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Let A be a nonnegative integer matrix, and let e denote the vector all of whose components are equal to 1. The pluperfect graph
theorem states that if for all integer vectors b the optimal objective value of the linear program min{e’x|{4x > b, x > 0} is
integer, then those linear programs possess optimal integer solutions. We strengthen this theorem and show that any
lexicomaximal optimal solution to the above linear program (under any arbitrary ordering of the variables) is integral and an
extreme point of { x|Ax > b, x > 0}. We note that this extremality property of mteger solutions is also shared by covering as

well as packing problems defined by a balanced matrix A.

perfect graphs * balanced matrices * integral extreme points

The pair (A, ¢) of an (m X n) integral matrix 4
and an integral n-vector c is said to be totally dual
integral (TDI) if

min{ ¢’x|Ax > b, x > 0}

= min{ ¢’x|4x > b, x > 0, x integer} (1)

for all integral b for which the linear program has
optimal solutions. '

Clearly, if (A4, ¢) is TDI, then the optimal value
of the objective of the linear program is integral
for all integral b for which it exlsts The converse
statement is not always true.

Let
0 1 1
A=|1 0 1| and c=(2,2,2),
1 1 O

then the optimal objective value of min{c¢’x|Ax >
b, x> 0} is integral for all integer . However,
(A,c)isnot TDL (Try 6=(1, 1, 1).)

[f we restrict our attention to rn .:iegative
matrices A and set ¢=(1,...,1) then the above

converse statement is true and is known as the
pluperfect graph theorem [1,2].

Theorem 1. Let A be an m X n nonnegative integral
matrix with no zero rows. For any integer b define

f(b)=rnin{ i leAbe,x>0}.

Jj=1

Suppose that f(b) is integer for all integer vectors
b. Then for any integer vector b there exists an
integer vector x° = x°(b) such that

°>0 and f(b)= ) x.

J=1

Ax° > b,

In this work we strengthen the above theorem
and show that any lexicomaximal optimal solution
to the linear program (under any arbitrary order-
ing of the variables) is integral and is an extreme
point of {x]Ax > b, x > 0}.

We discuss certain algorithmic implications of
this result and show how to find such an optimal
integer extreme point.
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Finally we note that this extremality property
of integer solutions holds also for covering as well
as packing problems defined by a balanced matrix
A.

To facilitate the discussion let IT denote a per-
mutation of (1, 2,...,n}. Given two vectors x,
y € R" we say that x is IT-lexicolarger than y if, for
some index i, Xp¢;y > Yy and xp ;) =y, for all
J<i

x is a I1-lexicomaximal vector in a set S if x is
in S and x is [I-lexicolarger than any y # x, y in S.
x is II-lexicominimal vector in S if —x is II-lexi-
comaximal in the set —S.

We will be concerned here with the case where
S is the set of optimal solutions to a linear pro-
gram. In this case we will say that x is a II-lexi-
comaximal (minimal) optimal solution.

It is well known that a II-lexicomaximal
(minimal) optimal solution is an extreme point of
the feasible domain of the linear program.

Throughout the paper 4.; will denote the j-th
column of a matrix 4. [a] ( a]) will denote the
smallest (largest) integer which is not smaller
(larger) than a.

Lemma 2. Let (A, c) be a pair of an (mXn)

nonnegative integral matrix A and an (n X 1) non-

negative integral vector c. Let K= {k|c, =1}.
Suppose that for all integer b, f(b), defined by

f(b)={min ¢’x|Ax > b, x>0},

is integer. (A is assumed to contain no zero rows so
that f(b) is well defined.) .

Let I1 be a permutation such thar 11 (1) eK for
i=1,...,|K}

Given an integer b define x° to be the Il-lexi-
comaximal optimal solution to

min {c'x|Ax>b,x>0}.

Then x° is an extreme point of {x|Ax > b, x >0}

and x} is integer for all k € K.

Proof. As noted above for any permutation II, a
[I-lexicomaximal optimal solution to a linear pro-
gram is an extreme solution.

Without loss of generality suppose that K =
(1,2,...,t}yand II(k)=k, k=1, 2,...,t. Further-
more, assume that for some r, r<t. x? is not
integral, while x is integral for 1 <

t r
<r-1.
Define y? as fullows

»W=0, 1<j<r yW=x). r+l<j<n
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y? clearly satisfies Ay® > b’, y° > 0, where
r—1 -
b'=b-) xj(»)A_j-[x?]A,,.
j=1
Furthermore
r—1

f(B) <y =ex®= % x0 - x?

j=1
<c'x%— Zx —[x2] +1.

Since f(b’) as well as
r—1
cx= Y x}) - [x?] +1
j=1
are both integral,
r—1
f(b)<e'x®— ij(-)—[x?]. )
Let y* be an optimal solution yielding f(b)
Define z° by
xj(-)-l—yj*, 1<j<r—-1,
[xl(‘)] +yr*’ j=r’

yj*, j>r.
z9 satisfies 4z°> b and z° > 0. By (2),
i
f(b)<c'z —f(b)+Zx +[x] <c'x —f(b):!
J= 2

Hence ¢’z° = f(b), and z° is an optlmal solu-;
tion. But z° is IT-lexicolarger than x — thus coni

k!

tradicting the supposition that x° is not integral. ®

The above lemma implies the followm&
strengthened version of the pluperfect graph thco':.
rem (Theorem 1).

Theorem 3. Let A be an (m X n) nonnegative m’i
tegral matrix with no zero rows. For any integer b,
define

f(b)=min{ i leszb,x>0}.

j=1

Suppose that f(b) is integer for all integer b'
Consider an integer vector b. Let I1 be a permum“
tion of {1,...,n) and let x,, be a Il-lexicomaxi
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opu'mal solution to

= { Y x|Ax>b, x> o}.

j=1
" Then x, is an integral extreme point of {x|Ax > b,
x>0}

~ Corollary 4. Let A satisfy the conditions of Theorem
j 3. Given an integer vector b, the solution to the

integer program

min { )3 x;|Ax > b
J

=1

x=>0,x integer}

is unique if and only if the solution to the linear

program

min / > x,|Ax>b,x>o}

L/

is unique.

Proof. Let x° denote the lexicomaximal optimum
solution with respect to the identity permutation.
If the linear program has more than one optimal
solution, there exists an optimal solution »° such
that y° > x? for some index r. Let IT be a permuta-
tion where II(1)=r. The Il-lexicomaximal opti-
mal solution x;; satisfies xp # x°.

We note that any matrix 4 that satisfies the
conditions of the above theorem must be a 0-1
matrix. Moreover, 4 is the node clique incidence
matrix of some m-vertex perfect graph, where rows
represent the nodes and columns correspond to
cliques [1,2]. The problem of finding an integer
vector x yielding f(b) can then be viewed as the
weighted clique cover problem on a perfect graph.
The latter problem is solved polynomially in the
seminal paper [4] by Grotschel, Lovasz and
Schrijver, where the input of the problem consists
only of the (m X m) node vs. node incidence ma-
trix and the vector b.

The algorithm suggested in [4] for solving the:

weighted clique cover can be schematically de-
scribed as follows:

0. Set z;=0,j=1,...,n.

1. Solve the linear program

min { Y leAx>b,x>O},

J=1

obtaining an optimal solution x*.
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Let J = {j|xf > 0}. :

2. Set z;<z;+ |x¥| for each jeJ. be<b~—
Lie ,[x JA

3. 1f x} — [x J =0 for each jJ stop, z is an
optlmal integer solution. Otherwise let r be
such that x* — [ x*| > 0. Go to 4.

4 Setz, <z, +1,b—b—A ,and goto 1.

Of course the main contribution of [4] is the
polynomial algorithm to solve the linear programs
defined in Step 1. As mentioned above, in their
algorithm A is not listed explicitly, and the opti-
mizing vector x* will have at most m positive
components, i.e., |J|<m

Grotschel et al. [4] use a direct perfect graph
argument to validate the above scheme (in particu-
lar the rounding up in Step 4). .

A different justification can be obtained by
Theorem 3 without referring to the underlying
perfect graph. The noninteger vector y, defined by

{x —|xr|. JeJ,

%o, jel,

optimally solves the linear program with b —
Y,es|X1]|4.; as the r.hus. Thus, if y,> 0, it follows
from Theorem 3 that there exists an integer opti-
mal solution to the latter problem with the r-th
component being at least 1. This validates Step 4
and the above scheme in general.

The above scheme will (polynomially) generate
an optimal integer solution, provided that some
polynomial routine (in terms of the length of the
input used to define the problem) is used in Step 1.
However, such a scheme may not generate an
optimal integer solution which is also an extreme
point. Theorem 3 suggests the following procedure
that finds an optimal integer extreme solution.

0. Set zj=0,j=l,...,n.

1. Solve the linear program

n

f(b)= mih{ Y x,|Ax >

b,xzo}.
j=1

Let r be some positive component of an
optimal solution. (If none exists, z is an opti-
mal integer extreme solution).

2. Find the largest integer. p, in [0, 5], where
b = max(b,}, such that

f(b)=f(b—pA.,)+p.

3.Setz,=p,b—=b—pA.,.
4. Gotol.
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Theorem 3, coupled with the following observa-
tion, justifies the validity of this algorithm. Let
Z,jy» J=1,...,4, be the positive component of z
produced at the jth iteration of the algorithm.
Then, z is a Il-lexicomaximal optimum solution
for any permutation II such that H(j)“l(_])
j=1l....q

The integer p defined in Step 2, can be obtained
by applying a binary search on the integers in
[0, ). Therefore, p is computable by solving
'O(log b) linear programs like those defined in Step
1. The algorithm iterates at most m times since an
extreme point has at most m positive components.

Thus, we conclude that the above procedure

will generate an optimal integer extreme point
provided that some polynomial routine is available
for solving the linear program in Step 1. (In fact
this routine will need to produce only the value
f(b) and the index of one positive component of
an optimal solution.)
- We now demonstrate that the linear program in
Theorem 3 can have a noninteger extreme optimal
solution even when b is the vector all of whose
components are equal to 1.

Example. Let G be the six vertex graph shown in
Figure 1. G is a perfect graph since its complement
consists of three isolated edges only. The node
clique incidence matrix of G is

- -0 0O
O EH OO -
HO MR O MO
—_—-_-O - OO

OO -
OO O M =
O-HOHO M
H OO MO

Fig. 1.
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If b is the vector all of whose components arc_
equal to 1, f(b) in Theorem 3 is also attamed at
the noninteger optimal extreme point (0, §, 1
3, 0,0, 0).

We conclude by noting that the above extremal
ity property of integral solutions is also shared by’
covering and packing problems defined by bal-:
anced matrices. We state these results but omit the
proofs since they are very similar to that of Lemma‘é
2. These results strengthen the results in [3]. Recall
that a 0—1 matrix is balanced if it does not contain’
a square submatrix of odd order whose colump
and row sums are all equal to 2.

!him""

Theorem S. Let A be an (m X n) balanced matriy,
and let b and d be integer vectors. Let Il be a
permutation of {1,...,n}.

(1) Every II- lexzcomaxzmal optimal solution to
the linear program

min{ > leAx>b,0<x<d}

Jj=1

is zntegral and an extreme point of {x|Ax>b,0 <
<d}. ,
(2) Every Il-lexicominimal optimal solution to
the linear program ;

max{ Y leAxsb,O<x<d}
j=1

is integral and an extreme point of { x|Ax <b,0<
x<d}. '

v
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