An \(O(p^3 \log^2 n)\) Algorithm for the Unweighted p-Center Problem on the Line

Nimrod Megiddo and Arie Tamir

Raymond and Beverly Sackler
Faculty of Exact Sciences
School of Mathematical Sciences
Tel Aviv University
Ramat- Aviv, 69978 Israel

Let \(V = \{v_1, \ldots, v_n\}\) be a set of points (customers) on the real line, where \(v_1 < v_2 < \ldots < v_n\). Each point \(v_i, i = 1, \ldots, n\), is associated with a positive weight \(w_i\). The p-center problem is to locate \(p\) points (centers) on the line in order to minimize the maximum weighted distance of the customers to their respective nearest centers. Formally the problem is to

\[
\text{Minimize} \quad \max_{1 \leq i \leq n} \min_{1 \leq j \leq p} \{w_i |v_i - x_j|\},
\]

where \(x_1, \ldots, x_p\) are real points.

By the discrete version of the problem we refer to the case where the points \(x_1, \ldots, x_p\) are restricted to be in the set \(V\). An optimal solution to the (discrete) p-center problem is called a (discrete) p-center. If all the weights are equal
the above problem is called the unweighted \(p \)-center problem. There are several efficient algorithms to solve the above problem. Megiddo and Tamir (1983) presented an \(O(n \log^2 n) \) algorithm for the problem, and Megiddo, Tamir, Zemel and Chandrasekaran (1981) gave an \(O(n \log n) \) algorithm for the discrete version. The former can also be implemented in \(O(n \log n) \) time by applying the modified search procedure in Cole (1987). Recently, Frederickson discovered an ingenious approach leading to an \(O(n) \) algorithm for solving the unweighted \(p \)-center problem and its discrete version.

The above bounds are uniform and independent of \(p \), the number of points to be selected. Since in most applications \(p \) is significantly smaller than \(n \), we were motivated to find an algorithm whose complexity is sublinear in \(n \). The cases where \(p = 1, 2 \) can easily be solved in \(O(\log n) \) time. In this note we consider the case of a general \(p \), and present an \(O(p^2 \log^3 n) \) algorithm for the unweighted problems. (This algorithm was originally presented in an unpublished report in 1981.)

We assume that the sequence \(v_1 < v_2 < \ldots < v_n \), is given by a linear array. Consider the unweighted version of (1), and suppose without loss of generality that \(p < n \). Let \(r_p \) denote the optimal objective value. Given a positive real \(r \) we let \(p(r) \) denote the smallest number of points (centers) needed in order to ensure that the distance of any point (customer) \(v_i, i = 1, \ldots, n, \) to its nearest center is at most \(r \). We call \(\tau \) feasible for problem (1) if \(p(\tau) \leq p \). In particular, \(r_p \) is the smallest feasible value. We start by presenting a simple \(O(p \log n) \) algorithm for testing feasibility and then use it to find a \(p \)-center. (For convenience we define \(v_{n+1} = \infty \).)

The Feasibility Test.

Given is a positive real \(r \).

Step 0: Set \(j = 1, p(r) = 0, \) and \(X = \emptyset \).

Step 1: Use a binary search to find a point \(v_i, i \geq j, \) such that \(v_i \leq v_{j-1} + 2r < v_{i+1} \). Increase \(p(r) \) by 1. Also augment the midpoint of the interval \([v_j, v_i]\) to the set \(X \).
Step 2: If $p(r) > p$, stop: r is not feasible. If $i = n$, stop: r is feasible. Otherwise, set $j = i + 1$, and go to Step 1.

The effort to execute Step 1 is $O(\log n)$, and since the feasibility test has at most $p + 1$ iterations its complexity is clearly $O(p \log n)$.

We now present the algorithm for solving the unweighted p-center problem.

The p-Center Algorithm.

Step 0: Set $j = 1$, $k = 0$, $R_p = |v_k - v_j|/2$, and $X_0 = \emptyset$.

Step 1: Use a binary search, combined with the feasibility test, to find a point v_i, $i \geq j$, such that $|v_i - v_j|/2$ is not feasible but $|v_{i+1} - v_j|/2$ is feasible. Increase k by 1. If $k > p$, stop: R_p is the optimal value. Otherwise, set $R_p = \min\{R_p, |v_{i+1} - v_j|/2\}$. Let z_k be the midpoint of the interval $[v_j, v_i]$. Define $X_k = X_{k-1} \cap \{z_k\}$.

Step 2: If $i = n$, stop: R_p is the optimal value. Otherwise, set $j = i + 1$, and go to Step 1.

The effort to execute Step 1 is $O(p \log^2 n)$ since we have $O(\log n)$ phases in the binary search, where each phase requires the feasibility test to resolve the query. The algorithm iterates at most $p + 1$ times, and therefore its total complexity is $O(p^2 \log^2 n)$.

The validity of the algorithm follows from the following argument. At each iteration k the recorded value of R_p is an upper bound on the optimal value r_p. Moreover, if the optimal value is smaller than R_p, then there is an optimal solution where the first k centers are established at the k points in X_k. The algorithm outputs the optimal value r_p. To find the optimal p-center apply the feasibility test with $r = r_p$. The resulting set X contains a p-center.

A similar procedure can be adapted to solve the discrete version of the unweighted model.

The Feasibility Test for the Discrete Case.

Given is a positive real r.

Step 0: Set $j = 1$, $p(r) = 0$, and $X = \emptyset$.

Step 1: Use a binary search to find a point v_i, $i \geq j$ such that $v_i \leq v_j + r < v_{i+1}$.
Increase \(p(r) \) by 1. Also augment the point \(v_i \) to \(X \). Then use a binary search to find a point \(v_i, t \geq i, \) such that \(v_i \leq v_i + r < v_{i+1} \).

Step 2: If \(p(r) > p, \) stop: \(r \) is not feasible. If \(t = n, \) stop: \(r \) is feasible. Otherwise, set \(j = t + 1 \) and go to Step 1.

The Discrete p-Center Algorithm.

Step 0: Set \(j = 1, k = 0, R_p = |v_n - v_1|, \) and \(X_0 = \emptyset. \)

Step 1: Use a binary search, combined with the feasibility test, to find a point \(v_i, i \geq j, \) such that \(|v_{i+1} - v_j| \) is feasible but \(|v_i - v_j| \) is not. Increase \(k \) by 1.

If \(k > p, \) stop: \(R_p \) is the optimal value. Use a binary search, combined with the feasibility test, to find a point \(v_i, t \geq i, \) such that \(|v_{i+1} - v_i| \) is feasible but \(|v_i - v_i| \) is not. Set \(R_p = \text{Min} \{ R_p, |v_{i+1} - v_j|, |v_{i+1} - v_i| \}. \) Define \(X_k = X_{k-1} \cap \{ v_i \}. \)

Step 2: If \(t = n, \) stop: \(R_p \) is the optimal value. Otherwise, set \(j = t + 1, \) and go to Step 1.

References

2) G.N. Frederickson, "Optimal algorithms for partitioning trees and locating p-centers in trees," Technical Report, Department of Computer Science, Purdue University, 1990.

4) N. Megiddo, A. Tamir, E. Zemel and R. Chandrasekaran, "An \(O(n \log^2 n) \) algorithm for the \(k-th \) longest path in a tree with applications to location problems," *SIAM J. on Computing* 10 (1981) 328-337.