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Abstract

It is shown that the resource allocation problem over a polymatroid with a

quadratic objective can be solved in strongly polynomial time.



Given the set E = {1,...,n} let r : 2§ — R be a real-valued set function defined on
the power set of E with r(¢) = 0. We say that r is submodular if the submodular inequality

r(X)+rY)2r(XNY)+r(XUY) “ (1)

holds for every pair of subsets X and Y of E. The set function r is monotone if r(X) <r(Y)
for every pair of subsets X and Y satisfying X C Y. Let z be a vector in R¥. For every
subset S of E the notation z(S) = Z z; is adopted. We use e; to denote the i-th unit
vector in RZ. <

Given a submodular function r, the polymatroid defined by r is the polyhedron
F={z€eR¥| z(S)<r(S) forall SCE}. (2)

For j =1,...,n, let fi(z) be a real-valued, continuous and concave function defined

on the real line. Consider the following resource allocation problem:

Ma-xz fi(z;) ®

s.t. z =(z1,...,2n) € F .

We assume that the set function r defining F is submodular. If r is integer-valued
define the discrete equivalent of the above resource allocation problem by requiring feasible
vectors to have integer components. The above problem is discussed in [2,5,6,8,9,10].
Polynomial time algorithms to find an €-accurate solution to the continuous problem and
an optimal solution to its discrete version are given in [8]. The polynomial time bounds
are expressed in terms of the input length and the time spent by an oracle which checks
the feasibility of an increment in a component of a given feasible solution. Specifically,
let G denote the number of operations needed for such a check. Then the bound in [§]
for solving the discrete version is O(n(logn + G)log(r(E)/n)). (If r(E) < n, log(r(E)/n)
should be replaced by 1.) The algorithms in [8] are based on efficient implementations of
the greedy algorithm [2,10]. We note that checking the feasibility of a given increment -
can be performed by minimizing a submodular function. Suppose that z is a feasible

solution, i.e., z is in F, and consider incrementing the :-th component of z. Then such
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an increment is feasible if and only if the minimum value of the following optimization

problem is positive:

Min{r(S) — z(S)} @

s.t. S is a subset of E containing : .

Since the objective in (4) is a submodular function defined over the lattice of all subsets
of E containing z, the above minimization can be performed in strongly polynomial time
using the ellipsoidal approach, provided that r is given by an appropriate oracle and is
rational-valued, [7].

As is apparent from the above bounds, the number of calls to the oracle in the greedy
algorithm in (8], depends on the value r(E). Thus, this number of calls is not strongly
polynomial. This might be a disadvantage if we want to use the greedy algorithm to prove
that certain instances of (3) are solvable in strongly polynomial time.

We will show in this note that the decomposition algorithm in [4,5,6] can be imple-
mented in polynomial time where the number of calls to an oracle is independent of the
function r, and is only O(n?). We will then use this result to conclude that the special
case of (3) where each function f; is quadratic, is solvable in strongly polynomial time.

The following is the description of the decomposition algorithm in [6] which solves the
resource allocation problem and its discrete variation. To simplify the presentation it is
assumed, as in [6], that the function r is both submodular and monotone, and that each
function f; is concave and strictly increasing. (See the remarks at the end for a discussion

of these assumptions.)

Decomposition Algorithm.

Step 1. Find a solution y of the single constraint problem

MaXij(l'j)
i=1
s.t. z(E) < r(E)
T € Rf .
Step 2. Find a maximal vector v in F' satisfying v < y.
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Step 3. Find E;, the subset of E, defined by
E, = {i € E| there exists no positive real a such that v + ae; is in F} .

Let E; = E\E;.
Step 4. If E; = FE then stop: y is an optimal solution, otherwise contintie with Step 5.
Step 5. Find a solution z! to the following problem
Max > fi(z;)
JEE,
s.t. 2(S) < r(S) for all S C Ey

xERf‘ .

Step 6. Find a solution z? to the following problem
Max Y fi(;)
JEE,
st. z(S) < r(SUE;)—r(Ey) forall SC E,

T € Rf’ .
Step 7. Define the vector z € F' by setting
z} ifie F
T =
ifi € By,
fore=1,...,n.
z is an optimal solution.

The validity of the decomposition algorithm for solving (3) under the above assump-
tions is demonstrated in [6]. We now analyze its complexity. It is obvious that the al-
gorithm iterates at most 2n + 1 times. Let 77 denote the number of operations needed
to solve a single constraint problem as in Step 1, and let 7, denote the number of oper-
ations required to perform one pass through Steps 2 and 3. Thus, the complexity of the
decomposition algorithm is O(n(T; + T2)). To estimate T, we let G denote the number
of operations needed to minimize a submodular function over a lattice family. We show

that T, = O(nG). Starting with Step 2 we need to find a maximal vector v in F such that

v < y for a given vector y.



Define v° to be the zero vector in RE. Fori=1,...,n, let

a; =Minimum{r(S) — v*~}(S)}
st. SCFE and 1€ S.

Set 7

bi = Minimum[ai, yi]
and

vt =1 + b;e; .

It is easy to see that the vector v™ is a maximal vector in F' satisfying v™ < y. As noted
above the effort to find a; is G. Therefore one pass through Step 2 of the decomposition
algorithm takes O(nG) time. Turning to Step 3, we note that an index : is in E; if and

only if the following minimum is positive,

Minimum{r(S) — v(S)}
st. SCFEF and 1€ 5.

Therefore, a single pass through Step 3 also consumes O(nG) time. We now conclude
that the decomposition algorithm takes O(nT; + n?G) time to solve (3) or its discrete
variant. It is known that for the discrete case Ty = O(nlog(r(E)/n)) [3].

To demonstrate the usefulness of the decomposition algorithm consider the quadratic
case in which each function f; is quadratic. The existence of a strongly polynomial algo-
rithm to solve this case is mentioned in [9] as an open problem. It is known that for the
quadratic case T} = O(n) for both the discrete and the continuous cases [1,10]. Since the
bound G is strongly polynomial in general [7], it follows that the quadratic case can be
solved in strongly polynomial time, O(n? + n%G) = O(n®G).

Remarks. We have assumed above that the set function r is monotone and that the
concave functions fj, j = 1,...,n, are strictly increasing. It is already noted in [6] that
the latter assumption can be removed without affecting the complexity bound. If r is

not monotone we can easily monotonize it by again applying the minimization in [7]. For
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example, in the single constraint problem of Step 1 we have to replace r(E;) by rmon(E)

where the latter is defined by

Tmon(£1) = Minimum{r(S)| E; CSC E}.

Computing the above minimum amounts to minimizing a submodular function over
the lattice of subsets containing E;. We can easily verify that this additional effort for

monotonization also does not affect the complexity bound.
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