MANAGEMENT SCIENCE
Vol. 23, No. 3, November, 1970
Printed in U.SA.

AN APPLICATION OF Z-MATRICES TO A CLASS
OF RESOURCE ALLOCATION PROBLEMS*

ARIE TAMIRY

This study focuses on allocation problems that have some of their constraints defined in
terms of Leontief input-output matrices, known as Z-matrices. A few properties of these
matrices are discussed and then applied to achieve a possible reduction in the dimensionality
of the resource allocation models. An allocation problem of the above nature is the subject of
the recent work of Luss and Gupta [7], who were concerned about optimal allocation of
marketing efforts among substitutional products distributed in different sales territories. The
reduction procedure is then applied to their model to yield several extensions.

Introduction

In this study we discuss a few properties of Z-matrices and then apply them to
achieve a possible reduction in the dimensionality of a certain class of resource
allocation models. A problem of this nature, which has motivated this study, is the
recent work of Luss and Gupta [7], who were concerned about optimal allocation of
marketing efforts among substitutional products distributed in different sales ter-
ritories.

Square matrices with nonpositive off-diagonal elements, known as Z-matrices, have
been studied extensively in the literature in both applied and theoretical aspects. To
name a few we mention the pioneering work of Leontief [6] who applied the class of
Z-matrices and the generalization, by now recognized as Leontief matrices, to
interindustry input-output models. Dantzig [3], studying linear programs, defined by
block diagonal and triangular Leontief matrices, discovered that their special structure
leads to a special computational procedure which is more efficient than the ordinary
generalized simplex method. For further applications in the context of input-output
studies the reader is referred to Gale [5]. Properties and characterizations of
Z-matrices as well as Leontief matrices have been provided by many researchers;
most of the known results appear in the survey by Fiedler and Ptak [4]. For more
recent results, primarily in the area of mathematical programming and complementar-
ity theory, we refer to Veinott [11], [12] and Cottle and Veinott [2]. Nonlinear
extensions of Z-matrices are studied by Tamir [9], [10] and Sandberg [8].

This study focuses on allocation problems that have some of their constraints
defined in terms of a Z-matrix and whose objective functions are increasing (isotone)
in each of their variables. Specifically, & resources are to be allocated among n

activities, (x;, X, - .., x,). The net “effectiveness,” z, of the ith activity on the
criterion function depends linearly on all activity levels. Using the following matrix
notation, z = (z,, ..., z,,)T, x=(xp,...,x,)T we consider the following allocation
model:

Maximize  f(z)
Subject to: g(x) <c, i=1...,k (D
z=Ax+b, z20,x2>0,

where A is a square Z-matrix and b is a given nonpositive vector of dimension . f, the
objective function, is an isotone (increasing) scalar function in the variables
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(zy,...,z,)and g(x) < ¢, i=1,...,k, express the constraint on the ith resource.
We assume that the resource requirements increase with the activity level, 1.e. g,(x) is
nondecreasing with x,, x,, . .., x,,.

We start with a description of a general procedure to reduce the dimensionality (i.e.
number of variables and constraints) of the above allocation problem. In particular, it
will be shown that it is sufficient to consider only those variables of the problem
associated with a principal submatrix of the Z-matrix A4, having all its principal
minors positive. We construct an equivalent formulation of (1) where the x variables
as well as the subset of the z variables not associated with the above principal
submatrix are omitted. In the next section we discuss a few properties of Z-matrices
and present the reduction theorem. The reduction scheme is then introduced. In the
third section we elaborate on an extension of the resource allocation model studied by
Luss and Gupta [7].

Z-Mattices and the Reduction of the Feasible Set

A square matrix with nonpositive off-diagonal elements i1s called a Z-matrix.
Furthermore if all the principal minors of a Z-matrix (2" — 1 in number) are positive,
then the matrix is said to be an M-matrix (M for Minkowski). The following notation
will be used throughout. Given an m X n matrix 4 = (ay), A > 0 (4 > 0), if a; >0
(a,.j>0)foralli,j,i=l,...,m,j=1,...,n.

Let A be an n X n Z-matrix, let b be a nonpositive vector of dimension n and
consider the polyhedral set defined by

z=Ax +Db, x>0,z>0. 2)

We present in this section a procedure to reduce the dimensionality of the feasible
region, based on the properties of the matrix 4.

We start by citing a result due to Gale [5, p. 298] and Veinott [11], whose
modification to the case of a Z-matrix is the following.

THEOREM 1. If A is a Z-matrix, then one can partition A, after suitably permuting its

rows and columns, so that
A= ( A A ) (3)
0 A,

where A, is a square M-matrix, A, is a nonpositive matrix and A, is a Z-matrix
satisfying x > 0 and A,x > 0 implies A,x = 0.

(It is understood, of course, that some of the submatrices in (3) may have no rows
and/or no columns, in which case they are omitted from (3).)

Supposing that 4 is partitioned as in (3) and given a nonnegative vector q, Veinott
[11] considered the following set

X(q)={x|(A‘ A)(x)=(‘l) ;x=(x‘,x2)T>O}
0 A, J\ x q

and observed that X(q) is not empty if and only if ¢ = 0. It is also shown in [11] that
if x = (x!, x»7 is an extreme point of X(q), then x* = 0.
Considering the polyhedral set defined by (2), we rewrite it as

0 4,/\x? 22— b
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Thus the above results imply that a feasible solution exists if and only if z2 = b? = 0.
Further it will now be demonstrated that the monotonicity assumption on the
resource requirement functions g(x), i=1, ..., k, implies that we may also set
x*=0in (1).

To see this, define the region X *(q) = {x | Ax > q, x > 0} where 4 is the above
Z-matrix and q=z —b > 0. It is shown in [2], [10] that if X * (q) is nonempty it
contains a least element, X, (ie. X € X " (q) and x < y for all y € X*(q)) and
X(Ax — q) = 0. It is then easily verified that the Z-property of 4 and the nonnegativ-
ity of q imply that AX = q. Furthermore, the minimality property of X yields X = 0.
Now, let (x, z) be a feasible solution to (1), then the monotonicity property of
gi(x),i=1,...,k, allows one to focus only on solutions of the form (X(z), z) where
X(z) is the least element of {x | Ax > z — b, x > 0).

Observe that if 4 is partitioned as in (3), then for a given z >0 X(z)=
(47 '(z" = b, 0)7, provided z* = b> = 0 and 4, is not vacuous. (If 4, is vacuous x(z)
is the zero vector.) Assuming now that 4, is known, then (1) can be reduced to the
following equivalent program

Maximize f(( 2! ))

—17 1 1
Subject to: gi((A' (z _b)))<c,., i=1,...,k, @
0
z'>0.

In order to reduce (1) to its equivalent form (4) one has to find 4, which is some
principal submatrix of the original matrix 4. (Note that the representation (3) assumes
possible permutations of rows and columns.)

To find A, we assume that A4 is given in its original form. Then following Gale 5, p.
298] and Veinott [11] we observe that 4, is the principal submatrix of 4 determined
by those indices i € {1, ..., n} for which {x | Ax > ¢, x > 0} is not empty (e, is the
ith unit vector).

Neither Gale nor Veinott elaborate on a procedure to find the matrix 4,. Of course,
it follows from their works that one can apply any linear programming algorithm to
test whether the sets X(e), i =1, ..., n, are nonempty.

We focus now on the sets X(e¢,) and X ™ (e;) and show that the nonemptiness of
these sets is verified in at most n pivot operations of Phase I of the simplex procedure,
provided that A4 is of order n.

We start with the following lemma.

LEMMA. Let A be a Z-matrix and q > O, then if X * () is nonempty it contains a
least element which is the only extreme point of X * (q) and X(q).

Proor. The existence of a least element, X, satisfying AX = q 1s discussed above.
Also note that X is an extreme point of both X(q) and X " (q). Let y # X bein X * (q).
Then the minimality of X yields 2y — X > 0. Also A2y — X) > 2q — q=q. Hence,
y = 42y — X) + § X implies that y is not an extreme point. A similar argument shows
that x is also the unique extreme point of X(q).

To test for the feasibility of X(q), q > 0, the system of equations Ax =q is
augmented with the nonnegative artificial variables w to yield Ax + w = q. Using the
w variables as the starting feasible basis, the feasibility of X(q) is examined by
minimizing the sum of the artificial variables on the set {(x, w) | Ax + w=¢q, x > 0,
w > 0}. To prove that Phase I yields the solution in at most n pivot operations it is
sufficient to show that if an x variable enters the basis 1t will remain basic and not be
pivoted out.
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Recalling that an artificial variable is omitted from the simplex tableau when it
becomes nonbasic, it is sufficient to prove that no two x variables can have positive
coefficients in the same row of the tableau. The latter is clearly satisfied since 4 is a
Z-matrix and so is any matrix obtained from 4 by a pivot operation. Hence, the proof
is complete.

We also note that Phase I will also test the feasibility of X * (q) in at most n pivot
operations. This i1s implied by observing that the slack variables corresponding to
Ax > q will always be associated with nonpositive columns and thus will not enter the
basis.

Finally we comment that by pivoting out the artificial variables from the optimal
solution in the presence of degeneracy, Phase I finds an extreme point of X(q) (and
X *(q)) provided nonemptiness. By the lemma this extreme point is the least element.

The above discusston is now summarized. ’

THEOREM 2. If A is an n X n Z-matrix and q > 0 then Phase I of the simplex
method tests the feasibility of X(q) and X * (q) in at most n pivot operations and yields
the least element if feasibility exists. '

Instead of using the regular Phase I of the simplex procedure to test the non-
emptiness of X (e;) we suggest using the algorithm, due to Chandrasekaran [1], for
finding a complementary solution to the linear complementarity problem defined by a
Z-matrix. (The linear complementarity problem defined by a square matrix 4 and a
vector q is to find x > 0 such that Ax + q > 0 and x(4x + q) = 0.)

As shown in [10], Chandrasekaran’s algorithm, when applied to a Z-matrix 4,
yields the least element of the feasible region, which is also a complementary solution.
Hence, it can be used to verify whether {x | 4x — ¢; > 0, x > 0} is nonempty.

If 4 is an n X n Z-matrix Chandrasekaran’s scheme finds the least element by
solving a sequence of linear equalities. In fact, it requires (at most) the inversion of n
nested principal submatrices. Thus this algorithm is of the polynomial type (i.e.
number of elementary operations is polynomial in »).

In fact, upon examination of Chandrasekaran’s procedure when applied to X * (q),
q > 0, one concludes that it is simply a modified Phase I procedure. Instead of
introducing a single basic variable at each iteration, as done by the regular Phase I
method, Chandrasekaran’s scheme allows simultaneous pivoting on a set of variables.
Thus we suggest applying the latter for determining the M-matrix 4, in the partition
3).

A final comment is in order. Chandrasekaran’s algorithm finds the least element of
X *(q) in at most n pivots for any q (without any sign restriction on its components).
But this property is not satisfied by the regular Phase I procedure as illustrated by the
following example:

1 0 0
A=} 0 3/4 0 | and q=| 2
-1 —1/2 1/8 -1

An Application to a Marketing Effort Allocation Model

This section extends a model of allocation of marketing effort among substitutional
(or neutral) products, recently discussed by Luss and Gupta [7]. In particular, it is
shown that the assumptions on the substitutionality factors between the different
products can be relaxed without affecting the solution procedures.

We adopt the notation used in [7]. ,

Denote: x;: marketing effort allocated for project j in territory i, j=1,2,..., P,
i=1,2,..., N, where N denotes the number of territories and P the number of

products.
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B: total budget available.

R: total sales.

It is assumed that the sales of each product depend on the marketing effort spent
on all the products in the same territory. Since the products are assumed to be
substitutional (or neutral) the effective effort for product j in territory i will be defined
by the following linear relationship:

P
Zj = X; — 2 h,.jkxik + bij
iy
where A, are nonnegative substitutionality factors and b; is a nonpositive parameter
indicating the exogenous substitutionality effect. The latter can be interpreted as the
substitutionality effect introduced by competitors promoting products in the same
territory.
If Q;(z;) denotes the sales response function of product j in territory i, then the
multiterritory-multiproduct allocation model is as follows:

N P
Mgz_lXR = > 2 0,(z;)

i=1j=1
NP
Subjectto > X x; < B, :
i=1j=1 (5)
P
Zy=x,— X hyexy + by,
k=1, k # j
;> 0,2,>0,  i=12...,Nj=12...,P.

The sales response functions, Q,(z;), are assumed to be increasing with z;. Note that
this model falls within the framework of the general allocation model (1), to which the
reduction procedure is applicable. While dealing with techniques to find the optimal
allocation, Luss and Gupta concentrated on the special case where only two substitu-
tional products were available. To present their solution method for this case they
imposed some assumptions on the substitutionality factors, hy,. It seems that their
assumptions eliminated some possible economic situations, as well as technical
difficulties which may arise in dealing with a general but realistic set up.

Here we consider a more general model by relaxing some of their assumptions as
well as by introducing an exogenous substitutionality effect. Using the results on
Z-matrices presented in the preceding section, it will be shown that with no restric-
tions on the nonnegative factors 4, the nonnegative variables x; can be eliminated
from the allocation problem, possibly together with some other constraints, to yield a
separable optimization problem in the remaining nonnegative variables z;. The
reduction procedure that we use will also indicate whether any marketing effort
should be made.

We start by observing that the linear equations in (5) can be written as a block
diagonal Z-matrix of order PN. There are N block matrices (one for each territory),

each of order P. Writing z;, = (z;y, . . -, z;p)", X, = (X;p5 - - - » Xip) s by =(byy, - - -, bp)T
and
1 —hy, T —hap
—ho K i — higp
A, = 1
— hipy 1
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the block corresponding to the ith territory is given by z, = A,x; + b, where 4, is a
Z-matrix of order P. We concentrate now on the ith territory and show how to
eliminate the variables x; = (x,;, .. ., x;p) (and the corresponding nonnegativity con-
straints) from the allocation problem. If all the principal minors of A4, are positive then
A;”! is nonnegative (see [4]) and the variables x, can be eliminated using x,
= A '(z; — b). If 4, is either singular or 4,”' $0 we apply the reduction procedure. If
after applying this scheme the set of remaining variables is empty, (i.e. if the
corresponding M-submatrix in the partition (3) is empty) then we conclude that no
marketing effort should be spent in the ith territory under the current circumstances.
If this is not the case then the remaining variables, say I, where |I,] < P, are associated
with a principal submatrix of 4;, B; of order |/}, that has positive minors. Denote the

remaining variables and constants by x/, z! and b; respectively. We then can reduce

(5) to:
N
Maximize >, Q,(z;)
i=1j€l

N .

Subject to: > e'B,”'(z} — b!) < B, (6)
i=1

z' >0, i=1,...,N,

1

where I, is the set of variables not eliminated by the reduction procedure in territory i,
and e’ is the vector of dimension |I;| all of whose components equal 1. Efficient
solution procedures for (6) are discussed in [7].

Finally several remarks are in order. First we note that in the general set up (1), one
can also consider substitutionality between products allocated in different territories.
In this case the block diagonal structure is destroyed but the reduction procedure is
still applicable to the matrix 4.

We have observed that if for all territories 4,”' > 0, then we simply eliminate all
variables x; by using the relations x, = 4,”'(z; — b,). Sufficient conditions on Py
ensuring the nonnegativity of 4,7 ' for all territories for the case of 2 and 3 products
are provided by Luss and Gupta [7]. Characterizations of M-matrices given in [4] can
be used to extend their result to the general case. An economic interpretation of the
mathematical conditions also follows. Specifically, we show that a sufficient condition
for 4,7 ' > 0 is that for each product j the marginal cumulative substitutionality effects
of the rest of the products, 3, 4, 1s smaller than the direct marginal effect of the
jth product on the effectiveness measure of this product. (In this model this marginal
effect is normalized to 1.)

To show that

P

1= X hy >0 forallj,j=1,...,P, (7
K

implies the nonnegativity of 4,”', we let x be a vector of dimension P all of whose

components equal 1. Then (7) yields 4;x > 0. As shown in [4] the latter condi-

tion implies 4,7' > 0. Observe that (7) is satisfied if hy <1/(P —1) for all

jyk=1,...,P.

Finally we note that if there are no neutral products in the ith territory (i.e. all
products are substitutional and A, > 0), then either 4 71> 0, or else no effort should
be spent in that territory. This is observed from the partition (3), which implies that if
A contains no zero elements, then either 4, or A4, is vacuous.
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We close with a comment concerning the linearity of the constraints in (5). It seems

that the linearity assumption used in defining the effectivity measures, z;, might be
found to be very restrictive in the effort to obtain useful results. Recently, (see [8], [9],
[10]), experimental nonlinear extensions of the Leontief input-output system have
been set up. These models have a special structure which can be exploited to obtain
efficient solution techniques. Further, many properties of the linear model are
satisfied by the nonlinear model as well. It is believed that the proposed models will
be more applicable to real situations.'

! The author would like to thank a referee for calling his attention to the partitioning result of Gale [5]

and Veinott [11].
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