suspect that the O(m?n? log(mn)) complexity is “almost”
optimal since we have examples of the model where the complexity of the boundary of ();—; . ,{Z;(r)}is O(m?n?).)

The optimal value of the single-facility round-trip problem, rll, is the smallest value of the parameter r of the cover-
ing problem, for which (;_; . ,{Z;(r)} is nonempty. To find rll we use the parametric approach of Megiddo [32], with
the parallel implementation of the algorithm from Agarwal et al. [1]. (See [2, Section 4].) The total time to find ’11 is then
O(mzn2 log3 (mn)).

In the customer one-way problem we obtain a collection of n sets, say {Z]'(r)}, i =1,...,n, each being the union of
O(|Xi |) disks. We can use the above O(m2n2 log(mn)) approach for the round-trip model to check whether ﬂ,-___l o {Zlf’(r)}
is nonempty. However, a further improvement is possible for this case. o

Z;l'l (r) is not necessarily connected, and its boundary has only O(| X i |) vertices and circular arcs, see Kedem et al. [26]. For the
same reason, for each pair of sets Z}/ (r) and Z;'(r), the number of vertices and circular arcs of the boundary of ZJ (r) U Z; (r),
is O(JX*| + |X"|). On the other hand, since we deal only with two sets, each vertex of the boundary of Z}/(r) N Z} (r), is either
a vertex of the boundary of Z{(r) U Z;'(r), a vertex of the boundary of Z}/(r), or a vertex of the boundary of Z; (r). Thus,
the number of vertices and circular arcs of the boundary of Z;/(r) N Z]'(r), is also O(|X*| + | X"|). Finally, each vertex of the
boundary of ;.. ,{Z](r)} isa vertex of the boundary of Z{'(r) N Z{' (), for some pair s, 7. Thus, the total number of vertices
n sets, each being the union of at most O(rri')"disks, is a special case of Theorem 10 in [12].)

We show that by using a divide and conquer algorithm we can determine whether (;_;
O(mn? log(mn)) time. Suppose without loss of generality that n is even. Let I} = {1,...,n/2}and I = {n/2 + 1,...,n).
We divide the collection of sets {Zlf’ (r)} into two subcollections, {Z’f’ (r);i € I} and {Z‘f’ (r); i € I2}. Recursively we find
Cr =Nieyy {Zlf’(r)} and C = ﬂ,-elz{Zl’.’(r)}. (The number of vertices and circular arcs of the boundaries of C; and C; is
O(mnz)). By using a sweep line of the boundaries of C; and C5 we then construct the boundary of C; N C3 in O(mnz log(mn))
time.

Let T (m, n) denote the total time needed to construct the boundary of (;—;

n{Zl{’(r)} is nonempty in

2{Z] (r)}. From the above approach we have

T(m, n) <cmn? log(mn) + 2T (m, n/2),

for some constant c. Therefore, T (m, n) < 2c(mn? log(mn)) = O(mn2 log(mn)).

The optimal value of the single-facility customer one-way problem, r13, is the smallest value of the parameter r of the covering
problem, for which (M;_, ontZ ;’ (r)} is nonempty. To find rf‘ we use the parametric approach of Megiddo [32], with a parallel
implementation of the above algorithm, which tests the nonemptiness of ﬂi=]w_‘n{Z;’ (r)}). The details of such a parallel
implementation are quite involved, and will be discussed elsewhere. We only note in passing that ’13 can be computed by this
parametric approach in O(mn? polylog(mn)) time.

3.2.2.2. Rectilinear case Consider the rectilinear case of the round-trip problem. Analogously to the Euclidean case, in
the covering problem we need to determine whether the intersection of a collection of n sets, say {W;(r)}, i =1,...,n,is
nonempty.

W; (r) is the union of O(] X’ |) octagons, say {O,i }, which intersect at v;. The edges of all these octagons have only four different
orientations, (i.e., their slopes are in the set {0, +1, —1, +00}). We decompose the boundary of each octagon 0{ with respect
to the horizontal line passing through v;. We slightly perturb the (at most) two infinite slopes of the octagon, and view the part
of the boundary above this line as a concave piecewise linear function, say f,i. Similarly, the lower part, which is convex, is
denoted by g{ . Consider now the boundary of W; (). The part of this boundary which is above the horizontal line containing v;,
can be represented by the function £7(x), which is the upper envelope (pointwise maximum function) of the O({X|) concave
functions { f,i }. Similarly, the lower part of this boundary is represented by g' (x), which is the lower envelope of the collection
{g{ }. fi(x) and g (x) are both piecewise linear, and their slopes are in the set {0, +1, —1, +-00, —o0). Therefore, the complexity
of fi and g’ is O(|X]) due to Lemma 4.2 [41]. The graphs of f* and g’ can be generated in O(| X |log |X!|)) time by a divide
and conquer algorithm [40].

very

F(x) and G(x), respectively. Let F(x) be the lower envelope of the graphs {fi (x)}, i=1,...,n, and let G(x) be the upper
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envelope of the graphs {g' (x)}, i =1, ..., n. We clearly have

) Wi} ={(x.2): G@ <K F@))

i=1,...,n

Again, from Lemma 4.2 in [41] it follows that the complexity of F(x) and G(x) is O(mn), and it can be constructed in
O(mn log(mn)) time. To conclude, for any nonnegative real r, the complexity of the boundary of (), _ vntiWilr)}is O(mn), and
it can be constructed in O(mn log(mn)) time. In particular, we can determine in O(mn log(mn)) time whether [,y ,{W; ()}
is empty or not. We also note that since the algorithm used is a divide and conquer scheme, based on merging, it can be
implemented by O(mn) processors in O(log? (mn)) time. Therefore, in the rectilinear case, we can implement the parametric
approach of Megiddo [32] to find rll, the optimal value of the single-facility round-trip problem in O(mn log4(mn)) time. This
bound can be further improved to O(mn log3 (mn)) if we use the approach in [14] to implement each one of the merging phases.

In the customer one-way problem we obtain a collection of n sets, say {W‘.”(r)}, i =1,...,n, each being the union of
(rectilinear) squares. Without loss of generality we rotate the axes by 45 degrees and assume that the edges of all squares are
parallel to the axes. The results of Kedem et al. [26] mentioned above in the context of the Euclidean case, apply to this model
as well. We conclude that fori =1, ..., n, W/(r) has only O(|X!|) vertices and edges. In particular, W/ (r) can be subdivided
into O(JX!|) axis-parallel rectangles, whose interiors are disjoint. The time needed for this decomposition is O(|X|log | X*|),
(see [12]). Altogether, we will have at most Z?:l | X i| = O(mn) axis-parallel rectangles.

We can now use the O(mn log(mn)) algorithm of Overmars and Yap [36], as in [12], (or the counting O(mn log(mn)) algorithm
of Chew and Kedem [13]), to determine whether (};—; _,{W/ (r)} is nonempty.

To find ’13 , the optimal value of the single-facility customer one-way problem, we first identify a set containing r13. Recall
that ri‘ is the smallest value of r such that ();_;

a pair of depots x; € X‘, and xg€X J, such that r]3 is the smallest value of the parameter r for which the intersection of the
two (rectilinear) squares {y|d(xg, y) <r/w; — d(v;, x¢)} and {y|d(xq, y) <r/w; — d(v}, x4)} is nonempty. (To simplify, we
replace the /{ norm by the /oo norm, i.e., rotate the axes by 45 degrees.)

Let xg = (xx (1), x£(2)) and x4 = (x4 (1), x4(2)). Assume without loss of generality that x; (1) > x4 (1) and x4 (2) 2 x4(2).
Then it is easy to see that

n{W} ’(r)} is nonempty. Therefore, there exist a pair of points v; and v j» and

3 = [0 + di, 1) — (g (1) — d (@}, xg D)/ [ /w; + 1/w)]
or
P = (k@) + d (v, 1)) — (g 2) — d(j, xgN/[1/w; + 1/w;).

We are now ready to define a set containing rf’.
Fori=1,...,n,and x; € X, define w; 4 = w; if x; € X!, and w; x = oo otherwise. Also let

ok = xi (1) + d(vj, xk),

Bik = xk (1) = d(v;, xp),

Yik = %k (2) +d (v, xp),

Oik = xk(2) — d(v;, xp).
Consider the sets

R*(D) = {(tik — Bj, )/ wikx +Vwjg)ii, j=1,....,mk,g=1,...,m},

R*(Q2) = {(y;x — 0 )/ Mwig+1/wjg):i,j=1,...,nkg=1,...,m},
and

R* = R*(1) U R*(2).

An element r in R* is smaller than rl3 if and only if ;=1 .. ,{W/ (r)} is empty. From the above, this decision problem can be
solved in O(mn log(mn)) time. The structure of the set R* enables us to use the search procedure in [34], with the modification
in [14], to find ’13 in R*. Since the decision problem is solved in O(mn log(mn)) time, the total time needed to compute ’13 in

this case is O(mn logz(mn)).
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4. The one-way and the round-trip p-center problems on tree networks

In this section we consider the case when the graph is a tree 7 = (V, E). The respective tree network metric space is denoted
by A(T). A closed and connected subset of A(7T) is called a subtree. If all the leaves (relative boundary points) of a subtree are
nodes of T the subtree is called discrete. To simplify the notation we assume that the set of depots X = {x|, ..., x»} is a subset
of V.={vy,...,u}

4.1. The one-way p-center problems

As we have noted above in the depot one-way model we can assume that each customer v; uses the closest depot to v; in X [
say xg(;)- The cost function of a customer v; from the set of servers, w; S?(Y), is a linear function of d(v;, Y), the distance of
v; fromY.

wi S2(Y) = wid (v, ¥) + wid (v, x(1)).-

Therefore, this model can be solved by the techniques to solve the classical p-center problem on trees. The discrete model can
be solved in O(1 log? n) time by the algorithm in [35], and the continuous version can be solved with the same complexity by
the algorithm in [34], when we implement the modification in [14].

Theorem 4.1. The discrete and continuous depot one-way p-center problems on a tree network are solvable in O(n log2 n) time.
In contrast, we have the following result.
Lemma 4.1. The customer one-way p-center problem is strongly NP-hard even on path networks, with | X'| =2, fori=1, ..., n.

Proof. Consider the vertex cover problem on a general undirected graph G = (U, E'), with U = {uy, ..., un}. We reduce it to
an instance of the customer one-way problem on a path network.

We define the nodes of the path network by a set V of at most |E’| + n points on the real line. For each edge (u;, u j) of the
graph G define the point u; ; = (i + j)/2 on the real line. It represents the location of customer {/, j}. (Note that a point can
represent the location of several customers. There are |E’| customers.) Next, define the set of depots as the set of points on the
real line, X ={x1, ..., xp}, by setting x; =i, i =1, ..., n. Vwill consist of the customer points and the depot points. The edges
of the path network are then defined by the at most |E’} +n — 1 segments on the line connecting consecutive pairs of points in V.

We assume that a customer {i, j} can use only two depots, x; and x ;.

Consider the following customer one-way p-center problem: The cost coefficient w; ; of serving customer {i, j}, (u;, u ;) € E !
is w; j =2/|j — i|. Using the above notation r!3J denotes the optimal value of this problem. We claim that r?, < 1if and only if
there is a vertex cover of cardinality p to the graph G. Indeed, if r[3, < 1, then a server y can serve customer {i, j} if and only if
y = x; or y = x;. Therefore, r?, <1 if and only if there is a subset X, of p points in X, such that for each {i, j}, eitherx; € X

or x;j € Xp. The latter is clearly equivalent to determining whether G = (U, E’) has a vertex cover of cardinality p. I

In spite of the above hardness result, we have learned from Ageev [4], that the customer one-way p-center problem on path
networks is polynomially solvable when X i=X,fori=1,...,n.Thisfollows fromaresult by Beresnev [7], for the uncapacitated
facility location problem (published in Russian). Specifically, the decision problem corresponding to this customer one-way
problem on a path is a minimum cardinality set cover (hitting) problem with a 1-connected constraint matrix. (By definition, a
{0, 1} matrix (b;;), i=1,...,k, j=1,...,q,is 1-connected if for any two rows i1 and i3, the sequence {b;, ; — b;, j} changes
sign at most once when j runs over 1, ..., g.) Beresnev [7], proved that even the minimum weight set cover (hitting) problem
with an k x ¢ 1-connected constraint matrix can be solved in O(kg) time. (See also [3,5,6].)

Ageev [4], has also found a direct O(m + n log n) greedy type algorithm to solve the minimum cardinality set cover problem
corresponding to this special instance of the customer one-way problem on a path with X! = X, fori =1,...,n.

For completeness we point out that with the above covering algorithm of Ageev, the p-center itself can then be solved in
O((m +n) logz(m + n)) time by using the search procedures in [18,34,36] with the modification in [14].

Given are a path G = (V, E), with V = {v1, ..., vp}, and E = {(v1, v2), (v2, v3), ..., (Uy—1, Un)}, and a subset of depots
X ={x1,...,xm} C V. Assume without loss of generality that the nodes in V and the depots in X are points on a real, satisfying:
vi<---<vpand x; <--- <Xp.
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We start with the discrete case, Y € V. Suppose without loss of generality that x| <vi < vy <xm. Also, fori=1,...,n,
let xg(;) be the largest point in X which is not greater than v;. In this case, rg, the optimal objective value is of the following
form: There exists a server at v; serving v; via x(;) or x(j)41 with objective value r,3,. Thus, if v; <xggy, r?, =w;(v; —v;),if
Xk(i) SVj SXk(i)+1> r?, =w;(vj+v; — 2xy(;))s or r?, =w; (2xg(i)4+1 —vj — ;). and if Vj ZXk(i)+1 r13, =w;(vj—v;). Fixing v;
and varying v, from vy to v,, the potential set of values that r?, can take on, can be represented as the union of 4 sorted subsets,
columns. Therefore, the entire set of values that rg may take on in the discrete version of the problem can be viewed as a matrix
with at most 4n sorted columns. Using the above O(m + n log n) algorithm for solving the unweighted covering problem, we
can now apply the search procedures in [18,35] to find r13, in this matrix inO((m + n) log2 (m + n)) time.

3
p

Nevertheless, by a simple local argument, it follows that r13, is attained as the relevant cost between some customer v; served by
a server located at some depot in X, or there exist a pair of customers, v; and v, which are served by some common server, say
¥, and the service costs of the pair of customers are identical. Since we assume that X C V, in the former case, a potential set
including rg is the same as the one obtained above for the discrete model. In the latter case y; is a “bottleneck point”, and rg can
be shown to be an element in a set of the form {(a; — b;)/(c; — d)li, j =1, ..., n}, where the sequences {a;}, {b;}, {c;} and
{di} can be computed in O(n) time. (See [34] for a similar argument used to represent the solution to the classical continuous
weighted p-center problem on a general tree.)

With the above representation of the optimal value, we can use the search procedures in [34] with the modification in [14], to
solve the continuous model in O((m + n) log2 (m + n)) time.

The representation of a structured compact set containing the optimal value r; in the continuous case is more complicated.

4.2. The round-trip p-center problem

In the rest of the section we focus on the round-trip p-center model on a tree network, and present polynomial time algorithms
for its solution. In this case if a server located at y serves customer v; via depot x, we have d(y, v;) + d(v;, x¢) + d(xg, y) =
2(d(v;, xg) + d(y, P(v;, x¢))). (Note that the function f;(y) = miHXkexi {d(y, v;) + d(vi, xx) + d(x, y)} is neither convex
nor concave, even on the real line, as illustrated by the case where vy =0, and X - {x1, x2}={-1,2}.)

In the discrete model where the servers are restricted to be nodes, the optimal value r}, is identified by some triplet (y, x, v;) =
(vr, vj, v;). We then have r}, =2w; (d(v;, vj)+d(vs, v1)), where v; € P(v;, v;) is the closest point on P (v;, v;) to the server at
v;. Thus, we can explicitly identify in O(n?) time, a set R’ of O(n3 ) cardinality containing r ,l,. To avoid the cubic space and time,
we consider R*, a super set of R’ of cardinality O(n*), which has only a compact, quadratic space representation. Moreover,
this quadratic representation can be constructed in O(n? log n) time. Knowing that R* contains r 11,, we can then search through
it with the covering problem algorithm (see below) as a solver of the decision problem.

Let Q = {d(vs, vy) : vs, v; € V}, and let Q* be the sorted list (vector) of the O(nz) elements in Q. R* is represented as a set
of n(n — 1)/2 vectors (columns) of length | Q| each. The (i, j) column, R; ; is given by

Ri,j =2w;d(v;, vj-)e + 2w; o*.

(e is the vector of size |Q], all of whose components are equal to 1.) Since Q* is a sorted list, R; ; is also a sorted vector or a
monotone column. The search procedures of Federickson and Johnson [18] are therefore applicable in searching over R*. We
note in passing that the time needed to obtain this compact representation of R* is only O(n? logn).

Similarly, we can identify a set of cardinality O(n*) for the continuous model, but we do not know a compact representation
of such a set which requires subcubic time to construct and search over. Nevertheless, we will show a parametric approach to
solve the continuous model directly in O(n? log n) time. This approach avoids the construction and search over such a set.

Given a positive real r, the decision problem is to determine whether r[', <r. Equivalently, consider the covering problem
where we need to determine whether the minimum number of servers in a set Y, such that $; (Y)<r; =r/w;, fori=1,...,n,
is smaller than or equal to p.

Define

Tik(ri) = {y12d (i, x¢) + d(y, P(uj, xi D)<} = {yld(y, P(ui, x¢)) <ri /2 — d(v;, xp)},
Tirp) = |J (Tt}
xpeXxt

If T; y (r;) is nonempty, i.e., r; /2 — d (v;, xx) 20, it contains the path P (v;, x;), and it is called a path neighborhood. If T; (r;)
is nonempty it is the union of path neighborhoods, where all the paths share a common end point, v;. Thus, T; (r;) is a subtree
containing v;. (In fact, it contains any path connecting v; with a closest depot in X*.)
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It follows from the above that the covering problem can be solved in polynomial time, since it amounts to covering a family
of subtrees with a minimum number of points in A(T). (See [19,20].) We will present an O(nz) algorithm for this covering
problem.

4.2.1. AnO(n?) algorithm for the round-trip covering problem

We assume without loss of generality that the original tree is binary (see [42]), and it is rooted at v;. We also assume that the
set O of distances between all pairs of nodes is known.

We describe the algorithm for the continuous case. Its modification for the discrete case is straightforward.

The first five steps of the algorithm will generate all the subtrees {7; (r;)}. A subtree T; (r;) will be represented by its nodes, its
edges and its set of leaves (relative boundary points), which are not nodes of the original tree. (A leaf will be characterized by
the edge containing it, and its distances from the two nodes of the edge.) Specifically, we will record u; (r;) the closest point to
vy in T; (r;). The importance of the set {u j (r ;)} follows from the fact that the incidence matrix A = (a;, ;) of the two collections,
{T;(r;)} and {u j (r;)} is the only input needed to solve the covering problem. In particular, there is an optimal solution to the
covering problem, where all the covering points are in the collection {u ; (r;)}. (Note that for each pairi, j=1,...,n, i # j,
T;(r;) N T;(r;) is nonempty if and only if u; (r;) isin T (r;) or u j(r;) is in T; (r;).)

For each node v; € V perform Steps I-V.

Step I: Foreach x ; € X!, check whether T;, j(r;) is nonempty, i.e., check whether r; /2 —d(v;, x ;) 2 0. Define X; (r;) ={x; €
X' :r;/2 — d(v;, x;)>0). (Time spent is O(n).)

Step 11: Generate Tl.’ (r;) the subtree induced by v; and X;(r;), and rooted at v;. (Time spent is O(n).)

Step 1I1: For each node v;; of Ti’ (r;) define the surplus radius sij (r;) by

sy = o % {ri/2 = (v, 0 = d(vj, P X))

Compute the terms s,j (r;) for all nodes v; of T,.’(r,- ), as follows:

Let
J J .
(ri)=ri/2—=5(ri)= d(v;, dj, P(v;, ,
a; (ri)=ri/2 —s; (r;) {Xkemxlin(’i)][ (vi, xg) +d(vj, P(vi, xp)))
8 (r;) = min d(v;, +d;, P(v;, = min d(v;,
[’ (rl) {thEX,'(r,‘):vjEP(xk,lli)}[ (Ul Xk) (U'l (111 Xk))} [xkeX,-(r,-):v,-eP(xk.v;)} (U; Xk)
and
8 (rp) = min d(vi, x) +d;, P(u, xe)).
D= ex gt i P xid)
We have

o (r1) = min(B] (ry), 6 (ri)).

First use a bottom-up algorithm, starting at the leaves of Ti’ (r;) to compute the terms B{ (r;) for all nodes v;.

Specifically, if vj is a leaf of Ti’(r,-), then v; € X! and ﬁ'ii(r;) = d(v;, v;). Suppose that v; is not a leaf. If v; € )
/3{ (ri) =d(v;,vj). Ifv; ¢ X!, and v; has only one child, say vy, ﬂij(ri) =p(r;). Ifvj ¢ X, and v; has two children, say vs
and vy, B/ (r;) = min(B3 (ry), B (ri)).

Next, start at the root of Ti’ (r;). and go down towards its leaves to compute the terms b,] (r;) for all nodes v;.

Set & (r;) = 0.

Let v be the parent of v;. Suppose first that v; is the only child of vs. If vy € X;(r;). then 6f(r,') =d(vj,vs) +
min(3% (r;), d(vs, v1)). If 5 ¢ X; (ry), then 8/ (r}) = d(v}, vs) + & (ri).

Suppose next that vs has two children, v; and v;. If v5 € X;(r;), then 6{ (ri)=d(vj, vs) + min(&f (ry), d(vs, vy), [ﬂ ri)).

If vs & X; (), then 6/ (r;) = d (v}, v5) +min(65 (1), B (ry)).

(For each v; € V, the total time spent to generate all the surplus radii [sij (rd)}, vj € Ti(ry), is O(n).)
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Step 1V: For each node v; of Ti’ (r;) let Vl.j be the set of nodes which connect to Ti/ (ri) viavj, ie.,
V/ ={v v ¢T(ri), vj € P(vi, v)).

Let L = {d(vj, v) : v € V/).
(For each node v; € V, it takes O(n) time to generate all the sets {L{ Jvj e Ti’ r))
StepV: Using the terms {s; (r;)},v; € T} (r;),computed in Step III, and the lists{Lij}, vj € T/(r;), computed in Step IV, find in

O(n) time all the nodes and the nonnode leaves of T;(r;). (Note that a node v; € VI.’ isin T; (r;) ifand only if d (vr, v;) < sij )
A leaf will be characterized by the edge containing it, and its distances from the two nodes of the edge. (u; (r;). the closest point
to vy in 7; (r;), is either a node of T;(r;) or a nonnode leaf of T;(r;).)

(Clearly, for each node v; € V, it takes O(n) time to generate all the nodes and leaves of T; (r;).)

[We now turn to the next step, where we construct the incidence matrix A =(a;, ;), of the collection of subtrees (rows) {7; (r;)},
and the collection of points (columns) {u ; (r )}, generated above.]

Step VI: Suppose that u j (r ;) is on the edge (vs, vr). u(r;} € T;(r;), L., a; j =1 if and only if one of the following conditions
hold:

1. u;(rj) isanode in 7;(r;).

2. uj(rj) is not a node, and both vs and v; are in T; (r;).

3. uj(rj)isnotanode, vy isin T; (r;), T; (r;) hasaleaf z; (r;, vs, v ) onthe edge (vs, vr),and u j (r;) belongsto P (vs, z; (ri, vs, vr)).
4. uj(rj)isnotanode, vy isin T; (r;), T; (r;) hasaleaf z; (r;, vy, vr) onthe edge (vs, vr), and u ; (r;) belongsto P (vy, z; (ry, vs, Ur)).

(It clearly takes O(nz) time to construct the incidence matrix A = (aj,j))

Step VII: With the matrix A computed above, apply the on?) algorithm in [19,39] to solve the minimum covering problem
of the collection {7} (r;)}. The output is the minimum number of points (servers) in a set Y, such that S; (Y)<r;, fori=1,...,n.
(Note that the optimal set Y is a subset of the collection {u ; (r j)}).

To conclude we observe that the running time of the above algorithm is O(nz).

4.2.2. An O(n2 log n) algorithm for the discrete model

To solve the discrete round-trip model we need to use the discrete variation of the above O(nz) continuous covering problem.
The only modifications needed are in Steps V-VI. Specifically, a subtree T;(r;) for the discrete case is the discrete subtree
induced only by the nodes of the respective continuous subtree, i.e., the nonnode leaves are deleted. In Step VL, u j (r;) € T; (r),
ie,a; j=1,if and only if u ;(r;) is a node in 7; (r;).

We use the O(n?) al gorithm for the discrete covering problem to search for the optimal value over the set of 0O(n?) monotone
columns {R; ;} defined above. In order to determine whether a positive real r is greater than or equal to the optimal value r;, we
solve the above covering problem with radii {r/w1, ..., r/wp}, and compare the minimum number of servers needed, say p(r),
with p. r}, <r if and only if p(r) < p. Following the search procedure in [18], the total time needed to find r}n is O(n? log n).

4.2.3. An O(n® log n) algorithm for the continuous model

We use the above algorithm for the covering problem parametrically, following the general parametric approach of Megiddo
[31].

In the parametric version with r as a real parameter, for each v; we let r; =r/w;. The optimal value of the continuous problem,
r},, is the smallest value of r, for which the solution to the covering problem is at most p. (For convenience, for the parametric

problem the entities X; (r/w;), Ti’(r/w,-), T; (r/w;), etc., will be denoted respectively by X;(r), Tl.’(r), T; (r), etc.)

Parametric Algorithm ) o -
Step 1: For each pair i, j, v; € V, xj € X', let r*/ be the solution to the equation r/2w; — d(v;, x;) =0, ie, ri/ =
2w;d(v;, xj). Let

Ry =(r"J i=1,...,nx; € X'y
Using a binary search, with the (nonparametric) covering algorithm as a solver of the decision problem, find a pair of consecutive

elements in the sorted list of elements of Ry, say r| and rl+ , such that the solution value to the covering problem with r = r~
is larger than p and the solution value to the covering problem with r = rl+ is smaller than or equal to p.
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[Note that for all values of r in the interval [r, r1+), the set X; (r) and the subtree Tl.'(r), induced by v; and X; (r;), are fixed
and independent of r. The total time spent to identify this fixed collection of subsets {X;(r)} is o(n? logn).]

Step 11: For each node v;, in O(n) time generate the (fixed) subtree Tl.’ (r).

(The total time spent to identify this fixed collection of subtrees {T‘.’(r)} is O(nz).)

Step 11I: Apply Step III of the nonparametric version of the algorithm to the fixed collection {Ti’ )}

(Note that for each node vj of a (fixed) subtree Ti’(r), the respective term alj (ry=r/2w; — sij (r) =ming, ¢ x;(r,) (@i, x) +
d(vj, P(v;, x¢))), is also fixed for all values of the parameter r in the interval [r, r1+). In particular, the respective surplus
radius sij (r), is a linear function of r in this range, i.e., si] r)=r/2w; - :xlj r).)

Step 1V: For each subtree Ti' (r) and each node v; of T‘.' (r) let V,.j be the set of nodes which connect to Ti'(r) viavj, i.e.,
V) ={u s ¢ T/ (). v € Py, vl

Let L] = {d(j, v) : v € V}).
In O(n2) total time generate all the sets L{, v, eT/(r), i=1,...,n
StepV:Fori=1,...,n,and v; € T/ (r), let RivJ = {r|_g'.j (r)=a,ae L{}. (Note that |que,l,_,(r) R | =0(n).)

Let Ry = Uyizt,.mvjeryory R

Using a binary search, with the (nonparametric) covering algorithm as a solver of the decision problem, find a pair of
consecutive elements in the sorted list of elements in Ry, say ry” and r; , such that the solution value to the covering problem
with r =r," is larger than p and the solution value to the covering problem with r = r; is smaller than or equal to p.

[Note that for all values of r in the interval [r, rl+) Nlry, r;), andi = 1,..., n, the topology of the subtree T; (r) is fixed
and independent of r. Specifically, the node set is fixed and each nonnode leaf belongs to its own fixed edge independent of r.}

Foreachi =1,...,n, find all the nodes and the nonnode leaves of T;(r). A leaf will be characterized by the fixed edge
containing it, and its distances from the two nodes of the edge. (These distances are linear functions of r.) One element in the
set of all nodes and nonnode leaves of T;(r) is u; (r), the closest point to vy in T; (r).

(The total time spent in this step is o(n? logn).)

Step VI: In this step we find a subinterval, [r;, r3+), satisfying r,‘J <r3+, such that for cach edge of the tree, (vs, vr). the
ordering of all the leaves of the trees {T;(r)}, i =1, ..., n, in (vs, v;) is the same for all values of r in this subinterval. (Each
subtree has at most one leaf in (vg, vr).)

Let {z;(r, vs, v1)}, i = 1, ..., n. denote the set of leaves on the edge (vs, v;). The leaves can be viewed as linear functions
of r. Our goal is to find two consecutive points in the set of intersection points of pairs of functions which bound r,',, such that
the ordering of all functions is fixed over this interval.

We perform this task simultaneously for all edges (v, vy) of the tree. Specifically, we apply the search technique in [14]
to the collection of O(n2) linear functions, {z;(r, vs, vs)}, i = I,...,n; (vs,v) € E, with the (nonparametric) covering
problem algorithm as a solver of the decision problem. Thus, in O(nzlog n) time we identify the subinterval [ry, r;' ),
defined above.

To summarize, at the end of this step we have an interval [y, rj) = m{j=1,2,3}[’j_- rj+), satisfying r}, grj, such that for
each value of rin the interval, foreachi=1, ..., n, and for each edge (vs, v;), the tree T; (r) is topologically fixed, and the leaves
of all trees on (vs, v;) have a fixed ordering. Therefore, for each r, satisfying r,” <r < r:, the incidence matrix A= (a;, ;), of the
collection of subtrees {T;(r)} and the collection of the closest points to vy, {u ;(r)}, is fixed and independent of r. In particular,
for each r, satisfying ry <r < rj , the solution value for the respective round-trip covering problem is larger than p.

We conclude that r },, the optimal value of the continuous model, is given by r 11, = r[f . The total time to find r }, with the above

algorithm is o(n? log n). Note that for the sake of simplicity we have assumed at the beginning of this section that the set of
depots X = {x1, ..., x;m} is asubset of V = {vy, ..., vy}. It is easy to see that if we remove this supposition the algorithm can
be implemented in O(m + n? log n) time. We summarize with the following theorem.

Theorem 4.2. The discrete and the continuous round-trip p-center problems on a tree network with n nodes and m depots can
be solved in O(m + n? log n) time.

4.3. Locating a single facility on a tree network

In Section 3, we considered the location of a single facility on a general network. We now specialize to the case of tree
networks. We use the same notation as in Section 3.
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4.3.1. The depot one-way 1-center problem

The 1-center, depot onc-way objective, G (y), is convex on a tree. This property can easily be observed by converting the
model to a classical weighted 1-center problem as follows.

At each node v; € V augment a new edge to the tree, say (v;, u;), of length d(v;, x4(;)). Assign the weight w; to u; and
a weight of zero to v;. Now solve the weighted 1-center problem on the augmented tree, using the linear time algorithm of
Megiddo [32]. If the unique solution is on an edge of the original tree, it is the optimal solution. Otherwise, due to convexity, if
the solution is in some edge (v;, ¥;), the optimal solution to the depot one-way 1-center problem is v;.

4.3.2. The round-trip 1-center problem
The objective in this case, él (y), is not convex even on a path (real line), but it is quasi convex (unimodal). (y denotes the
location of the center.)
We first show how to solve this problem on a path in linear time. In this case we assume that the nodes are real points, satisfying
v] <---<vp. Foreachi =1, ..., n, consider the function, defined in Section 3,
Si(y) = min {d(y, vj) +d(vi, x) +d(xk, y)).

xpeX

Let xk“(,.) be the largest point in X which is not larger than v;, and let x,;"(‘.) be the smallest point in X! which is not smaller
than v;. (We assume that the sets {Xk—(i)} and {x,j'(i)} have already been computed from the sets {X'}.) Then clearly,

$i () = min{d(y, vi) + d v, X)) +d Gy ¥) 1Ay v) +d @i x5 +d0Gl ).

It is easy to see that .§,~ (y) is a piecewise linear quasi convex function which has at most 4 breakpoints. Moreover, its slopes
are in the set {—2, 0, 2}, and v; is one of its global minimum points. Therefore, in constant time S; (v) can be represented as

S =max{S7 (» : 5" ),

where S'," (y) and S‘l"' (y) are piecewise lincar with at most 2 breakpoints cach. Moreover, S  (¥) is nonincreasing and 5‘.'"( y) is
nondecreasing, and they intersect at v;. Our objective is to find y*, a minimizer of the function él (y) =max;=1,.  a{w; 3‘,' »}
Define

N

6T )= max {w;§7 ()}

1=1,...,

and

1

6T = max {w;§" ().
=1,...,n
Then, (3'1_(y) is nonincreasing, CA}T(y) is nondecreasing, and G| (v)= max{éf(y) : (A}T(y)}. y* is any intersection point of

the functions él—(y) and Gi"(y).
Using the above, the depot round-trip 1-center problem on the line can now be formulated as:

min  z

s.t.
2287 (), i=1...,n,
228t, i=1,...n

Each pair of functions in the collection of the 2n monotone and piecewise linear functions {Sl._( »ju {S‘,?L (y)] intersects at most
at 4 points. Moreover, for any real y we can determine in O(n) time whether y > y* or not, since the latter holds if and only if
GTM=GT ).

Finally, we observe that we have all the necessary ingredients to apply the algorithm in Section 2 of Zemel [44], and solve
the model in O(n) time.

Lemma 4.2. The discrete and the continuous round-trip 1-center problems on a path can be solved in O(n) time.

We next show that the problem on a tree can be solved in O((n + Z;’=] 1XH) log n) time. Moreover, if X i = X for all
i =1,...,n,then the total time reduces to O(n log n).
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We first prove several lemmas.

Lemma 4.3. Let y represent a point in A(T), anAd consider the function 5’; (y), vj € V, defined on A(T). Let P(v;,vy) be a
path connecting v; with some leaf of T, vi. Then S; (y) is monotone nondecreasing on P (v;, vt), attaining its minimum at v;.

Proof. Consider a pair of points y;, y2 on P(v;, vg), where y; is on P(vy, ¥2). We need to prove that S,'(yg) 2 S‘,~ ).
Recall that by definition, for each y € A(T),

Si(y) = min {2(d(v;, ) +d(x, P(v;, Y}
xeX!

Let x’ € X! be such that $;(y2) = d(y2, x') + d(x’, v;) + d(v;, y2), and let x” be the closest point to x’ on P (v;, y7).
If x” is on P(vy, y1), then

S$i(r2) =2(d(y2, vi) +d(x', x")) 22(d(y1, vi) +d ', x") = 8 ().
Suppose that x” ison P (y1, y2). Therefore, d(x’, P(v;, 1)) =d(y1, x’). Then

Si(y2) =2(d(y2, vi) +d(x', X)) 221, vi) +d(y1, X)) +d(x', x"))
=2(d(v;, y1) +d(y1, x)) =2 ;, y) +d ', Pwi, yON = Si(y1). O

Lemma 4.4. Suppose that for y € A(T) é] ) = wiSi (y) for some i = 1, ...,n. Then for any z € A(T) such that y is on
P(z, v;) we have G| (y) < G1(2).

Proof. From the previous lemma, w; S’,- )< w,S',- < w,»S‘i (2). Hence,

G =wSiM<wSi@<6ik). O

The above result suggests the following search algorithm to find y*, an optimal solution to the depot round trip 1-center
problem

Step I: Compute a centroid of T, say vg.

Step I1: Evaluate G (vg). Suppose that Gl (vg) = w; 3’,- (vg) for some node v;. Let Fj, be the forest obtained from T by deleting
vg. and let Fy (i) be the component of F; containing v;. Then Ty (i), the subtree induced by vy and Fj (i), contains an optimal
|-center.

Step 111: If Ty (i) is an edge go to Step IV. Otherwise, continue the search in Ty (i).

The above approach, based on centroid decomposition, will locate an edge containing an optimal 1-center in O(n+ Q(n) log n)
time, where Q(n) is the time needed to evaluate the function Gl (y) at a point in A(T). (The discrete solution is one of the
nodes of this edge.) Finally, to identify an optimal 1-center on an edge we can almost mimic the above approach for solving the
problem on a path.

Step IV: Finding a 1-center on an edge.

We have assumed without loss of generality that X € V. Hence, we can assume that the nodes of the edge are v; and v;, and
there are no points of X in the interior of the edge.

To express the objective él(y) in this case, let V! = {vy 1v] € P(v, vp)} and V2 = {y, : v2 € P(vy, v1)}. Consider a node
v; € vl Let x}(l.) be the closest node in X! N V! to P(v;, v1), and let, x?(i) be the closest node in X' N V2 to vy.

Then, when y is restricted to the above edge,

w; 81 () = 2w; min{d(x}(,'), P(uj, v)) +d (v, v) + y; d(v;, sz-(,»))}-

Thus, w; 3’1 (y) is a piccewise concave function with slopes in {0, 2w; }. A similar expression is obtained if v; € V2,

We conclude that G (y) is the upper envelope of n piecewise linear concave functions, each having at most one breakpoint.
Moreover, when the sets {x].(,.)} and {sz.(i)} are available the function Gl (). (and in particular its minimum), can be computed
in O(n log n) time, [22]. (We later explain how to compute these sets of points.)

To determine the complexity of the above algorithm we next show that for any y € A(T), Gl (y) can be evaluated in
O(n + EL] |Xi|) time. Moreover, if X! = X foralli =1, ..., n, the effort reduces to O(n).

Evaluating él (y): As in Section 4.1, we may assume without loss of generality that 7 is a binary tree rooted at y. For each
node v;, we let V; denote the set of descendants of v;. vy will denote the father of v}, i.e., the closest node v # v; to v; on

the P(v;, y).
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Casel: X! C X, fori=1,...,n.

In this case we need to compute w; S’i(y) = 2w;d(v;, y) + 2w; min, . yi {d(x, P(v;, y))}, foralli =1, ..., n. To show that
the total time needed to perform this task is O(n + Z?:l IX{]), we prove that after spending O(n) time on preprocessing, it takes
constant time to compute d(x, P(v;, y)) for any given pair x and v;.

We first note that if z € A(T) is the nearest common ancestor of x and v; on the rooted tree, then d(x, P(v;, y)) =d(x,2) =
d(x,y) — d(z,y). The data structures presented in [21] enable us to find a nearest common ancestor in constant time, after
spending O(n) time on preprocessing the tree.

Casell: XI =X, fori=1,...,n.

In this case we may assume without loss of generality that no edge contains more than 2 points of X. Thus, we assume that
X C V. To evaluate G] (»), we need to compute wiS‘,- (y) =2w;d (v, y) + 2w; ming e x {d(x, P(v;, y)}, foralli=1,...,n.

For each node v;, let x;."(,.) denote a closest point to v; in X N V; and let and xj.'(i) denote a closest point to P(v;, y) in
X N (V\V;). Then

min{d(x, P(vi, y))} = min{d ()., vi), d(xjg), Pvi, )

J(i
bottom-up algorithm, initiated at the leaves of 7, to compute the set {xf(,.) }. Then, using {xf(i)}, start at the root y, and move

Thus, it is sufficient to compute the points {xf(i)} and {x )}. The latter task can be performed in O(n) time. First use a

top-down towards the leaves to compute the set {xj_( I.)}.
We note in passing that the procedures defined in Cases I and II can also be used to compute the sets of points {x} (i)} and

{sz.([)}. defined in Step IV of the algorithm. Thus, we conclude with the following theorem.

Theorem 4.3. The discrete and the continuous round-trip 1-center problems on a tree network with n nodes can be solved in
O((n+ ZL] |X|) log n) time. Moreover, iin =Xforalli=1,...,n,and |X|=m, the complexity reduces to O(m +n logn).
4.3.3. The customer one-way 1-center problem

Unlike the round-trip 1-center problem, the customer one-way version objective does not satisfy any quasi-convexity property
even on the real line. Thus, the best solution approach we can offer now is based on optimizing independently on each edge of
the given tree. To solve the problem on an edge, we can basically follow the approach shown in Step IV of the algorithm given
in the previous section. For the sake of brevity, we omit the details, and state the results only.

Theorem 4.4. The discrete and the continuous customer one-way l-center problems on a tree network with n nodes can be
solved in O(nY_7_,|1X')) and O(nY_7_,I1X'| + n?logn) times, respectively. Moreover, if X' = X foralli = 1,...,n, and
| X| = m, the complexities reduce to O(m + n2) and O(m + n? log n), respectively.

5. Questions, comments and concluding remarks:

General networks: In Section 2 we have noted that 3-approximation polynomial algorithms for the one-way and round-trip
p-center problems in general networks, can be obtained by reducing them to the p-suppliers problem. It is known [23,24], that
the constant 3 is best possible even for the unweighted general p-suppliers problem. Thus, the question is whether the constant
3 is also best possible for our special instances of the p-suppliers model. Achieving a constant which is strictly smaller than 2 is
certainly NP-hard for our models, since the constant 2 is best possible for the classical unweighted p-center problem on general
graphs [23,24], and even for planar rectilinear instances [28]. 2-approximation algorithms for the classical weighted, discrete
and continuous p-center problem on general graphs are given in [37,38].

As in the classical p-center problem, we can consider a generalization of the discrete version of our one-way and round-
trip problems, where there are setup costs for the facilities depending on the location of the servers. (A special case of this
generalization corresponds to the case where servers can be established only at some proper subset V' of V. This specialization
is already strongly NP-hard for the round-trip problem on star trees [30].) The constant factor approximation schemes of Section
2 can be extended to the case with setup costs. We only need to use the approximation algorithms for the p-suppliers problems
with setup costs in [9,27,43].

Extensions to R%: An interesting topic to study is the extension of the results in Section 3.2 on the planar case to R4, ford > 2.

Tree networks: There are several interesting questions related to the results in Section 4 on tree networks. The first one is the
possible existence of a subquadratic algorithm for the round-trip covering problem on trees.
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We have shown that the customer one-way problem on a path network is NP-hard even for a collection {X iy, satisfying
|X{| =2, forall v; € V, and polynomially solvable in the case when Xi=Xforalli=1,...,n.Itisnot known whether the
customer one-way problem on general tree networks is polynomially solvable if X i=Xforalli=1,...,n.

Finally, we note that the results in Sections 3 and 4 can be generalized to the following doubly weighted model. Suppose
that each pair (v;, x¢), where v; € V and x; € X is associated with a nonnegative weight w; x. The objective of the round-trip
p-center problem is to find a subset Y of the metric space of cardinality p, minimizing G| (Y) = max;=1 . ,{S;(Y)}, where

.....

Si(Yy=min {w; @y, v;) +d;, x) +dxg, y)}
yeY,xeX

The respective one-way models are similarly defined.
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