Minimizing Flow Time on Parallel Identical
Processors with Variable Unit Processing Time

I. MEILIUSON and A. TAMIR
Tel-Aviv University, Tel-Aviv, Israel
(Received September 1981; accepted September 1982)

We show that minimizing total flow time on parallel identical processors with
nonincreasing unit processing time is achieved with shortest processing time
(SPT) scheduling: Sequence the tasks in an order of nondecreasing lengths.
Following this order and starting with the shortest task, process any task by
the first processor that becomes available. If the unit processing time is allowed
to be increasing, e.g. quadratically, the problem becomes NP-hard.

NE of the elementary results in scheduling theory refers to the
following deterministic problem. A set of tasks N = {1, 2, - -, n}
specified by positive numbers {l;, l,, ---, l,} is to be processed on m
identical machines. Each task must be processed by exactly one of the
machines, preemption is not allowed, and the objective is to minimize
the total flow (finishing) time. The number /; is the length or work
content of task i; that is, the number of units of the resource (e.g., lengths
of iron bars) processed by the machines. If the machines are identical,
and have a constant unit processing time u (i.e., each unit of the resource
requires yu time units to process), the schedule minimizing the total flow
time is obtained as follows (Baker [1974, p. 119]): Sequence the tasks in
an order of nondecreasing lengths. Following this order and starting with
the shortest task, process any task by the first machine that becomes
available. This processing scheme is called SPT (shortest processing
time) scheduling.

The purpose of this work is to prove that the SPT schedule remains
optimal even when the unit processing time u of each one of the identical
machines is any nonincreasing function of the total length of the resource
that the machine has already processed. This processing time assumption
could model, for example, situations in which a learning process deter-
mines the performance of the machine operators. Performance improves
with experience.

We also show that if the unit processing time is allowed to be increas-
ing, the problem becomes NP-hard.

Subject classification: 581 processors with variable processing rate.
440

Operations Research 0030-364X/84/3202-0440 $01.25
Vol. 32, No. 2, March-April 1984 © 1984 Operations Research Society of America

Flow Time on Parallel Processors 441

To facilitate the discussion, suppose that the entire process starts at
time t = 0. The machines are identical and each is associated with a
positive nonincreasing, integrable unit processing time function u(l). The
processing time of a task of length ! on a machine that has already
processed tasks of total length L is [£*' u(x)dx. In minimizing the total
flow (i.e., the sum of flow times), we may assume that an optimal schedule
does not allow machines to insert idle times between consecutive tasks.
Moreover, tasks assigned to the same machine are processed in order of
nondecreasing lengths. In particular, if some machine is assigned the set
of tasks {iy, iz, - - -, Ia}, satisfying [; < [, < --- < [, the total flow on
this machine is 3, g(34-1 L),

!
~ where g() =J; u(x)dx (1)

is the clock time required by one machine to process ! units of work
content, and (dg(l)/dl) = u(l). (Often, instead of working with g(I)
directly, we utilize the function g7'(t) = work content completed in ¢
units of time by a variable speed processor. In this case, A\(t) = (dg™(t)/
d(t) is usually called the processing rate A and u are related by the
identity A(g(l)) = 1/u(l). Hence, nondecreasing A(t) corresponds to
nonincreasing u(l), as required above.) Note that the monotonicity of u
implies the concavity of g(l). The total flow for the entire system is
obtained by summing the flows over all the machines.

THEOREM 1. Let N = {1, 2, ---, n} be a set of tasks with lengths {l,,
lo, -- -, L.}, respectively. Also, let M = {1, 2, --. , m} be a set of identical
machines having a positive, nonincreasing, and integrable unit processing
time function u(l). Then the SPT schedule minimizes the total flow of N
on M.

Proof. Suppose that [, = [, =..-.= [,. Since all the machines have the
same processing time function u(l), the SPT schedule is implemented as
follows: assign task i to machine i(modm) (machine m is now labeled as
machine 0), and sequence the tasks on each machine in order of increas-
ing task indices.

We first prove the result for m = 2, and then use the proof to validate
the statement for a general m. (The case m = 1 is clearly valid even when
u(l) is any positive integrable function.)

We identify the different schedules of the tasks {1, 2, ---, n} on the
two machines as follows. Let = = (7, w3, - - - , 7+ 1) denote a permutation
of the vector (1, 2, ---, n, n + 1). For our discussion, it is convenient to
let =; denote that coordinate of (1, 2, - - - , n + 1) that is mapped into the
ith coordinate of n. Given «, if n + 1 = m, let tasks (my, 7, - - -, mp—1) be
processed on the first machine starting with =, then 7, and so on. The

442 Meilijson and Tamir

remaining tasks (mp+1, me42, -, Tn+1) are processed on the second
machine in the reverse order: ., starts first, =, follows and so on.
Define l,y; =L+ b+ --- +1l,. Thenlh <l < ... <[, < l,41. Also, define
L, = Yj-1 b, for 1 < i< n + 1. The completion time of task =; is g(L.)
ifl<i<k—-1landg(L,, — L,)ifk+1=<i=<n+ 1 Therefore, the
total flow of tasks (1, 2, - - ., n), while using the schedule induced by =,
is

F(x) = i g(L,) + X% g(Ly,,, — L)

To obtain an expression that does not explicitly depend on the index k
for which n + 1 = m, let

if 0<L=<l,
fm=%m . " o
824y — L) i lner = L < 2.

Using the relations L, , = 2l.+; and [,, = l,4;, we easily verify that
L, <lpforlsi<k-—1landl., < L, < 2,4, fork<i=<n+ 1. Thus,
applying (2) yields

F(r) = &} f(L,) + Tk f(Ly).
Finally, observing that f(L, _,) = f(2l,+1) = 0, we obtain
F(r) = S22 f(L,) = SE f(Sian).

Minimizing the total flow of tasks (1, 2, - - - , n) corresponds to finding a
permutation 7* for which F(r) is minimized.

To prove that 7* is the permutation defining the SPT schedule, we
use the results of Konheim and Meilijson [1980]. For the sake of com-
pleteness, we state and prove their relevant results in the Appendix. The
function f, defined by (2), is concave and symmetric on [0, 2l,+,] with
f(0) = f(2l,+1) = 0. Therefore, Theorem A.1 in the Appendix, applied for
the case N = n + 1, ensures that F(7) is minimized when =* is a greedy
permutation of (1, 2, ---, n + 1) in the space defined in the Appendix.
Sincel, <lb < ... <l, < l,41, ™ induces the SPT schedule on the tasks
{1, 2, - - -, n} and the proof for m = 2 is complete.

We now turn to the general case. Assume that the SPT scheduling is
nonoptimal. Consider the set of optimal schedules that sequence on each
machine according to the rule of smaller indexed task first. (This set is
nonempty since we are assuming , < [, < ... < [,.) Among those
schedules, choose one for which the smallest indexed task i that is not
assigned to machine i(mod m) is maximum. Let that task be task k, and
suppose that task k& is assigned to machine u, u # v = k(mod m). Let S,
and S, be the sets of tasks assigned to machines u and v, respectively.
Apply the optimality result of the SPT schedule to machines u and v

Flow Time on Parallel Processors 443

and the set of tasks S, U S,. The tasks in S, U S, can be rescheduled on
u and v without affecting the optimality of the given schedule on the m
machines, and while ensuring that each task i, i < k&, is assigned to
machine i(mod m). This conclusion contradicts the maximality of k and
completes the proof.

Simple examples, involving only two machines, demonstrate that
Theorem 1 fails if the function u(l) is not nonincreasing. In fact, we will
next show that scheduling tasks on two machines with an increasing
quadratic unit processing time function is NP-complete. An increasing
unit processing time function may reflect fatigue phenomena.

Suppose, for example, that u(l) = 3 I%, and, therefore, g(l), defined by
(1), is given by g(l) = I’. Let = denote a permutation of {1, 2, --- , n}.
The objective is to find # minimizing the total flow, F(x), on the two
machines,

F("r) = MinlshSn (Z}Ll (2i=1 lar,-)3 + 2}1=k+1 (Z{=k+1 lr,-)3)- (3)

In this formulation, 7; = j means that task j is the ith ((— k)th) task to
be processed by the first (second) machine if i = k (i > k).

THEOREM 2. Given positive integers {l;, ---, I,} and an integer L, the
problem of determining whether there exists a permutation = with F(x) =
L is NP-complete.

Proof. The problem is clearly in NP. We reduce the partition problem
(see Garey and Johnson [1979]) to our scheduling problem. Given positive
integers {a;, - --, a,}, the partition problem is defined as determining
whether there exists a subset S C {1, ---, nj}, called a partition, such
that Yics a; = Yigs a..

Given the positive integers {a;, az, - - -, a,} with A = Y%, a;, define a
set of n + 2 tasks, {1, 2, ---, n + 2}, as follows. For 1 < i < n, let the
length of task i be [; = a;, and [,+1 = l,.+2 = M. M is chosen to be “very
large,” for example M = A",

We claim there exists a partition of {a,, - - - , a,} if, and only if, there
exists a permutation 7 of the tasks {1, 2, ---, n + 2} with F(x) <
2(M + (A/2))> + M. Suppose that there exists a partition S C
{1, 2, ..., n}. Assign the tasks in S U {n + 1} to one machine and the
remaining tasks to the second machine. Siace each machine (optimally)
processes tasks in order of nondecreasing lengths, tasks (n + 1) and (n
+ 2) are to be processed last, yielding a flow of (M + (A4/2))? for each of
them. The flow of each task i, 1 < i < n, is bounded by A®. Thus, the
total flow is at most 2(M + (4/2))3 + nA® < 2(M + (A/2))® + M.

Next, suppose that there is no partition of {a,, - - - , a,}. We will show
that there is no schedule with total flow of at most 2(M + (4/2))® + M.
First, if there were such a schedule, it would not assign tasks (n + 1) and

444 Meilijson and Tamir

(n + 2) to the same machine. (Otherwise, the sum of their flows would
exceed (M + M)® = 8M?3.) The total flow of tasks (n + 1) and (n + 2)
will then be (M + A;)® and (M + A,)3, respectively, with A; + A; = A.
Furthermore, since there is no partition, A; = (A/2) + « and A; =
(A/2) — a with a = Y%. Therefore, (M + A;)® + (M + A;)® = 2(M +
A/2)* + 6% (M + (A/2)) > 2(M + (A/2))? + M, and there is no schedule
with total flow of at most 2(M + (4/2))% + M.

Several concluding comments are in order. First, observe that our
scheduling model is equivalent to the following model. Given the tasks
specified by {l;, - - -, l.}, suppose that the machines are identical and
have a constant unit processing time, normalized to one time unit per
unit of work content. The tasks are now associated with a monotone cost
function, g(l), which is the cost incurred by a task if it completes its
service at time . The objective is to find a schedule minimizing the total
cost incurred. Our results are, therefore, applicable to this latter model
as well.

Next we note that the optimality of the SPT scheduling in Theorem 1
is not violated even under some mild priority restrictions. For example,
suppose that certain tasks must start at time zero and be processed with
no interruptions. The optimal scheduling procedure assigns each such
task to a different machine, and then proceeds with the remaining tasks
using SPT scheduling. The proof of optimality is similar to that of
Theorem 1, and is, again, based on the results in Konheim and Meilijson.

APPENDIX

The following results, proved by Konheim and Meilijson, are presented
here for the sake of completeness.

Let f be a symmetric concave function of one real variable (with a
vertical axis of symmetry somewhere in the plane), x = (x;, %9, - - - , xn)
be a vector of positive real numbers, S = x; + x3 + - .- + xy, and let « be
a real number. Let # = (my, ---, 7n) be a permutation of the vector
(1,2, ---, N). (m; is used to denote that coordinate of (1, 2, - - - , N) that
is mapped into the ith coordinate of).

For each permutation 7 of (1, 2, --., N), let

F(r) = fla) + T fla + Tiay %) (A.1)

Suppose that x; < x2 < --- < xy. Define a permutation 7 to be greedy
(on the triple (f, x, «)) recursively as follows:

if fla) < fla+S), set m =1,
if f(a) = fla + 85), set mp=1 or wy=1 and
if fla) > f(a+ 8S), set wn=1.

Having defined either the first or the last coordinate of 7 (i.e., =; or 7n),

Flow Time on Parallel Processors 445

consider the reduced vector x’ = (x, x3, - - - , x5) and the modified value
of a

,_{a+x1 if 7l'1=1
a = .
a if =1

and applying the rule specifying m; or my to the reduced triple (f, a, x’).
The remaining values of = are determined recursively by this procedure.
To be more specific, suppose that f(a) = f(a + S). The following are
greedy permutations.

(1;3,5’""N—lyN)N—2,'°'v6’4,2)

or(2,4,6, ..., N-2 N N—-1,...,5,3,1),if Nis even
(1,3’51""N—21N’N_1,"‘,6’4’2)
or(2,4,6,---., N-1,NNN-2,...,5,3,1),if Nis odd.

Clearly, F(x) is the same for all greedy permutations.

THEOREM A.1. The function F(x), given by (A.1), defined on the set of
all permutations, attains its minimum at the greedy permutations.

For ease of exposition, consider f to describe the roof of a house (see
Figure 1) with a one dimensional floor and rooms having preassigned
lengths {x;}. Theorem A.1 claims that the greedy builder, who minimizes
at every stage of the construction the height of the current wall being
built, makes the sum of the heights of the walls actually minimal.

LEMMA A.l. For fixed x and f (symmetric and concave), let V(a) be the
value of F(x) for greedy permutations =, as a function of the left endpoint
of the house. Then V(a) is continuous. If f(a) < f(a + S), V is monotone
nondecreasing on the interval (-, a’], where o’ > a, and f(a’) = f(a’ +
S). If f(a) > f(a + S), V is monotone nonincreasing on the interval [a”,
o) where a” < a and f(a”) = f(a” + S). Moreover, if f(a) = f(a + S), «
is a maximum point of V.

Proof. We first prove the continuity of the function V(a). Let «; and
oy denote the leftmost maximum and rightmost maximum of f, respec-
tively. In particular, each x such that a; £ x < a3 is a maximum point of
f. It is clear that V is continuous at all points o at which the greedy
permutation does not change, since the heights of the walls vary contin-
uously. (For example, V is continuous for a = a; or a < a; — S.) Consider
a point « at which the greedy permutation changes. Such an « is reached,
when “sliding” the house to the right, whenever two walls become of the
same height. At any such point, reverse the order of the rooms in the
subhouse between these two walls. (If more than two walls become of the
same height, consider the two walls, having the same height, which are

a QeX QAeXe X, a.s

Q+S-X, Qa4+

|
|
|
|
|
I

a A Qa +X B Q+S-X; QS

Figure 1. (Top) Case 1, (center) Case 2, and (bottom) Case 3.
446

Flow Time on Parallel Processors 447

furthest away from each other.) This reversal will not affect V at a, and
will give an equivalent permutation that will remain greedy when « is
increased. Therefore, V is continuous at «.

Next, we prove that f(@) < f(a + S) impltes that V is monotone
nondecreasing on the interval (-, a’]. (The proof for the case f(a) >
fla + S) will then follow from the symmetry of f.) Let 8 < o’ and,
without loss of generality, suppose that f(8) < f(3 + S). The monotonicity
is obviously satisfied if 8 + S < a,. Thus, suppose B < oy < @z < B + S,
and consider the N + 1 walls defining V(8). Those walls to the right of
a; or at a; can be mapped in a one to one way into the walls to the left
of that point in such a way that each wall on the right is mapped into a
wall of strictly smaller height. (The shortest wall to the right of or at a;
is mapped into the shortest wall to the left of as, the second shortest wall
to the right of or at a, is mapped into the second shortest wall to the left
of as, and so forth.) Because of the concavity and symmetry of f, the sum
of the heights of the walls on the right will decrease (as 3 increases) by
an amount that is less than or equal to the sum of the heights of the
walls they are mapped into will increase. Since the sum of the unmapped
excess walls on the left will obviously not decrease, our local argument,
coupled with the continuity of V, completes the proof.

Finally, consider « satisfying f(a) = f(a + S), and suppose that a # «
is a maximum point of V. From the maximality of &, and the previous
discussion, we may assume, without loss of generality, that f(a) = f(a +
S). Since we also have f(a) = f(a + S), the properties of f imply that f is
constant on the interval [min(a, &), max(a + S, & + S)]. In particular,
V(a) = V(a) and « is also a maximum point of V.

Proof of Theorem A.1. By an inductive argument, it is enough to prove
that any permutation 7 that places a nonminimal room at a lowest end
and proceeds thereafter greedily on the remaining subhouse, can be
improved by some 7’ that places a minimal room at a lowest end. For
concreteness, suppose that x; = x = --- = x5, and

fle) = f(a + 8). (A.2)

Let = be a permutation that first places (at a) a room of length x > x;.
We may assume that on the remaining house, with floor [a + x, & + S],
the permutation behaves greedily. There are three cases to consider (see
Figure 1):

Case 1: f(a + x) = f(a + S) and = places a room of length x; in the
second place.

Case 2: f(a + x) = f(a + S), = places a room of length y > x; in the
second place and f(a + x) = f(a + S — x1).

Case 3: f(a + x) = f(a + S), = places a room of length y > x; in the
second place and f(a + x) > f(a + S — x1).

448 Meilijson and Tamir

In Case 1, exchange the first two rooms. Since f is monotone nondecreas-
ing on [a, a + x], f(a + x1) < f(a + x). The change in F produced by this
exchange is the difference f(a + x;) — f(a + x) < 0. In Case 2, consider
the subhouse with floor [« + x, @ + S — x;]. Keeping the lengths of its
rooms constant and their inner order greedy, “slide” the subhouse to the
left until its leftmost point is at a distance x; to the right of «. By Lemma
A.1, this sliding proces§ does not increase the value of F. The result is a
permutation, as required. Finally, in Case 3, we cannot slide the house
as in Case 2 because that may increase F for some sliding distance. To
circumvent this difficulty, observe that the subhouse with floor [a + «x,
a + S — x,] is the mirror image (with respect to the axis of symmetry of
f) of another subhouse, with floor [A, B] (see Figure 1). Note that the
induced assignment of the N — 2 rooms to the interval [A, B] is greedy
and has the same V value as the original assignment of these rooms to
the interval [a + x, @« + S — x;]. Thus, consider the subhouse with the
floor [A, B] instead of that with floor [a + x, « + S — x;]. Now, since
f(A) = fla + S — x1) < f(a + x) = f(B), the sum of the heights of the
walls does not increase when we slide this subhouse to the left (as in
Case 2) until its leftmost point is at a distance x, to the right of «. (Note
that f(A) = f(a + S — x;) and f(a) < f(a + S) imply that A is at a
distance of at least x, from a.) Again, as required, the result is a greedy
permutation.

REFERENCES

BAKER, K. R. 1974. Introduction to Sequencing and Scheduling. Wiley, New York.

GAREY, M. R. AND D. S. JOHNSON. 1979. Computers and Intractability: A Guide
to NP-Completeness. Freeman, San Francisco.

KONHEIM, A. G., AND I. MEILIJSON. 1980. Greed Is Good, Research Report RC
8505, Mathematical Sciences Department, IBM Thomas J. Watson Research
Center.

