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Abstract

We consider the problem of maximum weighted coverage of points by a set of balls
of different radii in the Euclidean space R¢. We observe that the problem can be formu-
lated as a multiple choice coverage problem. Therefore, the approximation results in [1]
are applicable, and for any fixed d there is a polynomial algorithm which produces an
approximation within a factor of 1 — 1/e.

Let P = {vy,...,u,} be a set of n points in R% where n > d. Each point v;, i = 1,...,n,
is associated with a nonnegative weight w;. Let {ri,...,mp} be a set of radii, nonnegative real
numbers. For each pair of points z,y € R?, let d(z,y) denote the Euclidean distance between
them. For j = 1,...,p, and z € R? let D;(z) denote the Euclidean ball of radius r; centered
at z, i.e., Dj(z) = {y € R? : d(z,y) < rj}.

The coverage problem is to maximize the total weight of points that can be covered by p
balls of radii {r1,...,7p}. Formally, the problem is to find p points, 1, ..., 7, in R? such that
the total weight of the subset of points in P contained in U?Zle(xj), is maximized. The
problem has recently been shown to be NP-hard even in the one-dimensional case, [5]. Note
that the latter case corresponds to the problem of covering points on the real line by line
segments of different lengths.

When the balls are of the same radius, r; = r for j = 1, ..., p, the problem is NP-hard for
d > 2, [4]. This equal radii case reduces to the maximum coverage problem, and therefore
can be approximated within a factor of 1 — (1 —1/p)P of the optimum by a greedy algorithm.
See [2, 3, 6]. (The greedy algorithm can be implemented in O(pn?) time in R2.)

We will show that for different radii, the above problem can be formulated as a multiple
choice coverage problem, and therefore the approximation results in [1] are applicable.

For each j = 1,...,p, let F; = {S}, e SJm} be the subcollection of all maximal subsets of
points in P that can be covered by a ball of radius r;. ( Note that since the radius of the
ball is known m = O(n%).)

For t =1,...,m, define a(i;j,t) = 1 if v; € S}, and a(i;5,t) = 0 if v; ¢ St

The formulation is then:

max y ., Wz

subject to,

Zgn:l YSomializg )z >z, 1 =1,..,n,

Zt:l Tyt = 1’ J = 1a Sy

zj: € {0,1}, j = 1,...,p; t=1,....,m

0<2z<1,i=1,.

For each i = 1,...,n, ZJ L ™ a(i;j,t) is bounded above by k = O(pn). From the
results in [1], (see Remark 1), we now conclude that when d is fixed there is a polynomial



algorithm which produces an approximation within a factor of 1 — (1 — 1/k)* of an optimal
solution.

we note that the above scheme is applicable to any metric defined on R%, provided that
the respective collections Fj, j = 1,...,p, are of polynomial cardinality. The rectilinear norm
is one such example.

In the above coverage problem the p balls can be centered anywhere in R%. Consider a
version of the model where the centers of the balls are retricted to some prespecified discrete
subset @ = {u1,..,us} C R% For t = 1,..,q, define a(i;4,t) = 1 if v; € D;(us), and
a(i;7,t) = 0 if v; ¢ D;(uy). We obtain the following formulation:

max y .| Wiz

subject to,

S > ali g, )z > 2, i=1,..,m,

Zt:l Tt = ]., j = 1,...,p,

zjs €{0,1}, 7 =1,...,p; t =1,...,q,

0<z <L, i=1,..,n.

From the results in [1] we conclude that there is a polynomial algorithm for the discrete
version which produces an approximation within a factor of 1 — (1 — 1/(pq))P? of an optimal
solution.

As a final remark we note that the results in [1] are set theoretic. An open question is
whether approximation factors larger than 1 — 1/e are achievable by utilizing the geometric
properties of the problem.
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