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Based on Interpolating Polynomials
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Abstract. In this study, we derive the order of convergence of line
search techniques based on fitting polynomials, using function values
as well as information on the smoothness of the function. Specifically,
it is shown that, if the interpolating polynomial is based on the values
of the function and its first s —1 derivatives at n+1 approximating
points, the rate of convergence is equal to the unique positive root r, , , of
the polynomial

D, (2)=z""—(s=1Dz"~s Y z"7
i=1
For all n, r, is bounded between s and s + 1, which in turn implies that
the rate can be increased by as much as one wishes, provided sufficient
information on the smoothness is incorporated.
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1. Introduction

Most of the widely used algorithms for solving multidimensional
unconstrained minimization problems utilize a one-dimensional search
along a direction generated by the algorithm. Computational experience has
indicated that a significant portion of the total computational effort is spent
in this search.

Asreflected in the literature, the most common one-dimensional search
techniques used for unconstrained minimization (Refs. 1-4) are based on
polynomial interpolation of the objective function. In fact, the methods
mentioned above use only low-order polynomials (e.g., quadratic, cubic) for
the sequential fitting.
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The motivation for our research came from these efficient low-order
polynomial interpolations, but the main objective of this study was to
develop the general theory of the sequential polynomial fitting as related to
the position of proper optima. The emphasis is on convergence and orders of
convergence. The special case where the interpolating polynomials do not
utilize information on the smoothness of the function to be minimized is
reported in Ref. 5.

We start with the description of the sequential polynomial fitting
algorithm and then follow with the analysis on properties of convergence
and rates of convergence. The paper is concluded with a summary and a
short discussion on the practicality of using high-order polynomials for
interpolation.

The algorithm studied in the paper is as follows. Let x be a scalar
variable, and f(x) the function to be minimized, assumed differentiable. An
isolated minimum of f is assumed to occur at a, where

fl(@)=0. (1)
Let n be a fixed integer greater than O, and let x; x;—1, ..., x;—, be n+1
distinct approximations to a. If
q= Z Yi»
j=0

then there exists a unique polynomial P, ,.. . Of degree less than or
equal to g — 1 which satisfies

Pﬁll,(!y)o Yn (xi-—i) =f(kj)(xi—i)s ]=01 1’ B (S

.....

kj=0,1,...,‘)/j—1, ‘)’jzl, Xi—k #Z Xi—1 if k#1.

()

For brevity, we write

Pﬂ,‘Y EPH,‘YO,Yx ,,,,, Yn? Pn,s

Pn,s,s,...,s

where vy signifies the vector yo, ¥1, ..., Ya. Pn, is called the interpolatory
polynomial for f. Then, the new approximation to «, x;.1, is chosen to satisfy

Py (xis1) =0. 3)

If x;+1 = «, terminate. Otherwise, the procedure is repeated, fitting the next
polynomial to x;+1, X;, . . . , Xi—n—1). This algorithm is henceforth referred to
as the sequential polynomial fitting algorithm (SPFA).

The case where only function values are used (i.e., y;=1, j=
0,1,...,n) is studied in Ref. 5. There, we show that, if the initial n +1
approximations are sufficiently close to «, then the sequence generated by
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the SPFA converges to a. Furthermore, if the sequence is infinite (i.e.,
convergence is not in a finite number of steps), then the order of convergence
is shown to be equal to the unique positive root o,+; of the polynomial

Cusr(z)=2""" =% 2" (4)
ji=1
The sequence {o,} is increasing, approaching the golden section ratio

r=(1++v5)/2

as n approaches infinity. In this work, we extend the above result to the case
where information on the smoothness of the function f is included in the
interpolating polynomial. Specifically, we will specialize to the equal
information case where

Vi =S, j=0,1,...,n

Since the case s =1 is explored in Ref. 5, we assume throughout this work
that s = 2.

2. Convergence and Convergence Rates

In this work, speed of convergence of line search methods is measured
in terms of the following concepts (see Refs. 6 and 7).

Let the sequence {e,} converge to 0. The order of convergence of {e;} is
defined as the supremum of the nonnegative numbers p satisfying

0= Eg‘lo (lex+1]/]exl?) < oo.

The case 0/0 is regarded as finite. The average order of convergence is the
infimum of the numbers p > 1 such that

ﬁ—n—l lekll/pk =1.

k—>00
The order is infinity if the equality holds for no p>1. Let
J={x||x—a|=L}. (5)

Throughout this section, f is assumed to satisfy the following conditions. The
notation f(x) denotes the ith derivative of f.
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Assumption 2.1. (i) If g=s(n+1), where s =2 is an integer, then
£ is continuous on J.

(i) f®(x)#0forall x € J. Note that this is equivalent to f®(x)> 0 for
all x € J, since « is an isolated minimum.

(i) f9(x)#0 for all x € J.

(iv) If we define constants My, M;, M, by

Mo=min |f?(x)l,  M;=max|f“(x)/q!,
M, = max IF9"P(x) /(g + 1)1,

then the interval width L in (5) is small enough to satisfy

L<i (6)
(M1q/MoL)YL* + L) (L +L*" Y+ (M,/M,L)(L*+L)""" <3, (7)
['=L{2(Miq/Mo+ ML/ M)} 2 <1, (8)

The main result of this work is the following theorem.

Theorem 2.1. Under Assumption 2.1, the order of convergence of the
SPFA for the equal information case (i.e., y;,=s=2,7=0,1, ..., n)isequal
to the unique positive root r,.; of the polynomial

Doi(z)=z"""=(s—1z"=s ¥ z"".
i=1

For all n, s =r,, and the sequence of roots {r,} is increasing, approaching
[s++(s*+4)]/2 as n approaches infinity.

In the remainder of this section, we give a number of results leading to a
proof of Theorem 2.1. The following two theorems, proved in Appendix A,
ensure that the sequence {x;} is well defined and converges to the minimal
point a. ’

Theorem 2.2. Define

J={x||lx—a|=L},

and suppose that « is the unique minimumof f in J. Let x;, x;—1, ..., Xi—p InJ
define the polynomial P, (x) of degree =q —1=s(n+1)—1 satisfying:

Pﬁt’fs)(xi—i):f(k)(xi~j), 7=0,1,2,...,n,
k=0,1,...,5s—1, s=2, Xit Xy if t #1.

9)

If f and J satisfy Assumption 2.1, then P, (x) has a real root in J.
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Theorem 2.3. Suppose that the conditions of Theorem 2.2 hold and
let x;41 in J be a real root of the derivative of the interpolatory polynomial
P, .(x) determined by x;, x;_1, . . . , X;i—,. Then, the sequence {x,} converges
to a and

|€k, = lxk—a|sKF'(q’"’k) (10)
for some constant K, I'<1 [defined in (8)], and

r(g, n, k)=(q—1)"". (11)

Hence, the sequence {e;} converges to zero with average order of con-
vergence greater than or equal to (g —1)"/"*7.

We now derive results on the stepwise order of convergence of the
SPFA. In Appendix A, it is shown that

P =f () =[5 " (€)/a1) 3 (=)™ IT (=i

j=k
~F P (m(x))/ (g +1)1] I (e =xi-)" (12)
=
where £(x) and n(x) are in the interval determined by x;, x;—1, ..., Xi—n, X.

Substituting x = x;+1 into (12), and using the relations

Pi,,s(x,-+1)=0, (Xi+1—xi—j)=(€t+1—ei—j),

f(xiz1)= ei+1f(2)(0(xi+1)),

where 6(x;.1) is in the interval [x;.,, o], yields

ei+1f(2)(0(xi+l)) = [Sf(q)(f(xiﬂ))/q ' kéo (€iv1— ei—k)s—l

X 'I:IO (ei+1 - ei——j)s +[fm+l)(7)(xi+1))/(q + 1)'] 'l:[() (ei+1 - ei—j)s- (13)

ek "~
To find the rate of convergence, we suppose that the SPFA does not
terminate in a finite number of steps, i.e., e; # 0 for all i, or equivalently none

of the approximating points x; is the sought-for minimum point a.
Recalling that s =2, we use (13) to note that

|€i+1|/|€i+1—eil”i:;’0, (14)
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which in turn implies that the order of convergence of the sequence {e;} is at
least superlinear. To derive the exact order, we apply (13) to have:

ei1f2(0(xi41)
=ef_1 ﬁ es_]{ f(q)(f(x;+1))[(ei+1_l)s_ jl_'}[ (@—1)5

=1 q! e;
+ Z": <€z+1 €; )(€i+1_1)s_1(€i+1_1>5'1 ﬁ (€i+1_1)’]
k=1 ‘€i—k €i-k €; €i—k j=1 \€j—j
#k

el f ()

Use the superlinear convergence of the sequence {¢;} and define A;.; by

ei+1=Ai ef_l H ef—i (15)
i=1

to note that
A= (1) s >)/q ! fP(a) = A

By Assumption 2.1, A #0.

We now use the difference equation (15) to show that the order of
convergence of the sequence {e;} is the unique positive real root r, ., of the
polynomial

D,i(z)=z""=(s=1)z" -5 Zn: z" (16)

i=1

We need the following lemma (Ref. 8, p. 92).

Lemma 2.1. Consider the linear difference equation

n
Ui =ki1+ Y aui—j, i=nn+l,..
i=0

where the a; are constants and {k;} is a specified sequence. The associated
characteristic polynomial is

n
+1 —J
Qx)=x"""~— .ZO ax"".
j=

Lett,...,t,+ be the roots of Q(x), with

=)= =t
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Assume that
|t > 1> |15
and that, for some u, 0 <u<|ty,

k; = O(UI),

which means that |k;|/u’ - ¢ for some constant ¢ as i - c0. Then, there exists
a1 such that, as [ » o0,

ui/t; > 1.
In addition, if u >|t,|,
U, = alt‘i +O(ui).

If u=|t;] and m is the maximum multiplicity of all zeros of Q(x) with
modulus |25, then

u, = alti + O(imltzli).

A careful examination of the proof in Ref. 8 shows that Lemma 2.1 is true
even if the condition

|t1]>1>t,]
is replaced by the weaker condition
al>1,  |n]>]nl
Taking absolute values and logarithms of (15), and defining
d; =log |e;] and b; =log |Ail,

we obtain

dis1=Bis1+s ) dij+(s—1)d, i=nn+1,....
=1

j=

Further, defining
u,-=d,-/(log IAI+S), kizBi/(IOg |A|+S),

where § =—1if |[A|<1 and S = 1 otherwise, yields
U1 =Kiz1+s Y ui—j+(s—1Du, i=n,n+1,..., a7
i=1

where, for i sufficiently large,

lkis1|<1. (18)
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The characteristic polynomial of (17) is D, .1(z) in (16). Consider first the
case where n + 1 is odd. It is shown in Appendix B that, in this case, the roots
of D,.1(z) satisfy

|t1] > 1>ty
By (18), we can apply Lemma 2.1 with u =1 to obtain
Ui =at; +0(1),
le;| = exp{—B1r1 + O(1)},
where ;> 0, since |e;| > 0. This implies that
leiv1l/lei]’ = exp{B1t1(t —t:) + O1(1) +10,(1)},

which yields that the order of convergence of the sequence {e;} is #;. Also
note that the average order of convergence is ¢;. Suppose now that n +1 is
even. Then, from Appendix B,

t1>1 and t,=—1.

The comment following Lemma 2.1 justifies its use in this circumstance;
and, using u = |t;| = 1, we obtain

U, = CYltll + O(l)’
which implies that
le:] = exp{y:t1 + O(i)}. (19)

Since |e;| > 0,
v1=0.

If ¥y, =0, then
le:| = exp{O (i)},

which contradicts (10). Hence,
Y1 < 0

Itis then easily verified that (19) implies that the order of convergence of the
sequence {¢;} as well as the average order are again ¢;. Theorem 2.1 follows
from the preceding discussion and Appendix B.

3. Summary and Comments

We have shown that, if the interpolating polynomial is based on the
values of the function and its first s —1 derivatives at n + 1 approximating
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points, then the rate of convergence is the unique positive root r,.1(s) of the
polynomial D, .1(z) (see Theorem 2.1). Furthermore, r,(s) is bounded
between s and s + 1, which in turn implies that the rate can be increased by as
much as one wishes, provided sufficient information on the smoothness is
incorporated.

At this point, we should emphasize that our scheme is not proposed as a
computationally practical tool unless the polynomial is of low order.
Computational experience has shown that the increase in the theoretical
rate of convergence does not compensate for the extra computational effort
involved in dealing with high-order polynomials. In this respect, it is
worthwhile to mention several efficiency measures used in the literature,
which also supports the above computational observation. Since our pro-
cedure requires s new pieces of information per iteration, the information
efficiency is equal to r,(s)/s, while Ostrowski’s efficiency index becomes
(r.(s)'/* (see Ref. 9, p. 11-12). It is then easily verified that both measures
of efficiency decrease to 1 as s increases. Note, however, that the above
measures presume the same cost for evaluating any piece of information,
e.g., evaluating f(x) has the same effect as calculating f“)(x).

Finally, we point out the main difference between our method and the
one obtained from a direct interpolation of f“)(x). It is well known (Ref. 9,
Section 3.3) that, in the latter case, the orders of convergence tend to 1+,
which is larger than [s+\/(s2+4)]/2, the limit achieved by the scheme
presented in this paper. But observe that, although both techniques use s
new pieces of information per iteration, these pieces are not identical. While
the direct approach involves the calculation of f“), ..., f“) at a
certain point, our scheme evaluates the function itself f® and f“),
@, ..., f V. In particular, the SPFA can be applied even when the
expression for fP(x) is not given analytically (s = 1). Thus, the application of
the direct approach requires the calculation of a derivative of higher
dimension.

4. Appendix A: Existence Theorem of a Zero of the Derivative of the
Interpolation Polynomial

In this appendix, we prove Theorems 2.2 and 2.3 assuring that the
sequence of roots {x;}, generated by the algorithm, is well defined in the

neighborhood of @, and converges to a.

Proof of Theorem 2.2. Since f(")(x) 1S continuous, it is well known
(e.g., Ref. 9, p. 61) that

F3) = Pas() + [F9€00/a1] TT =i’ 0)
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where £(x) lies in the interval determined by x;, x;—1, . . ., Xi—,, x. To derive
an expression for P, (x), we apply a result due to Ralston (Ref. 10), which

states that
(1/qY)(d/dx)f P(¢(x)) =[1/(q + )" P(n(x)), (21)

where n(x) is again a mean value in the interval of interpolation. Differen-
tiating (20) and using (21) yields

Prs0) =)= €0)/a!] 3 (x =20 [T (x=0cy)

j#k
[ /@ DT e =x-)* (22)

We now show that, under the assumptions of the theorem, P;, ((x) has a
zero in J. Note first that f®(x) >0, Vx € J, since a is a minimum point, and
hence f®(a) = 0. The theorem follows when we prove that

P, (a—L)<O0 and P, (a+L)>0.
f'(a) =0 implies that
f)=Fx)—f(a)=(x—a)fP(y(x)),

where y(x) is in J. Substituting x = a — L in (22) yields

P, (a@—L)=—-Lf®(y(a —L))~[sf(£(a — L))/ q!]

X Z (a’L“xi—k)s—l H (a“L—xi—j)s
k=0 i=0

ik
~[FVnta~L)/(@+ DI IT (@=L =xi-)"

P, (a —L) is negative if

T =[1/Lf®(y(a — L) {[sf’(&(a — L))/(g)]

xkio (@—L—x;i_)*"" Il (@ —L—xi—;)°

i#k
—[f" P(n(a—L))/(g+ 1] .rjo (@—L—xi)}<1.

To prove that T <1, we note that

T< |T| = (MZ/MOL)(zL)S("+1) + (Mlq/MoL)(zL)s(n+1)_l,
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Using (6), we observe that (2L)* <L for all k =2, which in turn yields the
following inequalities

QL)) < D < (L4 L),
QL <(L+L*)", (L+LyY ‘'sL+L"".
Thus,
T < (M,y/MoL)2L)*" P+ (M,q/MoL)(2L)*"" V™1
< (Ma/MoL)(L+L*)"*'+(Myq/MoL)Y(L+L*)*(L+L*").

We finally apply our assumption (7) to obtain 7' <1.
Similar arguments lead to the conclusion that P}, ((« + L) >0, and hence
the theorem follows.

Proof of Theorem 2.3. Substituting x = x;,; in (22), we obtain

f(xiv)= [Sf(Q)(Hl)/q ] ;L":O (Xiv1— xi—z)s_l 'Ijo (Xi+1 —'xi—j)s

j=l

0/ + D TT (o1 =50

where
61 =£&(xi+1), 0> =n(xi+1).
Defining

e =Xr—a, k=1,2,...,
and noting that

f(xic1)= ei+1f(2)(93), 03 =vy(xi+1),

yields

n -
Molei1| =sM; 3. '€i+1"€i—1ls_l ITleivi—el’
1=0 j#l
n
+M2 n |€i+1*e,-_,~ls. (23)
j=0
Let m =1 be integer. Then,

leivy—ei g™ <lei L™ TR = 1) +eis;|™ < leisa] +eii|™, (24)
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where the right inequality is implied by the assumption (6). Applying (24) to
(23) results in

M()lei-}-ll sle(n + 1)(|€,‘+1I+ max le,-_,-]s)"(le,-+ll+ max Iei_,-ls_l)
0o<j=n O=j=n
+M,(|e;is1|+ max |e;,_;|")" "
: O=j=n

< sMy(n+1){|ej|(L"+ (/L)L +L)* =LY L+L")

+ max ‘eiﬂjlsoﬁ-l)—l}
O=j=n

+ Ma{(leetl/ DIL + L) =L T4 max [e,, "),
=j=n

Hence,
|e,-+1| s{[le(n + 1)/M0L](LS +L)n(L +Ls_1) + (Mz/LMo)(Ls + L)n+1}|€i+1l
+{sMy(n +1)/ Mo+ M>L/Mo} max lei_;|*7". (25)
=j=n

By Assumption 2.1, (7), we have

[HESES C max lei|*7,
=j=n
where
C= 2(M1Q/M0+M2L/Mo)
For any positive integer k, define
b= Ieklcl/(q—Z).

Then, (25) yields

-1
tiv1< max t{_;.

0=j=n

Let
r= Lcl/(q—‘2).

It can be verified by induction that, if
k=t(n+1)+] t=1, [=0,1,...,n,
then

=< F(q—l) )
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Letting
r(q, n, k)=(q—1)¥"*V

and observing that I'<1 and
t=k/(n+1)—1/(n+1)

yields
lex| = 6,C V@2 < c V@D priank),

5. Appendix B: Roots of the Indicial Equation

In this appendix, we study the properties and roots of the polynomial
Di(z)=z (s —1)z" 1 =s(z"?+2*+. - - 1), (26)

when k =2 and s =2. We show that D, (z) has a unique simple positive root
r., with modulus greater than one, and that all other roots are also simple
with moduli less than or equal to one. In fact, it will be proved that, if k is
odd, r. is the only real root and that the other k — 1 roots are inside the unit
disc. When k is even, z = —1 and r, are the only real roots and the other kK —2
roots have moduli less than one. It is finally demonstrated that the sequence
{r}, k=2,3,...,is increasing and tends to [s + V(s> +4)]/2.

Lemma 5.1. Let D, (z), k =3, be defined by (26). D, (z) has a unique
simple positive root ry,

s<r<[s+V(s*+4)]/2.

If k is odd, r, is the only real root; and, if k is even, z = —1 is the only other
real root of D, (z) and is simple.

Proof. Observe that
Du(z)=[1/(z = D[z* (2% =sz = 1) +5]. (27)

We verify that s = 1 implies that D, (s) < 0. Furthermore, D, (z) is positive at
(s +v(s*>+4)/2, and thus there exists r,

s<r<[s+V(s*+4)]/2,

and D (r,) =0. To see that r, is simple and also the unique positive root,
note first that

_3+' . '+akZO),

Dk(Z) = (Z —rk)(zk“l + azzk—2+a3zk
arx =5/

a;=(1/n)(ai1+s), 2=i<k.
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Thus, a; >0, i =2, 3, ..., k, and the result follows. Let k be even. Then,
Dk(Z) = (Z + 1)(Zk—l —Szk_z—szk_4 e _S).

Hence, z = —1 is a simple root. We then verify that D, (1) <0 for —1<t=0
and Dy (t)>0 for t <—1, to obtain that z = —1 is the only nonpositive root.
Suppose now that £k =3 is odd. We have

Di(z)=z"—(-1)z""=s+ D P+ + - +1). (28)

Therefore, D, (t)<0 for —1=¢=0. Noting that P—st—1is positive for
t<—1, we use (27) to have that D, (t) <O for t <—1. Thus, D(t) <O for all
t =<0, and r is the unique real root.

Lemma 5.2. All the roots of D, (z) are simple.

Proof. If z # 1 is a multiple root of D, (z), it is also a multiple root of
Ek(z)=(z —=1)Dy(2).

A multiple root of Ex(z) is a root of Ex(z), which implies from (27) that

(k+1)z*—skz*'—(k-1)z**=0.
z =01s not a root, and we have
(k+1)z*—skz—(k—1)=0,

which implies that z is real. The preceding lemma assures that real roots are
simple and the lemma follows.
The following lemma shows that the sequence {r.} is increasing.

Lemma 5.3. {r.}, k=2,3,...,isan increasing sequence, and

lim r,, =[5 + (Vs*+4)]/2.

Proof. Using Lemma 5.1, the monotonicity will follow if we shdw that
Dy (r.-1)<0.
From (27), we get
(z=1)Dy(z)—s=z[(z—1)Dy_1(z)—s].
Hence,

(re—1 = 1)Dy(re—1) —s = —re_18 and Dy (r-1)=—s.
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The sequence {r.} is a bounded increasing sequence, and hence
11’1;1’1 re = B
exists.
Nt —sne—1) = —s, 1<r
> B’-sB—-1=0 and B=[s+V(s*+4)]/2.
To prove that the no real roots of Dy (z) have moduli less than or equal
to 1, we need the following two results.
Theorem 5.1. (Ref. 9, p. 51). Let
fk(z)=zk—a(zk_1+zk—2+---+1), ka>1, and k=2.
Then, fi.(z) has one positive simple root y, and
max(1l, a) <y, <1l+a.
All other roots are also simple with moduli less than 1.
Lemma 5.4. (Ref. 8, p. 222). Let B be aclosed region in the Z-plane,
the boundary of which consists of a finite number of regular arcs, and let f(z)
and h(z) be regular on B. Assume that, for no value of the real parameter ¢,
running through the interval a =t =5, the function f(z)+th(z) becomes
zero on the boundary of B. Then, the number N(¢) of the zeros of

f(z)+th(z) inside B is independent of ¢ for a =t =b.
We are now ready to prove the main result.

Theorem 5.2. If k is odd, the kK — 1 roots of D, (z)/(z — i) have moduli
<1. If k is even, the kK —2 roots of Dy(z)/(z —ri)(z +1) have moduli <1.

Proof. Let €>0 be arbitrarily small, and consider the polynomial
Dy (z)—tz*"" for te[%, 1]. We show that
Dy (z)—tz*1#0 for all ze{z ||z| = 1}.

Since
D, (1)—-t<0 foré€=t=1,

it is sufficient to prove that
(z = 1){Du(z)—z*¥"}#0 forall z#1and |z|=1.
Suppose that
(z = I{Di(z)— 12"} =0
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for some z # 1 and |z|=1. Then,
2K 22— z(s+0)—-(1=1)]+s=0
> |22=z(s+1)—(1-1)|=s.

If
z=cos 6+isin 6,

then
[cos 20 —(s+1) cos @ —(1—1))* +[sin 26 — (s + ¢) sin 8)* = 52,
which yields
~2(1—1) cos”® 6 —t(s +t) cos O+1>+1t(s—2)+2=0.
Let y =cos 6. Then, y =1 is one root of the quadratic

20-0)y>+t(s+1)y — (1P +1(s—2)+2)=0. (29)

For t=1, y =1 is the only root, and we obtain cos § = 1, which contradicts
z#1.Let te[€, 1). Then, the second root of (29) is

y(@)==[2+t(s —2)+2)/20—t)=(=1>—1s)/2(1— 1) — 1< —1.
Thus, we have the contradiction cos 8 < —1, and we get that
D(z)—tz"#0 for ze{z ||z] = 1}.

Observing that, fort =1, D, (z)—tz k-1 yields the polynomial f; (z) with
a = s discussed in Theorem 5.1, we apply Lemma 5.4 to conclude that, for
any positive ¢ arbitrarily close to zero, the polynomial Dy(z)—tz“"" has
k — 1 roots inside the disc {z ||z| = 1}. Continuity arguments (see, for exam-
ple, Ref. 8, Appendix A) lead to the conclusion that D, (z) has k — 1 roots in
{z||z]=1}. By substituting =0 in (29), we easily verify that the only
possible root of D, (z) on the boundary of the disc is z = —1, which is a root
iff k is even. Hence, the theorem is proved.
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