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Abstract

Let & be the collection of nonempty subtrees of a given tree T. Each subtree is viewed as a potential
facility. Let f be a real objective function defined on #. The facility location model we consider is to
select a subtree minimizing f. This model unifies and generalizes several facility location problems
discussed in the literature. We prove that the most common objective functions used in facility
location theory possess the submodularity property. In particular, the ellipsoid approach provides
a unified framework for polynomial solvability.

Introduction

The uncapacitated facility location model is one of the classical problems in
location theory. Given a finite set of customers located at fixed sites, the problem is to
determine the locations for a set of servers. It is assumed that each server is un-
capacitated and it can serve all customers. The objective is to minimize the sum of the
set-up costs of the servers and the transportation costs of the customers. Usually the
transportation cost functions are monotone nondecreasing with the distances the
customers travel to their respective server. Indeed, if this is the case, each customer will
travel to its closest server since all servers are assumed to be uncapacitated.

The above model is known to be NP-hard when defined on a general graph, even
when the transportation costs are linear with the distance travelled [2]. It is poly-
nomially solvable on tree graphs and some generalizations like series-parallel graphs
[2,4,9].
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The efficient solvability of the tree case has been supported and explained by
relating it to fundamental concepts like convexity, chordality and total balancedness
[9].

In this paper, we consider a variation of the model on tree graphs, where the sites
selected for the servers must be connected. Specifically, focusing on tree networks
the requirement here is that the subgraph induced by the serving centers must be
connected. We refer the readers to the papers [1, 5, 6, 8, 10-14] for further discus-
sion and motivation of this connectivity issue. In addition to the set-up costs of the
individual servers we will also account for a connectivity cost. We assume that the
objective function can be represented as the sum of two terms. The first is the total
cost associated with the servers. It is independent of the customers. This term
combines the connectivity cost and the set-up costs. The second term reflects the
utilities of the individual customers, and it is expressed as a function of their distances
to the servers.

Simple examples illustrate that the chordality and balancedness properties satisfied
by the regular uncapacitated facility location model, do not extend to the version of
the model where the connectivity between the servers is required. Thus, our goal in
this paper is to identify another fundamental property that explains the polynomial
solvability of the special cases of the latter version that have appeared recently in the
literature. This property is the submodularity of the objective function of the location
model. (See Section 2 for the exact definition.) It unifies the special cases, provides
important and interesting generalizations and allows the polynomial solvability of the
model by the ellipsoid approach [3]. |

The special cases that have motivated our study appeared in [5, 7]. Suppose that
each node of a given tree, v;, is associated with a desired service radius, say r;, and
a penalty term, p;, for not being served within this radius. (In [7] p; = oo for each
node v;.) The objective is to select servers with the above connectivity property that
will minimize the sum of the connectivity cost and the total penalty cost. The
connectivity cost is assumed to be linear in the total length of the connecting subtree.
(There is no direct set-up cost for the serving facilities in [5, 7].) The penalty cost
corresponds to the transportation cost in the general model we have introduced
above. If the distance from customer v; to its nearest server (the closest point of the
connecting subtree) is at most r; then there is no transportation cost; otherwise the
latter cost is p;.

The main contribution of this paper is in proving that the most common cost
functions, used in facility location models, do possess the submodularity property
when the underlying graph is a tree. We now list our submodularity results.

Starting with the total set-up cost of the servers we immediately note that sub-
modularity holds when:

(1) Set-up cost is equal to the sum of the set-up costs of the individual facilities.

(2) Set-up cost is equal to the maximum over the individual set-up costs.

For the cost of the connecting subtree we have submodularity when:

(3) The subtree cost is equal to the sum of its edge lengths.
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(4) The subtree cost is equal to its longest edge.

(5) The subtree cost is equal to its (edge) cut value. (In particular, the cost is equal to
the number of neighbours.)

(6) The subtree cost is equal to its diameter, the longest (simple) path in the subtree.

For the total transportation cost function, we show submodularity for the following
cases:

(7) The transportation cost is the sum of the customers transportation cost func-
tions, which depend only on the respective distances to the nearest servers. (The
dependence is not required to be monotone.)

(8) The transportation cost function of each customer is assumed to be monotone
nondecreasing in the service distance, and the total transportation objective is the
maximum over the individual costs.

Note that (7) corresponds to the classical “median” objective in location theory,
while (8) captures the objective of “center” models.

For cases (1), (3), (5) and (7) we establish a stronger property, i.e., the objectives there
are in fact modular.

Since submodularity is preserved under addition, we conclude that our general
model can involve any objective representable as the sum of the eight cases listed above.

We point out that the above submodularity results depend crucially on our
supposition that the subgraph induced by the sites selected for the servers must be
connected. When we remove this connectivity requirement the model reduces to the
classical uncapacitated facility location minimization model [2]. It is well known (see
[2] and the references cited there) that the objective of this minimization model is
supermodular even for general graphs. However, it is easy to see that the transporta-
tion cost term of the objective ((7) or (8) above) is not submodular even for tree graphs.

1. The formal location model

Let T = (V, E) be an undirected tree graph with node set ¥, and edge set E. Each
edge ee E has a positive length, a,. A subgraph of 7, S = (V', E’) is a subtree, if it is
connected, V' #0, V"<V, and E'< E. If S'= (V! E') and S? =(V? E?) are
subtrees of T, we say that S! is contained in 2 (S' = §?)if V' < V?and E! < E2.
We say that S! intersects S2 if V! intersects V2, and we define the intersecting subtree,
S'NAS2=(V'nV? E'nE?). Also, if S! intersects S? we define their union (sub-
tree), S'uU S =(V1u V2 E'UE?).

The edge lengths of 7 induce a distance function on 7. For any pair of nodes, v, u in
V we let d(u, v) denote the sum of the lengths of the edges on P (u, v), the unique simple
path connecting u and v. If S* = (V'!, E!) and S? = (V'2, E2) are subtrees of T we
define d(S', S?) = min{d(v,u)|ve V!, ue V?}.

Consider the following location model. Given is a finite collection of subtrees, {S i},
i=1,...,p. Each subtree S’ represents a “customer” or a demand region that will be
served by a new facility, “server”, which must be established on 7. We assume that the
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server is also modelled by a subtree. It is uncapacitated and can serve all customers. If
S is a server, then customer S',i = 1,...,p, is served at the closest point in S, i.e., the
service distance of S¢is d(S, S*). There exists a (nonempty) family of subtrees, &, from
which the server can be selected. The selection is determined by the optimality
criterion used. Motivated by the models presented in the introduction, we assume that
the objective function, f, depends both on the “size” of §, e.g. length, diameter, total
node weights, and the distances of S from the p customers, S, ..., S?. The dependence
on the distances is formulated as follows. Fori = 1,...,p, let &; be the utility function
associated with S*. @; is a real function of the distance to the server, S. Since we also
wish to allow “obnoxious” customers, e.g., nuclear reactors or garbage depots, we do
not, in general, require i; to be monotone. We let u;(S) = #;(d(S, §)),i = 1,...,p. We
will also refer to u;(S) as the transportation cost function of S§*. The total transporta-
tion cost is given by h(u,(S),...,u,(S)), where h(x,,...,x,) is a given real function
defined for all p-tuples, xy,...,x,. In the so-called “median” models,
h(xy,...,xp) = X3 + -+ + xp, while for the “center” models h(x,,...,x,)=
max {x,,...,x,}. The dependence of the objective f on the “size” of the facility is
denoted by L(S). This term is independent of the customers. It reflects the set-up costs
of the serving facilities and the cost of connecting them together (see the introduction).
We now assume that for each S in &

S(8) = L(S) + h(uy(S), ..., u,(S)). (1.1)
The location model is defined by
min{f(S)|SeF }. (1.2)

For example the minimum cost partial covering subtree problem in [5] corresponds
to the following case. For i =1,...,p, let v; be a node in V. Then S'= (V' EY),
Vi={veV|d(v,v') <r}. Also

0, ifd =0
pi, otherwise.

L(S), the size function in [5] is given by the total edge lengths in S.
In the next section, we present several results on the submodularity of the objective
in (1.1).

2. Submodularity properties on trees

Consider a family # of (nonempty) subtrees of a given tree 7' = (V, E). & is a lattice
family if for every pair S; and S, in & both §; U S, and S; NS, are in . & is an
intersecting family if for every pair S; and S, in & such that S; n S, is nonempty, both
S;uS,and S; NS, are in &. The family of all subtrees of T is an intersecting family
but not a lattice. If & is an intersecting family, let #,, ve V, denote the subfamily of
F consisting of all the members of & containing the node v. Let ¥ < V be the set of
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nodes v for which &%, is nonempty. Clearly, &, is a lattice. Let f be a real function
defined on an intersecting family . f is isotone (antitone) on & if for every pair S,
and S, in # with §; = §,,

f(S1)<f(S2) (f(S1)=f(S2))
fis submodular on & if for every pair Sy and S, in & with S; NS, # 0,

J(81082) +f(8108,) <f(81) +1(S2). (2.1)

fis supermodular if —f is submodular. f'is modular on % if it is both submodular
and supermodular.

As mentioned in the introduction our interest is in minimizing some objective, f,
over an intersecting family of subtrees, #. If f is isotone there exists a simple
straightforward scheme to locate a minimizer. Let v be a node of T such that %, is
nonempty, i.e., v€ V. Consider the subminimization of f over &,. The minimizer is the
least element of the lattice &#,, i.e., the intersection of all members in #,. Let S(v),
ve V, denote this subtree. Therefore, a minimizer over & is in the set {S(v)}, ve V.
Special cases of this model are the minimal length covering subtree model in [7], and
the minimal node cardinality covering subtree model in [8]. The isotone case is not
even rich enough to unify the extension of [7] as presented in [5].

Motivated by [5, 7] and other models that we later discuss we suggest the
framework where f is submodular. The attractiveness of this model follows from its
unification property as well as its wealth of theory known today [3]. In particular,
using the ellipsoid approach in [3] we can now minimize any submodular function
over an intersecting family in (strongly) polynomial time.

In the remainder of this section we will prove several modularity and submodular-
ity properties on families of subtrees of a given tree. Since our main motivation comes
from location problems most of those properties will model and unify objective
functions which are often used in this field.

2.1. Modular functions

We start with modular functions on & which depend only on the server but not on
the customers in #' = {S!,...,S?}.

Suppose that each edge ee E is associated with a weight (not necessarily non-
negative) «,. (o, can be viewed as the length of e.) Also, assume that each node ve V'
has a weight §,. Let S = (V", E’) be a subtree of T = (V, E). Define

«(S)= Y 0 BS)=Y B (2.1.1)

ecE’ veV’

The next result follows directly from the definition.

Proposition 2.1. Let & be an intersecting family of subtrees. The functions a(S) and
B(S) defined in (2.1.1) are both modular on F.
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Another example of a modular function is the (edge) cut function. For each subtree
Sin Z let X(S) denote the set of edges of 7 connecting a node in S with a node in its
complement, T — S. The value of the cut, C(S), is given by

C(S)= ) o

eeX(S)

It is well known that if «, > 0, for each e€ E, C(S) is submodular even on general
graphs. (In this case C(S) is defined over the collection of the subsets of nodes of
a graph.) The next theorem shows that the cut function is modular when restricted to
an intersecting family of subtrees of 7, even without the nonnegativity assumption on
{o.}, e€ E.

Theorem 2.2. Let S; and S, be two subtrees with S; S, #Q and S; U S, # T. Then

C(S;US,) + C(S; N S,) = C(S;) + C(S,). (2.1.2)

Proof. Define the following pairwise disjoint sets of edges:
A, = {e€E|econnects anodein S, — S, withanodein 7 — (S, U S,)},
A, = {e€E|e connects a node in S, — S; with anodein T — (S; U S,)},
A; = {ee E|e connects a node in §; 1 S, with anodein T — (S; U S,)},
A, = {e€E|e connects a node in S; N S, with a node in S; — S, },
As = {e€ E|e connects a node in S; n S, with a node in S, — S, }.

The tree property implies that there is no edge connecting S; — S, with S, — S;.
Therefore, we obtain the following representation of the four cut sets.

X(S1)=A,UAdsuU A3,
X(S;)=A,0 A, A;,
X(S,uS,)=A4A,0VA,0 Aj,
X(S;1nS;)=A4A30A,0U As.
Since the sets A;, 1 < i < 5, are pairwise disjoint the validity of (2.1.2) follows directly

from this representation. [J

Next we turn to modular functions which depend on the distances of the server
from the customers. We first prove the following lemma.

Lemma 2.3. Let S, S, and S, be nonempty subtrees of T. Suppose that S; NS, is
nonempty. Let y be a closest point to S in S; U S,, and suppose that y is in S,. Then

d(S, SIUS2)=d(S, Sl) and d(S, Sl (-\Sz):d(s, S2)
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Proof. We have
d(S5 Sl () S2) S d(Sa Sl) S d(Ss .V) = d(S’ Sl U SZ)'

Therefore, d(S, S; U S,) = d(S, S;). To prove the second equality suppose first that
y is also in S,. In this case we obtain

d(S,y)=4d(S,S;US;,) <d(S,S,)<d(S,8:nS;)<d(S,y).

Thus, d(S, S; nS,)=4d(S, S,). Finally, suppose that every closest point to S in
S;uS,isin S; — S,. In particular, S does not intersect S,. Let x be a closest point to
Sin S,. Since there is a unique (simple) path connecting each pair of points on the tree,
every path connecting x to S contains a point y of S;. Also, the unique path
connecting x and y contains some point z which is in §; N S,. Therefore

d(s,S;)=4d(S,x)=>d(S,z) = d(S, S, nS,) =d(S, S,).
This completes the proof. I
Theorem 2.4. Let #' = {S',...,S?} be a collection of subtrees of T. Let ¥ be an
intersecting family of subtrees of T. Fori=1,...,p let u; be a real function. For each

S in F define u(S) = u;(d(S,S")), i=1,...,p. Then, any linear combination of the
functions u;, i = 1,...,p, defined on F is modular.

Proof. It will suffice to prove that u;(S),i = 1,..., p, is modular over £. Indeed, let S,
and S, be two subtrees in # with §; N S, # 0. Consider the subtree S* used to define
u;(S). From Lemma 23 we may assume without loss of generality that
d(S', S, uS,)=d(S,S,)and d(S',S,nS,) = d(S', S,). Therefore,

u(S; U S;) = u(d(S*, S, U S,)) = u,(d(S%, S1)) = ui(Sy),
and
u(S1nS,) = ﬁi(d(si, $1nS3)) = ﬁi(d(Si, S2)) = wi(S).

This completes the proof of the theorem. [

2.2. Submodular functions

Given the edge weights {«,}, e€ E, and the node weights {f,}, ve V, we define for
any subtree S = (V', E’),

&(S) = max {a.},  B(S)=max {B,}. (2.2.1)

ecE’ veV’

The following analogue of Proposition 2.1 follows directly from the definition.

Proposition 2.5. Let & be an intersecting family of subtrees. The functions d(S) and
B(S) defined in (2.2.1) are both submodular on F.
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To state the next submodularity result, let L(S) be the diameter of S, ie., the
maximum length of a (simple) path in S.

Theorem 2.6. Suppose that all edge weights {a.}, e € E, are nonnegative. Let ¥ be an
intersecting family of subtrees of T. For each S€ %, let L(S) denote the diameter of S.
Then L(S) is submodular over #.

Proof. Let S; and S, be subtrees in #. Suppose that S; N S, is nonempty. Define
S =8, uUS,. L(S)is the length of a longest simple path in S. Let x and y be two nodes
in S such that L(S) = d(x, y).

Suppose first that both x and y belong to S;. Then, using the monotonicity of L(S)
we obtain L(S;) < L(S; v S;) =d(x,y) < L(S;)and L(S; n S,) < L(S,). Therefore,
L(S;uS;)+ L(S;nS3) < L(Sy) + L(S,). (The latter inequality holds also when
both x and y are in §,.)

Suppose without loss of generality that xe S; and ye S,. Let u and v be two nodes
(not necessarily distinct) in §; N S, such that L(S; nS,) = d(u, v). Let T be the union
of the two paths P(y, u) and P(y, v). Define w to be the closest point in T to x. Without
loss of generality suppose that w is on P(y, u). Then d(x, z) = d(x, w) + d(w, z) for
z=y,u,v, and d(y, u) = d(y, w) + d(w, u). Therefore

L(S;)+ L(S;) = d(x,v)+ d(y,u)
=d(x, w) + d(w, v) + d(y, w) + d(w, u)
=d(x,y) + d(w,v) + d(w,u) > d(x, y) + d(v, u)
= L(S)+ L(S; n S3). O

The next submodularity result depends on the distances of the server from the
customers. It is motivated by “center” models, often used in location theory. The
objective there is to minimize the maximum transportation cost over all customers.
(In this respect note that Theorem 2.4 includes the objective of the “median” models.)

Theorem 2.7. Let ' = {S',...,S?} be a collection of subtrees of T. Let F be an
intersecting family of subtrees of T. Fori =1, ..., p, let ti; be a monotone nondecreasing
real function. For each S in & define u;(S) = 4;(d(S, S*)),i = 1, ..., p. Then the function
g(S), defined by

g(S) = max{u;(S),...,u,(S)}

is submodular on &% .

Proof. The monotonicity property of u;, i = 1,..., p, implies that g(S) is antitone, i.e.,
if S; = S, then g(S;) > ¢(S,).

To prove the submodularity of g consider S; and S, in # with §; S, # 0. Let i,
i=1,...,p, besuch that g(S; N S,) = #;(d(S*, S; N S,)). Using Lemma 2.3 we assume
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without loss of generality that d(S%, S; n S,) = d(S’, S,). Therefore
g(8, N S;) = a(d(S', S1 N S2)) = #,(d(S', S2)) < 9(S).

From the antitonicity of g we have g(S; U S,) < g(S;). Thus,
g(S1uUS,) + g(S;nSy) < g(Sy) + 9g(8,). O

3. Concluding remarks

The general model presented above provides a unified framework for the polynomial
solvability of many location problems. Using the results in [3] we conclude that the
above model can be solved in strongly polynomial time. The theory developed in [3]
allows us to introduce certain additional constraints without affecting the polynomial
solvability. Here are two examples of such constraints. Suppose first that there is
a subfamily & of the given intersecting family &#. & consists of subtrees that are not
feasible, e.g., zoning considerations. If & is a clutter, i.e., it does not contain a pair of
subtrees, say S; and S,, with §; = S,, then the optimal subtree in & — & can be
obtained in polynomial time. A second constraint is a parity requirement. The optimal
subtree in & with an even number of nodes can be selected efficiently.

References

[1] V. Aaronson Huston and C.S. Revelle, Maximal covering tree problems, Transportation Sci. 23 (1989)
288-299.
[2] G. Cornuejols, G.L. Nemhauser and L.A. Wolsey, The uncapacitated facility location problem, in:
P.B. Mirchandani and R.L. Francis, eds., Discrete Location Theory (Wiley, New York, 1990) 119-171.
[3] M. Grotschel, L. Lovasz and A. Schrijver, Geometric Algorithms and Combinatorial Optimization
(Springer, Berlin, 1988).
[4] R. Hassin and A. Tamir, Efficient algorithms for optimization and selection on series-parallel graphs,
SIAM J. Algebraic Discrete Methods 7 (1986) 379-389.
[5] T.U.Kim, T.J. Lowe and J.E. Ward, The minimum cost partial covering subtree of a tree, Tech. Rept.,
Krannert Graduate School of Management, Purdue University, West Lafayette, IN (1989).
[6] T.U.Kim, T.J. Lowe, J.E. Ward and R.L. Francis, A minimum length covering subgraph of a network,
Ann. Oper. Res. 18 (1989) 245-260.
[7] T.U.Kim, T.J. Lowe, J.E. Ward and R.L. Francis, A minimum length covering subtree of a tree, Naval
Res. Logist. 37 (1990) 309-326.
[8] R.K. Kincaid, T.J. Lowe and T.L. Morin, The location of central structures in trees, Comput. Oper.
Res. 15 (1988) 103-113.
[9] A. Kolen and A. Tamir, Covering problems, in: P.B. Mirchandani and R.L. Francis, eds., Discrete
Location Theory (Wiley, New York, 1990) 263-304.
[10] E. Minieka, The optimal location of a path or tree in a tree network, Networks 15 (1985) 309-321.
[11] C.A. Morgan and P.J. Slater, A linear algorithm for a core of a tree, J. Algorithms 1 (1980) 247-258.
[12] M.B. Richey, Optimal location of a path or tree on a network with cycles, Networks 20 (1990)
391-407.
[13] PJ. Slater, On locating a facility to service areas within a network, Oper. Res. 29 (1981) 523-531.
[14] P.J. Slater, Locating central paths in a network, Transportation Sci. 16 (1982) 1-18.



