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Structured p-facility location problems on the line solvable
in polynomial time
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Abstract

In this paper we give an O( pn?) algorithm for solving the p-facility location problem on the line when the cost of serving
any customer is a unimodal function of the location of the serving facilities. One application of our model is a generalization
of the economic lot-sizing problem with backlogging allowed. © 1997 Elsevier Science B.V.
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1. Imtroduction

We consider the p-facility location problem on the
line, where we must select no more than p sites for fa-
cilities to serve customers located at » demand points.
There is a site-dependent fixed cost associated with
locating facilities as well as a cost of serving each
customer from a given facility site. The objective is
to minimize the cost of locating facilities and serving
customers. The special structure we consider involves
a unimodality for the costs of serving customers. In
particular, we assume that for two facilities, say j
and k, if facility j lies between the location of a cus-
tomer and facility k, then the cost of serving the cus-
tomer from j is no larger than the cost of service from
k. One application of our model is a generalization
of the economic lot-sizing problem with backlogging
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allowed. For this specially structured problem we give
an O(pn?) algorithm. We also consider two special
cases of the model which lead to O(n?) solution meth-
ods. Although we cannot use the solution procedure
of Hassin and Tamir [6] for our model, our solution
procedure is similar to theirs in that we make use of
the dynamic programming results of Aggarwal et al.
(1], Wilber [8], Eppstein [3] and Galil and Park [4] to
obtain our complexity bounds.

2. The model

Let ¥ ={v,...,0x}, i <vp< .-+ <wp, be a set of
points on the real line, representing the respective lo-
cations of n customers. We will refer to the customer
located at v; as the ith customer. The p-facility loca-
tion problem is to locate at most p service facilities at a
number of potential sites in ¥ to serve the n customers
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at the various locations. We assume that the facilities
are uncapacitated, and can serve any number of cus-
tomers. The objective is to minimize the fixed costs
of opening facilities plus the variable costs of serving
the customers by the facilities. We assume that each
customer will be served by one facility. Suppose that
the fixed cost of opening a facility at the potential site
v, i=1,...,n,is f;. Since the facilities are uncapac-
itated and provide the same services, we may assume
that at most one facility is established at any site. For
each i=1,...,n, the variable cost of serving the ith
customer depends on the location of the facility as-
signed to serve that customer. For example, we would
like to account for the (likely) possibility that a cus-
tomer cannot be served by facilities located at certain
locations. Specifically, fori=1,...,n; j=1,...,n, we
let ¢;; denote the variable cost of serving the ith cus-
tomer by a facility located at v;. (If the ith customer
cannot be served by such a facility ¢;; = oc.) We as-
sume that the fixed costs of opening facilities and
the variable costs of serving customers are all non-
negative.

There are many special cases of the above problem
discussed and solved in the literature. For example,
the case where the variable costs are monotone func-
tions of the distance between the customer and the
location of his server is solved by Hassin and
Tamir [6] in O(n?) time. (If these functions are linear
the complexity bound reported in [6] reduces to
O(pn).)

On the other hand, the above cost structure is
too general to ensure polynomial solvability of
the p-facility model. Consider the special case where
each customer is associated with a pair of sites, and
can only be served by a facility located at one of these
two sites. It is easy to see that if the cost of open-
ing a facility is constant and independent of the site,
and if the service cost is zero, the problem is equi-
valent to the well known Node Cover problem on
general graphs. The latter is an NP-complete prob-
lem [5].

In the particular application that motivated our
study the variable costs depended on both the distance
between the customer and his server, and the direc-
tion of travel. (E.g., traveling downhill might be less
expensive than going uphill.) Thus, we assume
the following unimodal cost structure which gener-
alizes the cost structure assumed in [6]: For each

i=1,...,n,

for j=i,....,n—1,

for j=2,...,i (1)

Cij SO g
Cij SCij-1

The unimodal structure ensures that a customer will
be served by either the closest opened facility to his
right or by the closest opened facility to his left, but
not necessarily by the closest of the two.

Another application of the above unimodal structure
is a variant of the economic lot-sizing (ELS) problem
with backlogging allowed where backlogging cost is
period-dependent. The classical ELS models utilize in
each period (see Aggarwal and Park [2], for example)
a backlogging cost function which is a function of
only the total backordered quantity in the period. Such
a backlogging cost is period-independent in the sense
that the backorders in a certain period are treated the
same regardless of which period they are backordered
for and how long they have been backordered. We note
that for such a period-independent backlogging cost
structure, there exists an O(z log n) DP algorithm [2]
to solve the ELS problem provided that the production,
inventory, and backlogging costs are linear functions.
It 1s not hard to extend this implementation to obtain
an O(pnlogn) algorithm to solve the ELS problem
with the additional constraint that no more than p
setup periods may be planned.

In a variant of the ELS model where our unimodal
cost structure is applicable, we assume that the back-
logging cost is period-dependent, i.e., it depends on the
period from which the demand is backordered and the
length of the backorder. For example, we may assume
that the per unit cost of backlogging period i demand
to period j is P; = r+ f;(j — §)*; where o; >0, f; >0,
and where » is the unit production cost (we assume
production cost is the same in all periods). The term
B:(j — i)* reflects a penalty cost for backlogging de-
mand in period i, which is increasing in the length of
backlogging. (In particular, if backlogging is not al-
lowed at some period /, we can model that by setting
fB;=0c.) Letting D; denote the demand in period i,
the total cost of satisfying demand in period / by pro-
duction in period j is ¢;; = F;D;. This cost structure
clearly satisfies (1).

We note that the solution procedure suggested by
Hassin and Tamir [6] is not always applicable to the
problem with unimodal cost structure, This is due to
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the fact that in the latter case it is not always true that
a customer is served by the closest open service facil-
ity. However, we will show that the unimodal model
can also be solved efficiently by using an appropri-
ate dynamic programming recursion. Specifically, we
will present an O(pn?) algorithm for the unimodal
p-facility location problem. To ensure a finite solu-
tion value to the problem we assume that for each cus-
tomer i, there exists a site v; such that ¢;; + f; is finite.

3. The algerithm

Having assumed that v <v,< - <v,, we con-
sider the following sequence of subproblems. For
each j, j=1,...,n, and q, g=1,..., p, let P(J,q)
denote the problem of locating ¢ facilities in
{v},0j41,...,0a} in order to minimize the total cost of
opening the g facilities plus the total cost of serving
the customers j,j + 1,...,n by these facilities. Let
P'(J,q) be the restricted version of problem P(j,q),
where one of the g facilities has to be established
at v;. Let ¥ (j,q) and V'(j,q) denote the optimal
objective value of problems P(j,q) and P'(j,q), re-
spectively. In particular, the solution value to the
p-facility location model is given by V(1, p).

To simplify the notation we assume without loss of
generality that ¢; =0, for i=1,...,n. We now have
the following recursion for V'(j,q).

n
V/(j’ )= fj + Z Cijs
i=j

and for g >2,

<n

V'ii.q)=f;+ ;Min { (Z min{cijacik}>

+V'(k,q - 1)} .

For convenience, for each pair of indices ( j, k), j <k,
define

k
C(j,k) = Z min{c,-j, C,‘k}.
i=

Then, the above recursive equations can be rewritten
as

n
Vl(j, 1):]1 +Z C,'j
=)

and for g =2,
V'(j,g)=fj+ min {C(j,k)+ V'(ikg—1)}. (2)
J<k<n

The optimal solution value to the p-facility location
problem is given by

V(lz P)=m1n { V,(lap)>

J
L o V’””’)}}'

To evaluate the complexity of the algorithm we first
note that for each pair (J,k), it takes O(n) time to
compute C(J, k). Therefore, the marginal effort needed
to compute V'(j, q) for a pair (j,q) is O(n?). The total
computational effort to solve the problem amounts to
O(pr).

We now show how a lower-order solution proce-
dure is possible by taking advantage of the unimodal
structure. The approach is similar to that of [6],
making use of results in dynamic programming as
reported in [1, 3, 4, 8]. The improvement will follow
directly from the above results after we prove that the
matrix {C(j,k)} satisfies the concavity (supermodu-
larity ) property stated in the lemma.

Lemma 1. Let j,k,I,m satisfy 1<j<k<i<m<n.
Then,

C(j,m) - C(j,1)=Clk,m) — C(k, ). 3)
Proof.
C(j,my—=CQji, 1)

= ‘ZT min{cim, c;j} + 2/“, {min{cim, c;;}

i=1+1 i=j
—min{cr, ¢} (4)

C(k,m) — C(k, 1)

m !
= Y. min{cimcu} + Y {min{cim cix }
=141 ik

—min{ci/,cik}}. (5)

Foreach i, i=1{+1,...,m, the unimodality property
implies that ¢;; > ¢y, since j <k <! <i. Therefore, the
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first sum in (4) is greater than or equal to the first
sum in (5). Again, due to the unimodality property,
foreachi,i=,...,1, ¢in =ci. Therefore,

min{c¢im, c¢;;} — min{c;;,c;;} > 0. (6)

Thus, using (6), it follows that the second sum in (4)
is greater than or equal to S, where

/
S= 3" (min{cim,¢;j} —min{cy, ¢ }).
ik

Summarizing, to prove the lemma, it will suffice
to prove that S is greater than or equal to the second
sum in (5). In fact we will now prove that for each i,
i=k...,1

min{c,-m,c'ij} - min{c,-/,c,-j}
2 min{cim, cit } — min{ey, ey} (7

Consider an index i, i =k,..., 1.

Case 1: ¢;n <c;;. Combining this condition with the
unimodality property we have ¢;; < ¢ < ci;. Thus, (7)
is equivalent to

Cim + min{ey, cix } = min{cm, e} + ¢y, 8)

If ¢ = ¢y, then the unimodality implies ¢, 2 ¢ =
cit. In this case the left-hand side of (8) is equal to
Cim + i, while its right-hand side is equal to ¢ + ¢;/.
Thus, (8) is clearly satisfied. If ¢;; <cy, then the left-
hand side of (8) is equal to ¢, + ¢, while its right-
hand side is equal to min{c;,,cx } + cy. Again, (8) is
satisfied.

Case l: ¢;; <cjm. The proof follows from symmet-
ric arguments. Combining the condition with the uni-
modality property we have cy <c¢j; <. Thus (7) is
equivalent to

cij + min{cy, ey } 2 i + min{cy, cij}- 9

If ¢;;=cy, the left-hand side of (9) is equal
to ¢ +ci, while its right-hand side is equal to
min{cy,c;;} + ci. Thus, (9) is satisfied. If c¢;; <cy,
then the unimodality implies ¢;; <ci <c;;. In this case
the left-hand side of (9) is equal to ¢;; + ¢y, while
its right-hand side is equal to ¢y + ¢;. Again, (9) is
satisfied. This completes the proof of the lemma. [

We can now apply the results in [1, 3,4, 8] to the re-
cursion (2) defined above. Suppose that the parameter

q in (2) is fixed. For each pair (/, k) let
C'(jk)=C(.k)+ f; + V (kg —1).
With this notation (2) can be rewritten as
V()= min {C'(,K)}.

It is easy to see that the concavity property of the
matrix {C(j,k)} implies the concavity of the matrix
{C’(j,k)}. We can now apply Theorem 4.3 in [1], the
algorithm in [8], (which also applies to our model),
or the newer and simpler algorithms in [3, 4]. We
conclude that for each fixed value of g, | <g < p, the
total effort to compute V’(j,q) for all j=1,...,n, is
O(nT), where T is the effort needed to compute the
term C(j, k) for a given pair (J, k), (provided that the
sequence V'(j,q — 1), j=1,...,n, has already been
computed ). We have noted above that 7 = O(n). Thus,
the p-facility location problem with a unimodal cost
structure can be solved in O( pnT) = O( pn®) time.

Remarks

1. It has been mentioned above that the Node Cover
problem on a general graph is a special case of the
general p-facility location problem. The cost struc-
ture of the p-facility location problem associated
with the Node Cover problem can be viewed as
a very simple bimodal function. The costs associ-
ated with the two sites that can serve a customer
are zero, while the costs of the other sites are in-
finity. From this point of view, the unimodal case,
can now be regarded as a “maximal” case which is
known to be solvable in polynomial time.

2. We note in passing that the above p-facility lo-

cation problem with a unimodal cost structure can
be transformed into a simple p-covering problem,
where the 0/1 constraint matrix defining that prob-
lem has the row consecutive 1’s property. It is easy
to check that the general transformation suggested
by Tamir (see [7]), for converting p-facility loca-
tion problems into covering problems, will result
in the consecutive 1’s property for unimodal struc-
tures. The resulting covering problem has O(n?)
constraints. Therefore, the best known algorithms
to solve such covering problems yield complexity
bounds that are significantly inferior to the O( pn?)
bound reported above.
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3. When the bound on the number of facilities is in-
effective, e.g., n< p, the recursive equation can
be modified to be independent of the parameter
g. Accordingly, the running time of the algorithm
reduces to O(n?).

4. Special cases

In this section we briefly discuss two special cases
of the unimodal model to which the above algorithm
can be implemented more efficiently. The first case
is the one-sided model. Each customer can be served
only from one direction, and there is a penalty for no
service. Specifically, the customer set N = {1,...,n},
is partitioned into two groups, say N; and N,. If the
ith customer is in N, (¥,), then he can be served only
by a facility located to his right (left). There is a non-
negative penalty b;, if the ith customer is not served.
Using the above notation we have the following cost
structure:

If i isin My, then ¢; = b; for j=1,...,i — 1.
If i isin Ny, then ¢;j=b; for j=i+1,...,n.

We also assume without loss of generality that
cij<b; for j=1,...,n. We will show that the one-
sided model can be solved in O(n?) time. We have
already noted that the running time of the above al-
gorithm is O(pnT), where T is the time needed to
compute the coefficient C(j,k) for a pair of indices
(j, k). Thus, to obtain the O(n?) bound for the one-
sided model, we will show how to preprocess the data
in O(n?) time, so that any coefficient C(/,k) can be
computed in T =0(1).

For each pair of indices (j,k), j <k, define

k k
C](]9k): Z Ciks CZ(jak):: Z cij'
€N i=) €N, i=]

It is easy to see that for each k, the total effort to com-
pute C(/,k) for all j=1,...,k, is only O(n). Simi-
larly, for each j, the total effort to compute C,(j, &) for
all k =j,...,n, is also O(n). Therefore the total time
to compute C;(j, k) and Ca(j, k) for all pairs (j, k) is
O(n?). To see that any coefficient C(j, k) in the recur-
sion can now be obtained in constant time, we note that

To summarize, we have demonstrated that the total
time to solve the p-facility location problem when
the cost structure is one-sided is O(n?).

The second case that we consider is the case where
a service cost is a monotone function of the distance
between the customer and the serving facility. As men-
tioned in Section 2, this case has already been solved
in O(n?) time by Hassin and Tamir {6], using a dif-
ferent recursion, We will show that our algorithm will
yield the same bound. In view of the above, it is suffi-
cient to demonstrate that any C(/, k) coefficient can be
computed in constant time, after some O(n?) prepro-
cessing. For each pair (/, k), j <k,letx; = (v;+v )/2.
Suppose that v; and vy are two consecutive sites, where
facilities are located. Then for each i, i =,...,k, the
ith customer is served at v; if v; <xj; and otherwise it
is served at vy. Therefore, in this case
C(j,k)= 4 E cij + E Cik.

L <Xk i > X

In the preprocessing phase we compute the fol-
lowing expressions: For each pair (j,k), j<k, let
Ci(jik)= T cix, and let Cy(j,k)= T ci;. The
total effort to compute C(j,k) and C(j,k) for all
pairs (j,k) is clearly O(»n?). Also, for each pair ( j, k),
Jj <k, we compute the largest index i, j <i<k, such
that v; <xj. Denote this index by i(j,k). The total
effort to compute i(j,¢) for all pairs (j,¢) is clearly
O(n?). With the above notation we have

CU k)= Ca(),i(J, k) + Cr((j. k) + 1, k).

Therefore, the time to compute C(j, k) for any pair
(j,k), j<k, is constant. To summarize, the total time
to solve the p-facility location problem for the case
where the cost of serving a customer is a monotone
function of its distance to the server, is also O(n?).
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