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Minieka and Hakimi et al. considered the problem of locating a tree-shaped facility of a
given length in a tree network, with the objective of maximizing the sum of node
distances from this facility. They stated the complexity of the model as an open prob-
lem. We prove that it is NP-complete and provide a pseudopolynomial time algorithm.

Let T = (V, E) be an undirected tree with node set V ={v;,. . . ,v,}and edge
set E. Each edge has a positive length and is assumed to be rectifiable. We refer
to interior points on an edge by their distances (along the edge) from the two
nodes of the edge. Let A(T) denote the continuum set of points on the edges of
T. The edge lengths induce a distance function on A(T); for any x, y in A(T),
d(x, y) will denote the length of the unique path connecting x and y. Also, for
any subset Y C A(T), d(x, Y) = Infimum {d(x, y) | y € Y}. A(T) is a metric
space with respect to the above distance function.

A subset Y C A(T) is a subtree of T if Y is both connected and closed. Since
the edges are assumed to be rectifiable, we view a subtree Y as a finite (con-
nected) collection of partial edges. Each partial edge corresponds to a subinter-
val of the interval representing that edge. We define L(Y), the length of Y, to be
the sum of the lengths of its partial edges. A subtree is said to be discrete if all
its (relative) boundary points with respect to the distance function are nodes of
T. It is almost discrete if at most one of its boundary points is not a node.

The following (obnoxious) location problem has been considered by Minieka
[4] and Hakimi et al. [2]:
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Let B be a positive real number:

Maximize D, d(v;, Y)
i=1

(1)
s.t. L(Y)=B

Y is a subtree of 7.
The complexity of this location model is stated as an open problem in [2, 4].

Minieka [4] has proved the following property which implies that the recogni-
tion version of (1) is in NP.

Lemma 1. There exists an optimal solution subtree to (1) which is almost
discrete.

We prove that the above location problem is NP-hard by reducing the (NP-
complete) partition problem to (1).

The Partition Model. Given positive integers a;, . . . , a,, does there exist
SC{l,2,...,n) such that 2,c5 a; = A/2, where A = 2/~ a;? (without
loss of generality a; = A/2,i=1,. . ., n).

Consider the star tree T = (V, E) in Figure 1. T has 2n + 1 nodes: the central
node, and two more nodes on each ‘‘spoke’’ i,i =1, . . . , n. The length of
each of the two edges on spoke i, i = 1,. . . , nis a;/2.

Proposition 2. There exists a solution set S C {1, . . . , n} to the partition

problem, if and only if there exists a subtree Y of T in Figure 1, with

L(Y) = %‘, > dw;, Y) = %A.
i=1

a/2 az/2

FIG. 1. The star tree.



TREE-SHAPED FACILITY LOCATION PROBLEM OF MINIEKA 517

Proof. Suppose first that 2;c5a; = A/2 for some S C{1,. . . , n}. Consider
the subtree Y consisting of all spokes i € S. Then, L(Y) = A/2 and

S dw, V) =33 a=3A.
i=1

t$S

Next, suppose that Y is some subtree of length A/2 with node distance sum
greater than or equal to $A. Since a; = A/2,i =1, . .., n, Y contains the
central node of T in Figure 1. Fori=1,. . . , n,letx; denote the length of the
subpath of Y that intersects spoke i, and let f;(x;) denote the sum of the dis-
tances of the two nodes on spokeifrom Y. Fori=1,. . . , n, fi(x;) is aconvex
function of x;, as illustrated in Figure 2.

Using Lemma 1, we assume without loss of generality that there exists an
index k such that x; € {0, a} for all i # k. If x, € {0, a;}, define S = {i | x; = a;} to
note that 2;c5 a; = A/2. Thus, suppose that x; = ta;, where 0 < t < 1. We will
obtain a contradiction.

Define S = {i | x; = a;}. Then,

> a; + tay = % )
ies
5 2 a; + filtay) == A. 3)
tiS
i+k
fi(zi)
a; 4+
¥ 1
5 a; z;

FIG. 2. The function fi(x;).
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Combining the convexity property, fi(ta;) < 3(1 — t)a,, with (3), we have

E( _ _ > 3= 3
54 > a ar) + 5 (1= Dax > 7 A,

ies

which is equivalent to

%—Eai—tak>0. @)
i€s
However, (4) contradicts (2) and the proof is complete. [ ]

We note that if the maximization in (1) is replaced by a minimization, the
problem can be solved in polynomial time as exhibited in [4]. However, if the
selected subtree is required to be discrete, the minimization and the maximiza-
tion versions of (1) are NP-hard, [2].

Having shown that the location model (1) is NP-hard, we next present a
pseudopolynomial time algorithm solving the model in O(B?n log n) time. We
assume that the edge lengths and the real parameter B in (1) are all positive
integers.

To solve (1), we note from Lemma 1 that there is an optimal subtree contain-
ing a node of 7. Thus, it suffices to solve a set of n subproblems where in each
subproblem the subtree to be selected is restricted to contain some specified
node. We will apply a more sophisticated decomposition approach that yields a
better complexity bound. It is more convenient for this approach to consider
the following weighted version of (1). Suppose that eachnode v;, j=1,. . . ,
n, is associated with a positive weight w;. Given a positive real B,

n

Maximize > wid(v;, Y)

i=1

(5)
s.t. L(Y)=B
Y is a subtree of T.
Foreach j=1,. . . , n, the restricted subproblem corresponding to node v; is
Maximize 2 wid(;, Y)
i=1
s.t. L(Y)=B (6

Y is a subtree of T

containing v;.
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As mentioned above, an optimal solution to (5) can be obtained by solving
the n subproblems defined by (6). However, with the decomposition approach,
we solve only one such subproblem on the original #» node tree T = (V, E) and
then recursively solve (5) on two subtrees of T, say Ty = (V,, Ey) and T, = (V3,
E,), which have only one node in common, and |V,| < %|V|, |V,| = 3| V|. Thus,
we decompose a problem on an # node tree into two subproblems on a tree with
at most $n nodes.

We focus on (6) and assume without loss of generality that j = 1. To facilitate
the discussion, we root the tree T at node v;. For each node v € V, let D(v) be
the set of all nodes « having v on the unique path connecting them to the root
v;. D(v) is the set of descendants of v. We also define S(v), the set of sons of v,
to be the set of descendants of v that are connected to v with an edge. [Note
that v is in D(v) but not in S(v).] If S(v) is empty, v is called a leaf of the rooted
tree 7.

To solve (6) on T, we recursively solve a sequence of subproblems defined on
certain subtrees of T, starting with the leaves of T. To define these subtrees,
consider a node v and suppose that S(v) = {v(1), v(2), . . . , v(s(v))}, where
s(v) =|SW)|. Foranyt =1, . . . , s(v), let T(v, t) denote the subtree induced
by the nodes in {v} U N(v, t), where N(v, t) = D(v(1)) U - - - U D(v(¢?)) (see
Fig. 3).

For each nonleaf node v, t = 1, . . . , s(v), and integer x, define

S, t, x) = Maximum > wid(;, Y)

v;EN(v,t)

s.t. L(Y)=x
Y is an almost discrete subtree of T(v, ?)

containing v.

The solution to (6) is then given by f(vy, s(vy), B).

T(v,1)

FIG. 3. The subtree T(v, ?).
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To introduce the recursive equations for solving (6), we need another auxil-
iary function. For eachnode v, t =1, . . . , s(v), and integer x, let T~ (v, t) be
the subtree induced by the nodes {v} U D(v(t)), and let

g, t, x) = Maximum > wid;, Y)
v ED(())
s.t. L(Y)=x 7

Y is an almost discrete subtree of T (v, t)

containing v.

We now define the recursive equations. First, for any nonleaf node v and
1 =t=s)),

E;() wi(d(vj, v) — a) if a < d, v(t))
g, 1, a) = {7 ®)

fw(), s(v(t)), a — d(v, v(t))) if a > d(v, v(t)).

[a is an integer with 0 < a =< L(T (v, t)).] Next consider the recursive equations
for f(u,t,a). Ift =1,

flv, 1, a) = g(v, 1, a). &)
Let t > 1. Then, for every integer a, 0 =< a < Min(B, L(T(v, t))),

f(v, t, a) = Maximum {f(v, t — 1, b) + g(v, t,a — b)}. (10)
0=<b=
bSL(T(u,f—l))
a—b=L(T (v,1))
b integer

[We note that Lemma 1 provides the justification for restricting the variable b in
(10) to integer values.] To compute the complexity of the above procedure to
solve (6), it will suffice to focus on (10). The effort to evaluate f(v, ¢, a) for a
specified triplet (v, t, a) is O(a). Thus, to compute f(v, ¢, a) for all 0 < g <
Min(B, L(T(v, t))) for every node v and every integer ¢, 1 <t < s(v), the total
effort is

o (BZ > s(u)) = O(B?n).

vEV

If we solve (6) for each node v;, we obtain the solution to (5) in O(B?n?) time.
Next we introduce a decomposition scheme that will reduce this complexity
bound to O(B?n log n):
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We first find a centroid node of the given tree, say node v; [3]. The centroid
decomposes the given tree T = (V, E) into two subtrees T} = (Vy, E})) and T, =
(Va, Ep) such that ViU V, =V, V, NV, = {v;} and |V, | = §|V|, k = 1, 2. The
effort to find a centroid of a tree is linear in |V]|.

After we locate a centroid v; of T, we solve the subproblem (6) corresponding
to v; in O(B?n) time using the above dynamic programming scheme. The solu-
tion obtained is a best solution to the original problem (5) among all subtrées
containing v;. Thus, if an optimal subtree does not contain v;, it must be
contained either in T or in T,. Therefore, it is sufficient to solve recursively the
following two subproblems:

1. Consider the subtree 7T} = (V;, E;). Redefine the weight w; of the centroid
v; by

Wj = Z Wi

wEV,

and

Maximize Y, wid;, Y)

v;E V]

s.t. L(Y)=B

Y is a subtree of T;.

2. Consider the subtree T, = (V,, E;). Redefine the weight w; of the centroid
v; by

Wi = E Wi

U E Vl

and

Maximize > wid(;, Y)

viEV;

s.t. L(Y)=B
Y is a subtree of T>.
We now compute the total effort required to solve (5) with the recursive

decomposition scheme. Let g(n) denote the time needed to solve (5) on a tree
with n nodes. Since we solve one restricted subproblem for the centroid of the n
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node tree and two problems on trees with at most 3n nodes, we obtain the
following inequality:

q(n) = cB?n + q(ny) + q(ny), (11)

where c is a constant independent of n and B, n; < 3n, n, < 3n,and n, + n, =
n + 1. It is well known [1] that a solution to (11) satisfies g(n) = O(B?n log n).

To conclude, we have shown that the problem of locating a tree-shaped
facility of length B in an n node tree network, with the objective of maximizing
the sum of node distances from this facility, is NP-hard. However, there exists
an O(B?n log n) dynamic programming decomposition algorithm for this prob-
lem. We also note that the latter algorithm can be used to develop a fully
polynomial e-approximation scheme for the problem. The technical details will
be discussed elsewhere.
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