An O(p*log’n) Algorithm for the Unweighted p-Center

Problem on the Line

Nimrod Megiddo and Arie Tamir

Raymond and Beverly Sackler
Faculty of Exact Sciences
School of Mathematical Sciences
Tel Aviv University
Ramat-Aviv, 69978 Israel

Let V = {v1,...,un} be a set of points (customers) on the real line, where
v; < vz < ... < V,. Each point v;, 1 = 1,...,n, is associated with a positive weight
w;. The p-center problem is to locate p points (centers) on the line in order to
minimize the maximum weighted distance of the customers to their respective

nearest centers. Formally the problem is to

Minimize oax lr_<njl£p{w,-|v.; - zjl},

where z1,...,z, are real points.
By the discrete version of the problem we refer to the case where the points
z1,...,Zp, are restricted to be in the set V. An optimal solution to the (dis-

crete) p-center problem is called a (discrete) p-center. If all the weights are equal

the above problem is called the unweighted p-center problem. There are sev-
eral efficient algorithms to solve the above problem. Megiddo and Tamir (1983)
presented an O(nlog®n) algorithm for the problem, and Megiddo, Tamir, Zemel
and Chandrasekaran (1981) gave an O(nlog n) algorithm for the discrete version.
The former can also be implemented in O(nlogn) time by applying the modified
search procedure in Cole (1987). Recently, Frederickson discovered an ingeni-
uos approach leading to an O(n) algorithm for solving the unweighted p-center
problem and its discrete version.

The above bounds are uniform and independent of p, the number of points to
be selected. Since in most applications p is significantly smaller than n, we were
motivated to find an algorithm whose complexity is sublinear in n. The cases
where p = 1,2 can easily be solved in O(logn) time. In this note we consider
the case of a general p, and present an O(p? log® n) algorithm for the unweighted
problems. (This algorithm was originally presented in an unpublished report in
1981.)

We assume that the sequence vy < vy < ... < vy, is given by a linear array.
Consider the unweighted version of (1), and suppose without loss of generality
that p < n. Let r, denote the optimal objective value. Given a positive real r we
let p(r) denote the smallest number of points (centers) needed in order to ensure
that the distance of any point (customer) v;;, i = 1,...,n, to its nearest center is
at most 7. We call r feasible for problem (1) if p(r) < p. In particular, r, is the
smallest feasible value. We start by presenting a simple O(plogn) algorithm for
testing feasibility and then use it to find a p-center. (For convenience we define

Un+1 = OO)

The Feasibility Test.

Given is a positive real r.

Step 0: Set j =1,p(r) =0,and X =0 .

Step 1: Use a binary search to find a point v;, ¢ > 7, such that v; < v;4+2r < wviyq.
Increase p(r) by 1. Also augment the midpoint of the interval [v;,v;] to the set

X.

Step 2: If p(r) > p, stop: r is not feasible. If i = n, stop: r is feasible. Otherwise,
set 7 =1+ 1, and go to Step 1.

The effort to execute Step 1 is O(logn), and since the feasibility test has at
most p + 1 iterations its complexity is clearly O(plogn).

We now present the algorithm for solving the unweighted p-center problem.

The p-Center Algorithm.

Step 0: Set j =1,k =0, R, = [vp, —v1|/2,and Xo =0 .

Step 1: Use a binary search, combined with the feasibility test, to find a point
v;, © > j, such that |v;—v;|/2 is not feasible but |v;y+1—v;|/2 is feasible. Increase k
by 1. If k > p, stop: R, is the optimal value. Otherwise, set R, = Min{R,, |vit1—
vj|/2}. Let @ be the midpoint of the interval [v;,v;]. Define X = Xp_1 N {zx}.
Step 2: If 7 = n, stop: R, is the optimal value. Otherwise, set j =7+ 1, and go
to Step 1.

The effort to execute Step 1is O(plog® n) since we have O(logn) phases in the
binary search, where each phase requires the feasibility test to resolve the query.
The algorithm iterates at most p + 1 times, and therefore its total complexity is
O(p? log® n).

The validity of the algorithm follows from the following argument. At each
iteration k the recorded value of R, is an upper bounrd on the optimal value
rp. Moreover, if the optimal value is smaller than R, , then there is an optimal
solution where the first k centers are established at the k points in X;. The
algorithm outputs the optimal value 7,. To find the optimal p-center apply the
feasibility test with » = r,. The resulting set X contains a p-center.

A similar procedure can be adapted to solve the discrete version of the un-

weighted model.

The Feasibility Test for the Discrete Case.
Given is a positive real r.
Step 0: Set 7 =1, p(r) =0, and X = 0.

Step 1: Use a binary search to find a point v;, ¢ > j such that v; <v; +7 < viy;.

Increase p(r) by 1. Also augment the point v; to X. Then use a binary search to
find a point v, t > 7, such that v; < v; + 7 < vy41.

Step 2: If p(r) > p, stop: 7 is not feasible. If ¢ = n, stop: r is feasible. Otherwise,
set j =t + 1 and go to Step 1.

The Discrete p-Center Algorithm.

Step 0: Set j =1,k =0, Ry = |v, — v1|, and Xo = 0.

Step 1: Use a binary search, combined with the feasibility test, to find a point
vi, 1 > j, such that |v;1; — v;| is feasible but |v; — vj| is not. Increase k by 1.
If £ > p, stop: R, is the optimal value. Use a binary search, combined with the
feasibility test, to find a point v, ¢ > 7, such that |v¢4+1 —v;| is feasible but |v; —v;|
is not. Set R, = Min {Rp, |viy1 — vj|, |vi41 — vil}. Define X = Xp—1 N {v;}.
Step 2: If t = n, stop: R, is the optimal value. Otherwise, set 7 =t + 1, and go
to Step 1.

References
1) R. Cole, ”Slowing down sorting networks to obtain faster sorting algorithms,”

J. ACM 34 (1987) 200-208.

2) G.N. Frederickson, ”Optimal algorithms for partitioning trees and locating
p-centers in trees,” Technical Report, Department of Computer Science, Pur-
due University, 1990.

3) N. Megiddo and A. Tamir, Unpublished Report 1981.

4) N. Megiddo and A. Tamir, ”"New results on p-center problems,” SIAM J. on
Computing 12 (1983) 751-758.

4) N. Megiddo, A. Tamir, E. Zemel and R. Chandrasekaran, ”An O(nlog®n)
algorithm for the k — th longest path in a tree with applications to location
problems,” SIAM J. on Computing 10 (1981) 328-337.

