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Given integers a,b,c,d, we present a polynomial algorithm for the query ‘‘is a’=c¢?. The
result is applied to yield a polynomial algorithm for the minimal cost reliability ratio spanning
tree problem.

Introduction

Suppose that a network is given in which for each edge there is a probability of
functioning. It is well known, (see [14]), that a maximally reliable spanning tree can
be found by imitating the procedure for finding a minimum spanning tree. One way
to view this approach is to imagine that a logarithmic operation is implicitly applied
to each probability number associated with an edge. The greedy algorithm for
finding a minimum spanning tree will then have to compare logarithms of two
probabilities, say Inp; and In p;. Of course, one can compare instead p; and p;.
Therefore the logarithmic operation (which is not even a finite process), does not
explicitly have to be used.

A recent paper considered the problem of finding a minimal cost reliability ratio
spanning tree [6]. Using the above approach to the problem requires comparisons
of (a1n p;) with (b1n p;), where a and b, as well as p; and p; are input data of the
original problem. Of course, a comparison can be executed by generating ( p;)“ and
(pj)b, but the length of these numbers in binary encoding is not polynomial in the
input length of the original problem. Therefore, such a comparison cannot be
viewed as a polynomial operation.

As shown in [6], if the finite operation of computing (p;)’ is counted as a single
operation, the running time of the algorithm that finds the optimal tree is bounded
by a polynomial in the number of edges of the network.

In this paper we will show that comparing (@ In p;) with (b1n p;) (or equivalently
(pi)?to ( pj)b), can be performed in time which is polynomial in the input length
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of the four numbers g, b, p; and p;. This, in particular, yields a polynomial algorithm
for the cost reliability ratio spanning tree problem of [6]. Our approach is based on
bounds for linear forms in the logarithms of algebraic numbers. The interest in exis-
tence of such bounds started as early as 1923 [13], and 1935 [10]. Various papers
on the subject have appeared since then, e.g. [1,2, 3,4, 8]. The reader is referred in
particular to the excellent book by A. Baker [3], that exposes most of the results
in great detail. The motivation of most of those papers has been the solution of
Diophantine equations. We are not aware of any previous application to combina-
torial optimization. We believe that further applications like the one discussed
above and in Section 3 will follow. In this context we mention that we have em-
ployed similar bounds on the distance between algebraic numbers to obtain a poly-
nomial algorithm for a quadratic fractional optimization problem [7].

Testing whether a’=c? for integers a,b,c,d

Let r=p/q be a rational number where p, g are integer, g #0 and the g.c.d. of
p and ¢q is 1, i.e., p and q are relatively prime. The height of r is defined to be
max(| pl, |q|). Throughout this paper In x will denote the logarithm to the natural
basis, while log x will denote the logarithm to the base 2. Complexity bounds of
algorithms are expressed in terms of the number of elementary operations +, —, x,/,
performed. Each such operation is assumed to consume atmost a fixed number of
time units.

We will use the following result which is a specialization of [Theorem 2, 4]. (Sce
also [Theorem 3.1, 3].)

Lemma 1. Let ay,...,a; be positive rational numbers with heights atmost A, where
A=4, and let by, ...,b, be integers with absolute values atmost B, where B=4.
Define

D= bllnal+"‘+bklnak. (1)
Then either D=0, or
ID| > A = B=ck=D(In4)Inin4 o

where ¢ = (16k)?%,

Motivated by the minimal cost reliability ratio spanning tree problem [6], we will
focus on the special case kK =2. (We comment on the general case in Remark 1.) Con-
sider the problem of determining the sign of D, (or equivalently comparing (a,)”
with (a,)7%2). Let E be some rational number satisfying |E — D|<A4/2, where 4 is
defined in (2). Then D=0 if |[E|<A4/2, D>0if E>A/2, and D<O0 if E<-A4/2.
Thus, the problem of determining the sign of D reduces to (efficiently) approxi-
mating D by some rational.
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Let k=2 and let a;,a,, b}, b, be as in Lemma 1. Define L to be the length of their
input in binary encoding, i.e.,

L= i (log(|b;| +1)+log(a; +1)+1og(a/ + 1)) (3)

where a;=a;/a;, and a/, a/, i =1,2, are positive integers.

Given €, 0<e< 1, we will find (in time which is polynomial in L and loge™), a
rational E such that |E — D| <e&. Furthermore, the binary encoding of the height of
E will also be polynomial in L and log e~!. Note that if 4 and B in Lemma 1 are
chosen minimal with the provision that 4>=4 and B=4, then

(logA+logB)<L <2(log(B+1)+2(log (A +1)). 4)

Lemma 2. Let p be a positive integer and let 0 <e < 1. There exists an algorithm that
finds a rational q such that |Ilnp—q|<e in time which is polynomial in logp and
log e™!. Moreover, the height of q has a binary encoding of length polynomial in

log p and loge™"'.

Proof. Let ¢ be an integer such that 2'<p<2/*! If 2p=>2/+2/*! then 3/4<
p/2'""1<1, and define m=1r+1. If 2p<2/+2'"! then 1=<p/2'<3/2, and define
m =t. Thus, we have found an integer m <log p+ 1, satisfying 3/4<p/2"<3/2.

Define x=p/2" —1. Then —1/4<x<1/2. It takes O(log log p) time to compute m
and x.

Inp=mIn2+In(p/2™)y=mIn2+In(1+Xx)

Therefore, it is sufficient to approximate In(1 + x) with accuracy of ¢/2 and In 2 with
accuracy of ¢/2m. We will use the following two approximations for the logarithmic
function [5].

n yk
In(1+y) =Y -D'=-+R,
k=1 K

where
n+1
y+1 for y=0,
n
|R1]S 1 ]yl"“ (5)
for —1<y<O.
1-|y| n+l
n 2 —1 2k+1
Iny=Y <y > + R,
k=0 2k+1 \ y+1
where (6)

+12 -1 2n+3
0<R,=< +1) (y > for y>1.
2yR2y+3)\y+1
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To approximate In(1+x) we use (5). We choose a minimal z such that 2~ +*D<¢/4,
i.e., let n=[loge™'+1. Since —1/4=<x<1/2, we easily verify that |R,|<
20" D<e/2. =Y _ (=1)*x*/k is a rational approximation of In(l + x).

x=p/2"—1, and therefore x is a rational whose height has a binary encoding of
length O(log p). T; is a sum of O(log ¢!) rationals, each having height with binary
encoding of O((loge ")(logp)). Therefore, the height of 7, has an encoding of
O((log e H? (log p)), and T, is computed in O(log ¢ !) time.

We now turn to the approximation of In2 in accuracy of &'=¢/2m. Using
formula (6) with y=2, we choose a minimal » such that 3 ®"*V<¢’, je.,

n=0(og(e’)) =0(oge ' +log m) = O(loge~! +log log p).

In 2 is now approximated by

)
T, = 3—(2k+1)
2 k;) 2k +1

in O(log ¢! +loglog p) time. The height of T, has an encoding of length
O((log(e")™")*) = O((log e™")* + (log log p)?).

Finally we set g=T;,+mT7,. Then g is obtained in time which is of order
O(loge™'+loglogp). The length of the binary encoding of the height of g is
O((log ¢ 1)*(log p)). Furthermore,

Inp—gq| = |m(n2—-T,)+(n(1+x)—T})|
=m|In2-T,|+ |In(1 +x)-T;| <e.

The proof is now complete.

Theorem 1. Set k=2 and let a,,a,,b,,b, be as in Lemma 1. Let L be defined by
(3). For each rational 0<e <1 there exists an algorithm that finds a rational q such

that |b,Ina,+b,Ina,—q|<e in time which is polynomial in L and loge™'. The

height of q has a binary encoding of length polynomial in L and loge™'.

Proof. Using Lemma 2, approximate Ina; and Ina; by ¢,=¢/4|b;|, i=1,2, to
obtain g; and g/ respectively. Define g =b,(q; —qi) + b,(g5—g5). Then,

\byIna,+byIna,—q| = |by(Ina; —qy) — by(Inaj — gy)
+b,(Inas—q3) — by,(Ina; — q3)|
<2 \b1181+2|b2182 =¢&

The result follows from Lemma 2 since log|d;|, loga; and loga;, are bounded
above by L, and loge;'=0(loge™' +L), i=1,2.

Theorem 2. Let a},a, i=1,2, be positive integers, and define a;=a;/a;. Let b,
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and b, be integers and define
D= bl lnal+b21naz

The sign of D can be determined in time which is polynomial in the input length,
L, given by (3).

Proof. Using Lemma 1 and (4), we note that if D+#0, then
ID| > A, =27

where ¢’ is some constant. Choose e =4,/2 and apply the algorithm suggested by
Theorem 1, to obtain a rational g such that |D—g|<e. We have already observed
that D=0if |q|<A4,/2, D>0if g>A,/2, and D<O if g<—A4,/2. The time needed
to find g is polynomial in L and loge ' =O(L*). Thus, the proof is complete.

As a consequence of the above theorem we have the following.

Corollary 1. Given integers a, b, c,d, there exists a polynomial algorithm to deter-

mine whether a®=c?.

Remark 1. Although our concern in this paper has been the testing of the query “‘is
a’=c97”, (i.e., the case k=2 in Lemma 1), we note that our approach can easily
be extended to the general case to determine the sign of b,lna,+--+b;lnay
(a;,b;, i=1,...,k, integer), in polynomial time in terms of the input length, provided
k is fixed. Consequently, given integers ay,..., @, by, ..., 04, Cpy...sCrydy, ..., dy,
there exists a polynomial algorithm to determine whether alb Lo g = c{i‘ e e for
any fixed value of k.

To our knowledge the existence of a test which is also polynomial in & is an open

problem.

Remark 2. We note that the constant coefficient ¢ in Lemma 1 takes on the value
(32)* for k=2. A lower bound on D (for k =2) with a smaller constant term c is
given in [Proposition 6, 12].

The minimal cost reliability ratio spanning tree problem

Let G=(V,E) be an undirected graph with V and E as its sets of vertices and edges
respectively. For each edge i€ E let p; (0< p;<1) and ¢;, respectively, be the proba-
bility of functioning and the nonnegative integral cost. Let Q be the set of all
spanning trees in G. For each T'eQ define C(T)=Y%,_ ; ¢;, R(T)=]],.; pi, and
S(T)=Y,.; —Inp;. The minimal cost reliability ratio spanning tree problem, con-
sidered in [6] is:
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. C(T)
Min m(T) = ———. @)
TeQ R(T)
Define the bicriteria spanning tree problem
Min (S(T), C(T)). (8)

It is shown in [6] that a spanning tree minimizing (7) is in the set H, defined as
the set of trees corresponding to extreme points of the convex hull of the bicriteria
space (8). A systematic search that produces the set H is given in [6]. A step of this
search requires finding a minimal spanning tree with edge weights

R(Ty)
R(T))

Ci
w; = pI(C(T/)— C(Ty)

9

where T, and 7, are given trees in Q.

Counting the operation p¥ as a single operation (as done in [6]), the above
minimal spanning tree can be found in O(|E | log log |V|) time [15]. Since the binary
encoding of pj’ is not polynomial in the input length, the entire process cannot be
viewed polynomial.

The results of the previous section enable us to overcome this difficulty and com-
pare weights w; and w; as in (9) without explicitly performing the operation p;-.
This will yield a polynomial procedure for (7). Given weights w; and w; we note
that w;=w; if and only if

(C(T) - C(T) In(p;/pj) + (c; — ¢;) In(R(T}) /R(T})) = 0. (10)

By Theorem 2 we can determine whether w; = w; in polynomial time in the length
of the problem input. Therefore, the greedy algorithm with weights w;, ie E, can
be applied in polynomial time.

As a final comment we note in passing that the recent work of Gusfield [11] im-
plies that the frontier H contains O(]E|*'?) trees. Therefore, H can be obtained in
O(|E|**loglog|V|) applications of the greedy algorithm.
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