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ABSTRACT

Given an integer vector xT=(x,,...,x,) with the property x; >x,> -+ >x, >0,
it is shown that the convex hull of the n cyclic permutations of x contains all the
nearly symmetric integer vectors majorized by x. A generalization to noninteger
vectors and an application to a class of integer symmetric optimization problems are
also given.

Given a vector xT=(x,,...,x,), let ¥ denote the n-dimensional vector
obtained by arranging the coordinates of x in decreasing order. Hardy,
Littlewood and Polya [3] introduced the following relation on R". A vector y
is said to be majorized by a vector x if for i=1,...,n, 2f=1 g; < 2",.=1£,., with
equality holding for i =n. They proved that y is majorized by x if and only if
y can be expressed as a convex combination of the n! permuted vectors
obtained from x. Equivalently, y is majorized by x if and only if y = Sx for
some doubly stochastic matrix S. In fact, by using known linear programming
arguments one can easily show that y being majorized by x implies that y
can be described as a convex combination of only n permuted vectors of x.
For example, the symmetric vector denoted by x, whose coordinates are all
equal to (1/n)Z7_,x, can be described as x=(1/n)Z7_,Px, where
P,P,,...,P, are the n cyclic permutation matrices.

The principal purpose of this paper is to investigate the convex hull of
the n cyclic permutations of a given integer vector x, i.e. the polytope
generated by P x, P,x,...,P,x. We use A(x) to denote this polytope.

We show that if the integer vector xT=(x},x,,...,x,) satisfies x, >x,
>+ >x, or x;<x,--- <x,, then A(x) contains not only the symmetric
point x, but also( 't') integer vectors, where t=27_x; (mod n). More
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specifically, defining an integer vector y to be nearly symmetric if | y, — y;| <
1 for all i,j=1,...,n, it is shown that A(x) contains all the nearly symmetric
integer vectors y satisfying 27_, y;=27_x;. It is easily observed that each
one of these nearly symmetric vectors y is majorized by the vector x. Hence,
by results of [3], each such y can be expressed as a convex combination
(which may depend on y) of some n permutations of x. Our result is stronger
in the sense that it shows that the same set of n permutations, i.e. the cyclic
ones, can be chosen for all (majorized) nearly symmetric integer vectors y.

Referring to a possible relaxation of the assumption x; >x,- -+ >x,, we
note that the strict inequalities cannot be weakened as illustrated by the
4-dimensional vector xT=(2,1,0,0), where A(x) contains no nearly symmet-
ric integer vectors. In fact, it can be verified that there exist no set of four
permutations of the vector (2,1,0,0) with the property that their convex hull
contains all the nearly symmetric integer vectors which are majorized by
(2,1,0,0).

Given an integer vector xT=(xy,...,x,) and a nearly symmetric integer
vector y which is majorized by x, our problem is to verify the existence of a
solution AT=(A,,... ,A,,) to the following linear program:

DANPx=y, AN>0i=1..,n, DA=1, (1)
i=1

i=1

where {P,,P,,...,P,} is the group of cyclic permutations. We note that (1)
has a solution for given x and y if and only if it has a solution for the vectors
xT+(t,t,...,t) and yT+(t,¢,...,t), where t is an arbitrary real number.
Hence, we can assume that x;>0 for all the components of the integer
vector x.

Summing the elements of 27_ A, P,x=y yields

(2";)(2&)= 2!/,--
i=1 i=1 i=1
Since y is majorized by x, the latter equality implies that Z7. A =1.
Therefore we may focus on solving the system

SANPx=y, AN>0, i=12..,n (2)

To prove the existence of a solution to (2) for integer vectors x and y
satisfying the above assumptions, we shall first study the solvability of (2) for
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a more general setting. Thus, suppose now that x and y are any two vectors
in R™, which are not necessarily integral.
The equations in (2) can be written as CA=y, where

(X, Xy - x,
X, xl Xn—1
C=| : ) (3)
. M
Xo Xzttt XX

The matrix C is recognized in the literature as a cyclic matrix [1,4,6]. It is
known that

detC = 11 3 (aj ). (3a)

i=1 i=1

where {a;,ay,...,a,} are the distinct nth roots of 1 [4,6].

Lemma 1. Let C be a cyclic matrix, and assume that either one of the
following is satisfied:

(i) 0<x,<xy- -+ <x,,
(ii) x1>x2" ° >xn>0

Then detC+#0.

Proof. Suppose that detC=0. Then from (3a) f(Z)=37_,x2'"'=0,
where Z" =1. From [5, p. 105] it follows that |Z| < max, ¢ ;¢,_1(%/%+1)=k.
Now, if the first condition holds, then |Z| <k <1, contradicting Z" =1.

To obtain the contradiction with the second condition being met, we
observe that f(Z)=0 with Z"=1 imply that g(V)=Z%%_,5,V"7/=0 has a
solution with V"=1. Again, it follows that |V|<max,_; .(x/x_,)<]1,
which contradicts V*=1. [

As a corollary of the above lemma, we have that the linear system CA=y
has a unique solution A for any vectors x and y, provided either one of the
conditions of Lemma 1 is satisfied. Next, we provide conditions under which
this unique solution A is nonnegative and satisfies X7_ A, =1.
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TueoreM 2. Let x"=(x,,...,x,) € R" satisfy 0<x,<x,< --- <x,, and
let y"=(yy,....Y,) ER" satisfy T7_, y,=Z7_ . Define

m= min_ (x,-x) and M= max (4~ e,
i=1,..., n—1 i=12,..., n

where i®1=1i+1 (mod n). If m >M, then the linear system

KT X, |

X, X Xn—1

: . A=y (4)
| X2 X3 1]

has a unique solution A=(A,,...,\,)7, which also satisfies 27_,A\=1 and
A>0.

Proof. The existence of a unique solution to (4) is ensured by Lemma 1.
Furthermore, summing the n equations of (4) and using the relation 27}_, y,
=37_,x>0, we have 37_\,=1. Thus it suffices to show that A>0.
Generate a new linear system as follows. '

For k=1,...,n, the kth row of the new system is obtained by subtracting
the (k®1)st row of (4) from the kth row of (4). [k®j=k+j (mod n).] If
A =(a,) is the matrix associated with this new system, then

G = Xn-i)@j®@1 ~ X(n—i)®j> i,j=1,...,n, (5)

where x,=1x,. From (5) we note that a;>m >0 for j7i, while a;=x, —x,
for j=1i. We also have

2a,=0  j=1...n (6)
i=1

The right-hand-side vector, y: of the new system A>\=§ is defined by

U= Y~ Yror

Suppose that A # 0, and let J={ j|]\; >0}. J is not empty, and =, A, >1.
Moreover, since a; >m for j7#i, and since the only negative coefficient in
any row i (i=1,...,n) is x; — x,,, which is associated with A;, we have

2 aA>m  foralli,i€]. (7)

i€J
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Let i be such that i & J. Applying (7) to the ith equation of the system AA = g?
and using the relation y; <M <m yield

—YaN=-G+ 2 a\>—g+m>0, i&]. (8)
€] jes

Since A; <0 for j€&],
%}%IM >0  for isatisfyingi & ]J. 9)
i

Summing (9) over all i such that i €], we have

S W = a)>0 (10)

T3 i

We complete the proof by showing that

2a,<0 for j&J.
i€

Using (5)—(6) and the fact that a; >m>0 for i#j, it is sufficient to
observe that one of the elements in the sum X,4,a; is the unique negative
element which exists in each column, i.e. the element x;, — x,. But the latter
is trivially implied by j&J, since by choosing i=j we see that g, =x, —x, is
an element in that sum. [

As a simple corollary of Theorem 2, we obtain the conditions referring to
the case x; >x,> - -+ >x, >0.

CoroLLARY 3. Let xT=(x,,...,x,)ER" satisfy x;>x,> -+ >x,>0,
and let y"=(y,,...,y,) ER" satisfy Z}_, y;=27_ %, Define

m = min (6,—24,) and M= __max (yi®1—yi)’

where i®1=1i+1 (mod n). If m > M, then the linear system (4) has a unique
solution A=(\,,...,\,)T, which also satisfies 27_,\,=1 and A >0.

The specialization of the above results to the case of majorized nearly
symmetric integer vectors is now straightforward.
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TuroreM 4. Let xT=(x,...,x,)ER™ be an integer vector satisfying
either one of the following:

(i) 0<x; <xy< -+ - <w,,,
(ii) 2, >x> -+ >x,>0.

If y is a nearly symmetric integer vector which is majorized by x, then the
linear system (2) has a unique solution A, which also satisfies 27 A\, =1 and
A>0, i.e., y is in the convex hull of the n cyclic permutations of x.

If an n-dimensional integer vector x has at least one nearly symmetric,
but not symmetric, integer vector, majorized by x, then there exist at least n
linearly independent such vectors y. This implies that at least n of the n!
permutations of x are needed to span the entire set of nearly symmetric
integer vectors which are majorized by x. The set of n cyclic permutations is,
therefore, minimal in this respect.

We also state that at least n /2 cyclic permutations are required to span a
nearly symmetric integer vector, provided the conditions of Theorem 4 are
met. To see this, consider the system (4), and observe that A,+A;q,=0
implies that y, >y,5, > ;00 (Or ¥, <y;0; <Y;es), thus contradicting the prop-
erty that the components of y may only take on one of two different values.
In fact, n/2 is a tight bound, since for an even n and the vectors xT=
(n,n—1,..., 1),yT= (n/2+1,n/2,n/2+1,...,n/2), we obtain AT =
(2/n,0,2/n,0,...,2/n,0).

As a corollary of Theorem 4, we have the following result.

Tueorem 5. Let xT=(x,,%,,...,x,) be an integer vector with x, #x; for
i#j, and let P be the permutation arranging the coordinates of x in
decreasing order. Then the convex hull of the vectors { P, Px,P,Px,...,P, Px}

contains the (';) nearly symmetric integer vectors which are majorized by x.
(t is given by t=37_x;, (mod n), and {P,,...,P,} is the group of cyclic
permutations.)

Theorem 5 can be applied to provide additional insight into the class of
integer symmetric optimization problems considered by Greenberg and
Pierskala [2]. They introduced several definitions.

DeFINITION 1. A set X is S-convex if x € X implies Sx € X for all doubly
stochastic matrices S.

DerFINITION 2. A function f is S-concave on an S-convex set X if for all
doubly stochastic matrices S

f(Sx) > f(x) forall x€X.
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Using the results in [3], the following is proved in [2].

TueoreM 6. If X is S-convex and f is S-concave on X, then for any
integer point x € X, there exists a nearly symmetric integer point y such that

fly) > f(x).

We shall now show that Theorem 5 enables us to relax the S-concavity
property of f in Theorem 6. Given a permutation matrix P, define

X(P)={x€X, x;#x,i7j, and
the coordinates of Px are in decreasing order}.

Replace the S-concavity property by

(i) For any permuatidn matrix P

f(8x) > flx)

for all x€ X(P) and for all matrices S which are convex combinations of
{P,P,P,P,...,P,P}, and
(ii) For any doubly stochastic matrix S

f(Sx) > f(x)  forall x¢& L}J X(P).

Now, Theorem 5 ensures that for any integer point x in U X(P), there exists
a nearly symmetric integer point y such that f(y)>f(x), while from
(ii), combined with the results of [3], we obtain the same property for
x & U X(P).

Finally, we note that X — U X(P) is contained in the union of n(n—1)/2
(n—1)-dimensional hyperplanes. Hence, if X is a convex, n-dimensional set,
then the S-concavity property is relaxed on U X(P), which is dense in X.

Both authors wish to thank an anonymous referee for his suggestions and
comments.
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