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1. Introduction

In this paper we present an efficient, polynomially bounded algorithm for
determining p centers on an undirected tree network using the minimax cri-
terion.

To formulate the problem precisely, we assume that an undirected tree
T =T(N, A), with N and A denoting the set of nodes and the set of arcs
respectively, is given. T is embedded in the Euclidean plane, so that arcs are line
segments whose endpoints are the nodes, and arcs intersect one another only at
nodes. Moreover, each arc of T has a positive length. This embedding enables us
to talk about points, not necessarily nodes, on the arcs. A is also used to denote
the infinite set of points of T. For any two points x, y € A, let d(x, y) denote the
distance between x and y measured along the arcs of T.

Two finite sets of points on T, S and D are specified. S is the set of possible
locations for supply centers, while D represents the demand points. (Note that
neither S nor D are assumed to be subsets of N, the set of original nodes of T.)
Each demand point in D is associated with a positive number called the weight.
Given a number of supply points, p, the objective is to find p locations in S for
the p supply centers, such that the maximum of the weighted distances of the
demand points to their respective nearest supply centers is minimized.
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Following Hakimi [9], minimax location problems, discrete as well as con-
tinuous, on networks, have been studied quite extensively, with emphasis given
to the algorithmic aspects. The main results appear in the following list of
references: [8,9, 10, 11, 12, 13, 17].

Focusing on a tree network T = T(N, A), Handler [12], has suggested the
categorization scheme {}}}{}}|p, where the first and second cells refer to the
possible locations of facilities and demand points respectively, and the third cell
indicates the number of supply centers to be established. This scheme identifies
a variety of minimax facility location problems in tree networks. For example,
A|A|p refers to the problem of locating p centers, where each point on the tree
is both a demand point and a potential location of a supply center.

Referring to the above categorization scheme, the recent work of Kariv and
Hakimi [13] is the first to provide polynomially bounded algorithms for a general
p. Prior to [13] efficient algorithms were given only for the special cases where p,
the number of centers, was equal to 1 or 2, [4,8,9,10,11,12,17]. Kariv and
Hakimi discuss only the models N|N|p and A|N|p and give an O(n’logn)
procedure for solving these models (n = |N].) Their work also contains several
results on the complexity of minimax location problems on general graphs.

In this work we present a unified model for N|N|p, A|N|p and N|A|p, and
give a polynomially bounded algorithm for solving the weighted cases. (Weights
are associated only with the models N|N|p and A|N]|p, i.e., when the set of
demand points is finite.) A polynomial algorithm for A|A|p has been recently
developed and reported in [3].

Our approach was to relate the above location models to the general theory on
perfect graphs, and in particular, to the class of rigid circuit graphs. In addition
to providing polynomial algorithms, this approach enabled us to use the duality
results on perfect graphs to define a dual to the above model. The dual is a
problem of locating ‘mutual obnoxious’ facilities on the underlying tree network.

The organization of the paper is as follows. In Section 2, we present graph
theoretic results on families of subtrees and neighborhood subtrees. These
results are then used in Section 3 to develop an algorithm for the general
weighted minimax location problem, described above, with general finite sets, D
and S, of demand points and potential location points respectively. This al-
gorithm has a worst case bound which is polynomial in [N|, |D| and [S]|. This
bound will coincide with that of [13], when the algorithm is applied to the models
N|N|p and A|N|p. In Section 4, it is shown that the three cases N|N|A, A|N|p
and N|A|p are special cases of the above general framework, with both sets S
and D, containing at most O(|N|%) points. Section 5 focuses on computational
aspects of the general algorithm. Section 6 is devoted to the dual location
problem.
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2. Intersection of trees and neighborhood trees

Considering a finite set of subtrees of T, {T;} i =1,..., m, define the inter-
section graph, G, of {T;} as follows: G has m nodes, each corresponding to a
different subtree in {T;}. Two nodes are then connected by an (undirected) arc if
and only if the two corresponding subtrees of T intersect.

Following [2], we note that the intersection graph G is a rigid circuit graph, i.e.
each simple cycle of order greater than 3 contains a chord. Such graphs possess
the following property due to Dirac [5] and reported also in [2].

Theorem 2.1. Let G be a rigid circuit graph. Then G contains a node u such that
u and all its neighboring nodes in G form a clique, i.e. the subgraph defined by u
and its neighbors is a maximal complete subgraph of G.

Nodes of G with the above property are called simplicial nodes. Also observe
that the rigid circuit property is inherited. Namely, if a node and all its incident
arcs are removed from a rigid circuit graph, then the remaining subgraph is also
rigid circuit. In particular, this subgraph contains a simplicial node.

Next we prove that given a clique of the intersection graph G, the subtrees
corresponding to the nodes of the clique have a common nonempty intersection,
which is also a subtree of G.

Lemma 2.2. Let T, and T, be subtrees of the tree T, with T,N T, #@®. Then
T,NT, and T, U T, are also subtrees of T.

Lemma 2.3. Let T\, T, and T; be subtrees of the tree T, satisfying, T, N T, # 9,
T,ﬂ T3$éﬂ and sz T3¢ﬂ Then TlﬂTzﬂT3¢ﬂ

Proof. Suppose that (TN Ts) does not intersect (T, N T;). Then since T; is
connected, S;=T;— (T, N T;) U (T, N T3)) is not empty. For i =1, 2, let A; be a
point in T; N T5. Then there is a simple path P, on T; connecting A, and A,. P,
intersects Ss;. A; and A, are also on the tree, T, U T,, and therefore there exists a
simple path P, on T, U T, connecting those two points. P, does not intersect Ss.
Hence P, U P, contains a cycle-contradicting the tree property of T.

Theorem 2.4. Let {T;},i=1,..., m be a set of subtrees of thetree T.If T, NT;# @
forall i, j, then T,NT,N ... N T, is a nonempty tree in T.

Proof. It is sufficient to prove that the intersection is nonempty. The proof is by
induction on m. Assume m =4, Consider the collection R =
{T\, Tay ... , To2,{Tm-1N T,,}}. From LLemma 2.2 R consists of m — 1 nonempty
subtrees, while Lemma 2.3 implies that the intersection of each pair in R is
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nonempty. By the induction hypothesis, the intersection of all of them, i.e.
1 T; is nonempty.
Next we define neighborhood trees and present several of their properties.

Definition 2.1. Let S be a finite set of points of T. Given a point p; on T, and a
number r; =0, the neighborhood tree of radius r;, with center p;, is the minimal
subtree of T containing p; and all points x in S with d(p;, x) < r.. This subtree is
denoted by T(p;, r,).

It is clear that T(p;, r;) may consist of the center point p; only. Furthermore,
defining a tip to be a node of degree one, all the tips of T(p;, r;), but possibly p;,
provided it is a tip, are points in S.

We now prove that if the intersection of a collection of neighborhood trees,
each containing a point in S, is nonempty, then the intersection also contains a
point in S.

Lemma 2.5. Let T(p;, r;) be a neighborhood tree in T = T(N, A), which contains
at least one point is S. Let x be a point in T(p;, r;) and define r = r, — d(p;, x).
Then the neighborhood tree, T(x, r), contained in T(p;, r;), has at least one point
of S.

Proof. The result is obvious if x = p,.. Hence suppose x # p. Therefore, there
exists a tip y of T(pi,r) such that y is in S and x is on the unique path
connecting y with p;. It is then clear that y is in T(x, r).

Theorem 2.6. Fori=1,..., mlet T(p;, r;) be a neighborhood tree in T, with radius
ri and center p;. If T(p;, i), i = 1,..., m, contains a point of S and N, T(p;, r)
is not empty, then ({Z, T(p;, r;) contains a point of S.

Proof. Let x be in (%, T(p;, r;). Fori=1,...,m define ri=r,—d(x, p)), and let
j be such that r; = min,<;<,ri. Then,
Tx,r)CT(x,r))CT(p,r) foralli=1,..,m. 2.1

From Lemma 2.5 T(x, r}) contains a point in S. (2.1) then implies that this point
of S is alsoin (% T(p;, ).

3. The general location model

Given a finite tree T = T(N, A) with distances on the arcs, a finite set of
points, D C T, corresponding to demand points is specified. Also, a finite set of
points, S C T at which supply centers can be located is identified. (Points of D
or S are not necessarily original nodes of T. Also D and S may intersect.)
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Further, there are weights associated with the demand points. Suppose that at
most p <|S| supply centers can be established. The objective is then to find the
locations of the supply centers such that the maximum of the weighted distances
of the demand points to their respective nearest supply center is minimized.

We introduce the following notation. Let D ={qy, q», ..., 9.} be the demand
points and let S ={sy, s,, ..., s} be the set of potential locations. w; >0, i =
1,..., m will denote the weight associated with the demand point g;.

The optimal maximum of the weighted distances of the demand points to their
respective nearest supply points is equal to one of the following km numbers:
R={r;=wd(qy,s)}, i=1,...,m, j=1,..., k This latter observation suggests a
procedure for the location model described above.

General scheme

(1) For each r in R = {r;} find a subset Y(r) C S of minimum cardinality such

that
w; min d(q;, sj) =r for all g; in D.
SEEY(r)

(2) Denoting by p(r;) the cardinality of the set Y(r;), the optimal location
points for the supply centers is given by the set Y (r;) for which r; is the smallest
among all values of r in R satisfying p(r)<p (p is the maximum number of
supply centers that can be established).

We note in passing that if r', r* are in R and r'<r?, then p(r') = p(r®. This
monotonicity property enables one to reduce the computational effort required
by the above general scheme. A further elaboration will be provided later.

Next we present a polynomially bounded algorithm, finding the subset Y (r) C
S, of minimum cardinality, for an arbitrary r =0, such that

w; min d(q;, s;))=<r for all g; in D.
€Y (r)

Algorithm

Step 1. For each demand point g; in D, find the neighborhood tree of radius
r. = rlw, T(q; r;), with respect to the set S of potential location points. If T(q;, r;)
contains no point of S, stop — the problem is infeasible.

Step 2. Generate the intersection graph, G, corresponding to the collection of
neighborhood trees {T(q;, r))}, i =1, ..., m.

Step 3. Find the minimum number of cliques covering all the nodes of G.

Step 4. For each clique found in Step 3, find a point of S in the intersection of
the subset of neighborhood trees corresponding to the nodes of the clique.

Y (r) consists of the points of S specified in Step 4 for the cliques in the
minimum cover. The cardinality of Y (r) is equal to the number of cliques in that
cover.
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To prove the validity of the algorithm, we first observe that given r the above
problem is feasible if and only if each neighborhood tree, T(q;, ;) contains at
least one point of S. Equivalently, from Section 2, the problem is infeasible if
and only if there exists a demand point g; which is not a point in S, and
T(qs ) ={a:}.

Assuming feasibility, finding Y (r) amounts to identifying the minimum num-
ber of points in S required to cover all the neighborhood trees, i.e. each tree
T (q;, r;) will contain at least one of these S points.

Given a supply point s;, then the subset of neighborhood trees containing s;
corresponds to a complete subgraph in the intersection graph G. The results of
Section 2 prove that we also have the reverse correspondence. More specifically,
given a clique of G, Theorems 2.4-2.6 ensure that there exist a point of S, s
which is contained in all the neighborhood trees corresponding to the nodes of
the clique. Moreover, the maximality of a clique as a complete subgraph shows
that s; is not contained in any tree which is not represented by a node of the
clique.

The above discussion has validated the algorithm. We conclude this section by
showing that the computational effort of the general scheme for solving the
location problem is bounded by a polynomial in m = |D|, k =S|, and n = |N|, the
number of nodes in T(N, A). The general scheme applies to the algorithm at
most km times. In fact, since p(r), defined in the general scheme, is a monotone
piecewise function, the optimal r can be found using a binary search on R. Start
by finding the median element r; in R and compute p(r;) by the algorithm. If
p(r) < p, then the optimal r is greater than r;, while if p(r|) = p, r; is greater than
or equal to the optimal r. In either case half of the elements in R can be omitted,
and we proceed by searching the median r, of the remaining set R,. Therefore,
the algorithm is applied at most O(log,(km)) times until optimality is found.
Also, note that the total effort of generating the entire sequence of medians
{ri, r, ...} is O(|R]) = O(km), since each time the cardinality of the remaining set
is cut by half. (The median of a set can be found in linear time, [1].)

It is clear that Steps 1, 2 and 4 of the algorithm can be done in polynomial
time. To find the minimum number of cliques covering all the nodes of the rigid
circuit graph G, we can use the techniques of [7, 16]. There, it is shown how to
find the minimum clique cover of a rigid circuit graph in O(v + e) time, where v
and e are the numbers of nodes and arcs of G, respectively.

Thus the general scheme is polynomially efficient.

4. Special cases
The following location problems on a tree T = T(N, A) are discussed in the

literature, [4,9, 10, 11, 12, 13, 17].
(i) N|N|p. In this model the set of demand points, D, and the set of potential
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location points, S, are identical and equal to N, the set of the original nodes of
T(N, A). Given weights on the nodes, the objective is to locate at most p supply
centers minimizing the weighted maximum of the distances to the respective
nearest supply points.

(ii) A|N|p. The only difference between this model and N|N|p, is that here the
supply points can be located anywhere on T.

(iii) N|A|p. In this problem supply centers can be located only at the nodes of
T, i.e. S = N. The set of demand points consists of the whole continuum of
points in T. There are no weights associated with the demand points, and the
objective is to locate at most p supply points, minimizing the maximum of the
distances to the respective nearest supply points.

(iv) A|Alp. The only difference between this model and N|A|p is that the
supply centers can be established anywhere along the continuum of points of T.

Next we show that the first three models described above are special cases of
the general model of Section 3. Therefore, these models can be solved poly-
nomially by the general scheme. The polynomiality of N|N|p and A|N|p, for
general p, on tree networks has only recently been established in[13]. A
polynomial algorithm for A|A|p is given in [3].

It is obvious that N|N|p is a special case of the general model since we have
S=D=N.

Turning to A|N|p, it is clear that D = N. Furthermore, the arguments given
in[13, 14] demonstrate that it is sufficient to consider at most |N|(N]|+ 1)/2
potential locations for the supply points. This set of points consists of the N
nodes and the [N|(N|- 1)/2 points obtained as follows. For each pair of nodes
of T, q; and g;, with weights w; and w; respectively, consider the supply point x
which is on the path connecting ¢; and g;, and d(q;, x) = w;d(qi, g;)/(w; + w;).
Thus, this model is also reduced to the general model with finite D and S.

Finally we turn to N|A|p. There we have S = N. The next lemma shows that
although each point of T is a demand point, it is sufficient to assume that
demand occurs only at the nodes and at the |N|(|N|— 1)/2 midpoints of the paths
connecting pairs of nodes.

Lemma 4.1. Let q, ..., g, be the nodes where the optimal p centers are located,
for the model with S =N and D consisting of the |N| nodes of T and the
IN|(IN| = 1)/2 midpoints of the paths connecting pairs of nodes. Then the above
nodes are also optimal locations for the model N|A|p.

Proof. It is sufficient to show that for any setting of supply centers at nodes, the
maximum of the distances of the demand points to their respective nearest
supply points is attained for one of the above |N|(|N|+ 1)/2 demand points.
Consider an arbitrary arc with nodes q; and g;, and let q, be the nearest supply
center to g;. If q, is also the nearest supply center to g;, then q, is the nearest
supply point for every point x on the arc (g gq;), with d(x, q.,) =< max{d(q., q:),
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d(q., q;)}- Hence, suppose g, is the supply center closest to g;, where the entire
arc (q;, g;) is on the path connecting g, and q,. Also, the midpoint of this path is
on the arc (g, q;)- A simple calculation shows that the function min{d(x, q,),
d(x, q,)} defined for x on the above path is maximized at its midpoint. This
completes the proof.

5. Complexity and computational efficiency

To implement the general scheme, we assume that the sets S and D are input
as follows. First, each node of T is appropriately labelled to indicate whether it
belongs to S or D. Then, for each arc of T we have two separate lists for the
subsets of S and D contained in the interior of that arc. These lists are sorted
according to the distances of the points from one of the nodes on the arc, say,
that node with the smallest index.

In the initial step of the general scheme we compute the set R of all distances
between the demand points and the supply points. Generating this m X k dis-
tance matrix is done in total time of O(m(n + k)), since finding the distances
from a given demand point to all points in S takes O(|N|+|S|) time. We note
that for the special cases considered in Section 4, this effort can be significantly
reduced, since not all m X k distances are relevant.

Secondly we find the smallest element, r’, in R such that

w; min d(q;, ;) =71’
sjeS
for all g; in D. Clearly, the elements of R smaller than r’' can be omitted. r’ is
given by

r' = max {w; - min d(q; s;)}.
q;eD sjeS

Hence, to compute r’, for each demand point we need its closest supply point.
This can be done in O(n+ mlogk) as follows. For each node of T find its
closest supply point. (An O(n) time will suffice.) Then, for each interior demand
point g; an effort of O(log k) will suffice for finding the closest supply point
located on the same arc. Comparing the distance of the latter with the distances
to the closest supply points to the nodes of the arc gives the closest supply point
to g '

Having computed r’ we eliminate from R all the elements smaller than r’, and
turn to the algorithm. We have already noted above that the algorithm is applied
at most O(log |R|) times in the general scheme. Given r in R satisfying r = r’ we
next show how to implement the algorithm in O(m(n+ m + k)). We start by
finding the incidence matrix of the respective intersection graph G. Each node of
G corresponds to a neighborhood tree of a demand point in D.
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Given a demand point g; we find all its neighbors in G as follows. Consider g;
as a node (possibly additional) of T. Find in T(gq;, r/w;) the furthest supply point
from g; on each simple path connecting g; to a tip of T. Let T be the minimal
subtree containing these supply points and g;. It is easily seen that since r =r/,
all demand points on T are neighbors of g;. Furthermore, a demand point g;
which is not on T is a neighbor of g; if and only if its respective neighborhood
tree, T(qj, r;), contains the supply point in T closest to g;. This condition can be
tested in O(n + m) time for all demand points which are not in T, provided that
for each node of T its closest supply point in T has already been found. The
latter can clearly be done in O(n) time. Finally, finding T and all the demand
points on T takes O(m + n + k) time. Thus, we have demonstrated that all the
neighbors of a given node in G are found in O(m + n + k) time, and the entire
incidence matrix is computed in O(m(m + n + k)) effort.

The next step of the algorithm is to find the minimum clique cover of G. This
is done in O(m? time, using the implementation of the algorithms of [7], as
suggested in [16].

We observe that Step 4 of the algorithm is to be executed only for the optimal
value of r in R. (For any iteration, but the last one, only p(r), which is computed
in Step 3 is needed for continuing the process.) Given the optimal r and the
respective clique cover, evaluated in Step 3, we can execute Step 4 in O(km)
time.

Summarizing the above we obtain an O(m(n + m + k)log(km)) bound for the
general scheme.

Turning to the special cases considered in Section 4, we note that the above
bound reduces to O(n’log n) for N|N|p, which is the same as the one obtained
in [13].

For the model A|N|p the implementation of the general scheme can be
simplified. First, from [13] and the discussion in Section 4 it follows that it is not
necessary to compute all the km distances between the demand and supply
points. Instead, a set R consisting of O(n?) elements, (where each pair of nodes
of T contributes an element), will suffice. The effort to generate this set R is
O(n?. Also, an O(n®) test for the adjacency in G is available. Two nodes of G,
say ¢q; and gj, are adjacent if and only if the sum of the radii of their respective
neighborhood trees, r; + r; = r/w; + r/w;, is not smaller than d(gq;, q;). Step 3 of the
algorithm is done in O(m? = O(n? time.

Finally, decomposing the nodes according to the clique cover and using the
efficient algorithms for locating one center on a tree, [4, 10, 11, 13], we obtain the
bound O(n? for Step 4. Thus, the A|N|p problem is also solved in O(n’log n)
time, as in [13].

To our knowledge the O(n*log n) bound obtained for the N|A|p model seems
to be the first polynomial algorithm for this model.
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6. Locating ‘mutually obnoxious’ facilities

The following location problem is highly related to the general location model
described in Section 3.

Given the tree T = T(N, A) and a finite set of points S in T we wish to place a
fixed number of points, p, p <|S|, in S which are as far apart as possible from
one another. As an application motivating this model we may consider the
problem of locating ammunition depots, nuclear plants or emergency shelters
against aerial attacks. We show that this problem of locating ‘mutually obnox-
ious’ facilities is equivalent, or dual to the problem of locating p — 1 centers on T
such that the maximum of the distances from the k =|S| points of S to their
respective nearest centers is minimized.

Let {A\i= M =...=M\}, t =k(k—1)/2, be the sorted sequence of distances on
T(N, A) between all distinct pairs of points in S. Assume that the above
sequence contains only r <t distinct values, which are then relabelled W =
A< <. <AL

Lemma 6.1. Let S;, j=1,...,r, be a subset of S with maximum cardinality such
that the distances between distinct points in S; is at least A Denote N; = |S;].
Let Q, j=1,...,r be a set of points in T(N, A) of minimum cardinality such
that the distances between points of S to their respective nearest points in Q; is at
most Ajf2. Denote P; = |Q;|. Then N; =P;_;, j=1,...,r. (We assume that A\, =0).

Proof. From the previous sections we recall that P;_, is the minimum number of
cliques in the optimal clique cover of the nodes of the intersection graph G,
corresponding to the k = |S| neighborhood trees of radius A;_,/2.

To generate S;, we first note that two points of S are in S; if and only if the
distance between them is at least A;. Since A; > A;-;, a distance between two
points of S is at least A; if and only if it is greater than A;_;. Therefore, if G is the
above intersection graph corresponding to the k =|S| neighborhood trees of
radius Aj_;/2, then N; is the cardinality of a maximum cardinality anticlique in G.
(An anticlique is a maximal set of nodes in G no two are connected with an arc.)

Since G is a rigid circuit graph, we obtain that the cardinality of the largest
anticlique is equal to the minimum number of cliques required to cover the
nodes of G. Hence N;=P;_,j=1,...,r.

To introduce our duality result, suppose that S ={qi, q2, ... , qi}-

Theorem 6.2. Given the tree T = T(N, A), the finite subset S C T and an integer
|S|=p >1, we have

max {min{d(q;, g;) | 9;, 4; € U, ¢ # q;}} =2 min {max {min d(q; x)}}.
o VS eSS xEV

Proof. Following[14], we observe that the sets V considered on the right hand
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side of the above relation can be assumed to be consisted only of the set of
midpoints of the different paths connecting pairs of points in S. Hence, the right
hand side is equal to A;, where A; is in W. Also the left hand side of the above
relation is equal to A;, where A; is in W. We prove that A; = A,

Using the notation of Lemma 6.1, A; is the smallest element in W such that
P;<p—1, and A; is the largest element in W with N;=p, i.e. m <i implies
P,>p—1,and m > j implies N,, <p.

Suppose that j >i. Then i =j— 1 and therefore P; = P;_;. Applying Lemma 6.1
we obtain the contradiction

pSNj=P,~-1SP,~Sp—1.

Hence, j =i. To see that also j = i, note that N; = P,_; > p — 1. Therefore, N; = p.
But j was defined as the largest element in W with N; = p, which in turn yields
j=1i. We have thus shown that i =j and therefore A; = A;. The proof is now
complete.

A similar duality result dealing with the continuous problem of locating
obnoxious facilities, i.e. S is assumed to be the whole continuum of points in
T(N, A), is presented in [17].

Finally, we turn to solving our problem of locating the obnoxious facilities.
Referring to the set W ={A; <A\, ... < A,}, we have to find the largest A; such that
N; = p. The initial effort of finding the elements in W, or evaluating all the
distances between the points in S is done in O(k(n + k)), where n is the number
of nodes in T(N, A) and k =|S]|.

Next, given A;, finding N;, is done by computing the largest anticlique on the
corresponding intersection graph G. As mentioned in Sections 3-5, the tech-
niques of [7, 16] can be utilized, yielding a bound of order O(k?) for finding N..
The monotonicity of N;in i, i =1, ..., r, enables us to solve the location problem
by finding N; for at most O(logk) values in W. Therefore, the total effort
involved in finding the optimal locations is O(kn + k*log k).

7. Concluding comments

We have provided a unified approach and efficient algorithms for solving
several classes of location problems on tree networks, by utilizing results on
rigid circuit graphs. In particular, we applied the duality results on perfect graphs
[6, 15], of which the rigid circuit graphs are only a subclass. In fact, the theory
on perfect graphs allows us to generalize the model defined in Section 3, to
reflect a variance in the demand among the points in D. We briefly define this
extension, but omit the details since the solution procedure as well as the
respective dual location model follow directly from the previous sections
and [6, 15].
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Suppose that for i =1, ..., m, demand point g; is to be served by a; centers.
Then, consider the following covering problem, extending the problem of finding
Y (r) in Section 3. Given r >0, find the minimum number, p(r), of supply centers
required such that at least a; centers are set within a distance of r/w; from gq;,
i=1,...,m. It is assumed that there is no bound on the number of centers that
can be established at any supply point of S. To define the location model
suppose that a total of p centers can be set. Then, the problem is to find the
minimum r for which the respective covering problem satisfies p(r) < p.
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