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We consider a rather large class of p-facility location
models including the p-median, p-center, and other re-
lated and more general models. For any such model of
interest with p new facilities, let v(p) denote the min-
imal objective function value and let n be the num-
ber of demand points. Given 1 = p < ¢ = »n, we
find easily computed positive constants k(p, g}, where
v(ig)v(p) = k(p, q) = 1. These resulting inequalities re-
lating v(p) and v(g) are worst case, since they are at-
tained as equalities for a class of “hub-and-spoke”
trees. Our results also provide insight into some de-
mand point aggregation problems, where a graph of the
function v(g) can provide an upper bound on aggrega-
tion error. © 2002 Wiley Periodicals, Inc.
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1. INTRODUCTION

Let V = {v,...,v,} be a set of n distinct points in
some metric space M. For each pair of points x,y € M,
let d(x, y) denote the distance between x and y. For any
finite nonempty set Z of M, let

dx,Z) = d(Z,x) = min{d(x,y): y € Z}.

Suppose that with each v;,i = 1,...,n, is associated a
positive weight w;.

Let S be a subset of M satisfying V C §. The p-
median problenis to find X C S, |X| = p, such that the
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function

FX) = widvi, X),
i=1

is minimized. The set V is viewed as the set of customers
{(demand points), and S is the set of all possible sites for
locating servers (supply points). X is then the set of p
selected servers (medians). Note that the supply set S
is not necessarily finite, for example, the Euclidean pla-
nar 1-median problem, which is recognized as the We-
ber problem. Nevertheless, for many location problems,
S can be reduced a priori to a finite set, for example, the
rectilinear planar p-median problem and the p-median
problem on networks (see [8, 9]). Let v(p) denote the
optimal objective value of the p-median problem.

Since the points in V are distinct, v(p) is a decreas-
ing function of p with v(rn) = 0. Although this function
is defined only for integer values of p, we extend its
domain to the interval [1,n] by considering the linear
interpolation induced by the integer values of p. In par-
ticular, v(p) is a decreasing, continuous, piecewise linear
function over [1, n], satisfying v(n) = 0.

It is interesting and useful to explore marginal effects
of adding more servers. The demand point aggregation
work of Francis et al. [7] provides one reason of interest
for the study of the function v(p). For a number of well-
known network location models, if g aggregate demand
points replace the original » demand points, then, in a
well-defined sense, it is known that the value v(g) pro-
vides an upper bound on the maximum aggregation error.
The structure of the function v(g) indicates how the ag-
gregation error decreases as g increases. Since the prob-
lem of computing v(g) is generally NP-hard, the graphs
of v(g) have been laboriously obtained (to date) using
heuristic approaches and curve fitting; see, for example,
Francis et al. [4-6]. These graphs tend to obey the law



of diminishing returns (convexity): As g increases, v(g)
decreases, but at a decreasing rate. It can be shown that
when V is a set of points on the real line the function v is
indeed convex. However, in general, in spite of the above
computational observations, v(p) is not convex. The next
example (adapted from Broin and Lowe [3]) illustrates
that this function may not be convex even when V is the
node set of a tree network, and the distance function is
the one induced by the edge lengths.

Example 1. Consider a tree T = (V,E) with a node
set V. = {vi,va,v3,v4,Vs,Vs,v7} and an edge set E =
{1, v2), (v1,v3), (v, va), (v2, vs), (¥3, ve), (v4, v7)}. Suppose
that all six edges have unit lengths and w; = 1,i =
1,...,7. It is easy to see that v(1) = 9,v(2) = 7, and
v(3) = 4. Hence, v(2) > (v(1) + v(3))/2, and the function
v(p) is not convex.

Nevertheless, in this paper, we exhibit partial con-
vexity properties of the function v(p) for networks and
general metric spaces for a generalized median prob-
lem, called the (b, p)-facility ordered median problem.
(Its formal definition is given in the next section.) Sev-
eral properties of this class of ordered median problems
were discussed in Nickel and Puerto [14] and Francis et
al. [7]. This class of facility location problems contains a
number of the commonly known facility location mod-
els as special cases. In addition to the above p-median
problem, the p-center, the centdian, and the k-centrum
problems are also included in this class. The main re-
sult of our paper relates the optimal objective value for
two distinct values of p by an inequality. This general re-
sult implies, for example, the following partial convexity
result for the classical p-median problem on networks:
Consider the line in the (p, v)-plane, connecting the solu-
tion to the 1-median problem, (p,v) = (1,v(1)), with the
solution to the n-median problem, (p,v) = (n,0). Then,
for any value of p, the solution to the p-median problem,
(p,v(p)), is on or below the above line. More generally,
for any pair p,q = 1,...,n,p < g, the solution value
to the g-median problem, (g, v(q)), is either on or below
the line connecting the solutions to the p-median and n-
median problems. Further, we exhibit “hub-and-spoke”
tree networks where this linear interpolation exactly es-
timates v(p).

2. THE (b, p)-FACILITY ORDERED
MEDIAN PROBLEM

We now formally define the class of location problems
that we study. This class contains many of the commonly
known facility location models as special cases.

For each vector u = (uq,...,u,) € R", let & be the
vector obtained from u by sorting the components of u
in nonincreasing order, that is, & = (up), ..., u[n)), Where
) = = ).
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Let b = (by,...,b,) be a nonzero, nonnegative vec-
tor. For each vector u = (uq,...,un) € R", define
go(ut, ..., uy) = Y iy biuy. The (b, p)-facility ordered
median problem is to find X C §,|X| = p, such that
the function

Fp(X) = gewid(vy, X), ..., wad(vy, X))

is minimized. The demand-set (b, p)-facility ordered me-
dian problem is to find X C V,|X| = p, such that the
function

Fo(X) = gpw1d(v1, X), ..., wnd(vp, X))
is minimized.

The above ordered median problems were discussed
in Nickel and Puerto [14] and Francis et al. [7].

It is easy to see that the classical p-median and p-
center problems are obtained as special cases by setting
b=(1,...,1) and b = (1,0,...,0), respectively. Another
special case, which unifies the p-median and the p-center
models, is the k-centrum problem, defined as follows:

For each vector (uy,...,u,) € R*, define H,(uq, ..., u,)
to be the sum of the k largest components of the vector
(w1, ...,uy). The p-facility k-centrum problem is to find
X C S, |X| = p, such that the function

X)) = Hywid (1, X), ..., wpd(vy, X))

is minimized. Single-facility k-centrum problems were
first discussed in Slater [15] and Andreatta and Mason [1,
2]. The reader is referred to Tamir [16] for structural and
algorithmic results concerning the multifacility problem.
The k-centrum model unifies the center and the median
problems since the case k = 1 defines the p-center prob-
lem, while the case k = n corresponds to the p-median
problem. The case for arbitrary k corresponds to the spe-
cial case of the ordered median problem, where the first
k components of the vector b are equal to 1 and the last
n — k components are equal to 0.

Another well-known location problem, which is also
a special case of the above ordered median problem, is
the p-cent-dian problem. Given 0 =< a = 1, the p-cent-
dian problem is to find X C S, |X| = p, such that the
function

afa(X) + (1 — o) f1(X)

is minimized. The cent-dian model was introduced by
Halpern [10-12] and Handler [13] to obtain a good way
to trade off the minimum (efficiency) and minimax (eq-
uity) approaches of the p-median and the p-center prob-
lems. To obtain the cent-dian model, set b = (1, a,. .., ).

3. INCREMENTAL ANALYSIS OF (b, p)-
FACILITY ORDERED MEDIAN PROBLEM

Let v,(p) denote the optimal objective value of the
(b, p)-facility ordered median problem. Clearly, for p =
1,...,n,v,(p) is a monotone function of p with v,(n) = 0.
We demonstrated in the Introduction that v,(p) may not



be convex even for metric spaces induced by tree net-
works. Our goal is to derive some partial convexity re-
sults by relating the objective value v;(p) for two distinct
values of p. We will need the following lemmas:

The first lemma was proven in Francis et al. [7].

Lemma 1. Let u = (uy,...,un) and y = (y1,...,¥)
be nwo vectors in R". Suppose that u = y. Then, i =
(s s tp) = 9 = OVa)s - -5 Yind)-

Lemma 2. Leta; = --- = a, be a sequence of m real
numbers, and let by = --- = b, be a sequence of m
nonnegative real numbers. For j =1,....m—1,
(by + -+ bm)(blaj+l +eet bm—jam)

= (b1 + -+ by Jbra; + - + bnam).

Proof. The validity of the result for j = m—1 follows
directly from the nonnegativity of b = (by,...,b,) and
a; = --- = ay. Suppose that j = m — 2. Since
(bray + -+ bpay) = ((by + -+ + bj+1)aj+1

+bjr2aj2 + o+ buap),

it will suffice to prove that

(by +- -+ bmbraj1 + -+ bmjam) = b1+ + by )
b1+ +bjedajy +bji2aje + oo + buan).
Suppose, without loss of generality, that b, > 0. For
each k = 1,...,m — j, define B = by/(by + -+ +
bm-j). Also, for each k = 1,...,m, define v, = b/(b
+ -+ bp). Note that B¢ = 0,yx = 0 and S_poi Br =
> r=1 7+ = 1. Using this notation, we will equivalently
prove that

O—Zmﬂ%mem

1=j+2 t=j+2
m m
=|1- Z Y | Gj41 t+ Z V4.
1=j+2 t=j+2
The last inequality is then equivalent to
m m
Z (ﬂl—-j - vla, = aj+1 Z (ﬂl—j =y,
1=j+2 t=j+2

If ;- j =y, forallt = j+2,...,m, then equality holds.
Thus, suppose that this is not the case. Consider some
index t = j + 2,...,m. Then, from the monotonicity
and the nonnegativity properties of b = (by,..., by), we
obtain

v = b/ (b +"'+bm—j) = bt»j/(bl +"'+bm—j) = Bi-j.
Finally, to complete the proof, we need to show that

( Z (ﬂt—j - ')’t)at) / ( Z (,Bt—j - ')’t)) = ajt1-

t=j+2 =]+2

The left-hand side of the last inequality is a weighted
average of {ajs2,...,an}, and, therefore, it is bounded
above by a;43. Since, aji| = a;12, the validity of the
inequality is now established. =

Theorem 1. Let b = (by,...,b,) be a nonzero, nonneg-
ative vector, satisfying by = -+« = b,. For p = 2,...,n,
suppose that the solution to the (b, p)-facility ordered
median problem is attained by setting the p servers at
X" = A{x1,...,xp}, where exactly t servers, 0 =t = p,
are in § — V. Then, for any q,1 = p < g <n,

n-p+t n-gq+1
Vb(q)( > bi) = vp(p) ( > bi) :
Py P

Proof. Without loss of generality, assume that

P ex} ©S =V, (st Xp) = (Wne(penyt1s - - -1 Vi)
and

wid(X™,v1) = wad(X ™, v2) = -+ = wpd(X ™, va).

[Note that Wn-(p-ns1d(X ", Va-(p-ns1) = -+ =
wd(X ™, v,) = 0.] Consider now a feasible solution to the
g-median problem where servers are set at each node of
the subset X' = {vi,...,v4—p.x1,...,X,}. (We augment
g— p servers to X and set them at {v,,..., vq..,,}.) Using
Lemma2 withm=n—{(p—1),j=q—p.(ay,...,an) =
wd(X*,v1),... . wnd(X*,vy)), and b; for i = 1,...,m,
we have
(b] +oeeet bm)(wq—p+]d(x*y Vq*p+l)bl +

st Wmd(X*, vm)bm—j)

= (b1 + -+ by )w1d(X ", v)by +

st Wad(XT Vi )b)

= v(p)by + - + b)),

By definition, the last inequality is now written as

b+ + bm)gb(op--,O»Wq—p+ld(X*,Vqu+1),---,
Wand(X ™, v}, 0,...,0) < vp(p)(by + -+ + by ).

Since X* C X', we obtain
wid X', vi) = w;d(X",v;), j=1,...,n
Using Lemma 1,

fb(X/) = gb(O, . ,0, Wq_p+1d(X’,qup+1), PN
wnd(X',vm),0,...,0)

gb(O’ L 70a Wq—p+ld(X*avq—'p+l)y sy
Wnd(X™,v),0,...,0).

IA

Therefore,
(i + -+ b f5(X') = vp(p)by + -+ + b ).

Finally, note that from optimality v,(g) = f,(X’). There-
fore,

(b1 + -+ + bu)ve(q) = vp(p)by + --- + b'n*j)'
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Substituting m = n— (p — 1), j = g — p, we have

n—p+t n—g+t
vp(q) ( Z bi) = w(p) ( Z bi> X -
=1 =1

Remark 1. Let & = 1 if the solution to the (b, 1)-median
problem is attained at a point in 'V and 6 = Q otherwise.
The last theorem implies that for p = 1,...,n

n-6 n-p+l-6
vo(p) (Z bi) = vp(1) ( Z b,-) )
i=1

i=1

We point out that, for the k-centrum problem,

b = min(k, j), for j = 1,...,n. For the cent-dian
problem, 3511 bi =1 +(j — Da, for j = 1,...,n.

Recall that in the demand-set (b, p)-facility ordered
median problem § = V, and, therefore, all servers are in
V. Applying the above theorem to this discrete case with
q = p + 1, we obtain

voln — 1)/ (Zb) = vb(n—2)/ (éb)
] (59)

In particular, for the p-median problem where b =
(1,...,1),for p=2,3,...,n— 1, we have

w(p)/(n—p)=wp-1)/n—p+1).

The following “hub-and-spoke” tree example demon-
strates that the above inequalities are the tightest possible
for the demand-set ordered median problem.

Example 2. Consider a star tree network (“hub-and-
spoke tree”), T = (V,E), where V = {vy,...,v,} and
E = {(vi,va),...,(vi,v)}. Each edge has a unit length,
and w; = 1,i = 1,...,n. For any vector b satisfying the
hypothesis of Theorem 1, it is easy to verify that vy(p) =
SiUby, for p = 1,...,n — 1, and vy(n) = 0. (Another
equivalent example is a complete graph with unit lengths
and node weights.)

More generally, we have the following property for
the demand-set (b, p)-facility ordered median problem:

Property 1. Let b = (by,...,b,) be a nonzero, non-
negative vector, satisfying by = .-+ = b,. Consider the
demand-set (b, p)-facility ordered median problem. For

each i = 1,...,n, define ¢; = w;min;.; d(v;,v;), and let
¢ = min;=y,_, c;. Suppose that n = 3. The following are
equivalent:

1
n—1
vpn—1) (Z bi) = vy(1)by.
=1

(2) Forallp=1,...,n—1,

n—=1 n—p
vp{p) ( bi) = wp(l) ( bi) .
i=1 i=1
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(3) There exists a node vy, € V, such that wid(vy,v;) = c,
forallv, eV, i+ k.

Proof. We start by showing that (3) implies (2). For
all j,j=1,...,n—1,let bj = S i bi. Indeed, if there
is a node v, with w;d(vg,v;) = ¢ for i # k, then by
establishing servers at any subset X C V which contains
v, | X| = p, the objective value of the corresponding
solution will be cby. But since cb; is a lower bound on
vs(p), we get vi(p) = cb,. Clearly, for p = 1, the server
is optimally located at vy, and so v,(1) = cb{. Thus,
vp(p)bi = vp(1)b}.

Clearly, (2) implies (1). We conclude by showing that
(1) implies (3).

Note that v,(n — 1) is attained by establishing servers
at all nodes but one, say v,. Moreover, vy(n — 1) =
byw; min 4, d(v;, v,). The optimality of vy(n — 1) implies
that v, must satisfy w, min;., d(v,,v;) = c, where ¢ is
defined above. Thus, v,(n — 1) = cby. Using (1), we con-
clude that

Vb(l) = be.

Suppose that v,(1) is attained by establishing a server
at node v;. From the definition w;d(v;, v¢) = ¢ for each
i=1,...,ni # k. Therefore, if max;.; w;d(v;,v¢) > c,
we would get v,(1) > cby, contradicting v,(1) = chy.
We conclude that max;.; w;d(v;, vx) = c, and, therefore,
wid(v;,v) = ¢ for each i = 1,...,n,i #+ k. This proves
(3). =

We note in passing that for the important special case
of the demand-set p-median problem, which has moti-
vated our study, the following stronger property holds.
For the sake of brevity, we omit the proof.

Property 2. Consider the demand-set p-median prob-
lem. For each i = 1,...,n, define ¢c; = wyminj.; d(v;, v;),
and let ¢ = min;=,_nc;. Suppose that n = 3. The fol-
lowing are equivalent:

(1) There exists an integer p',1 < p' < n, such that
vp(p) = wp(I)(n — p')/(n — 1).
(2) Forallp =1,...,n,

vp(p) = vp(1)(n — p)/(n — 1).

(3) There exists a node v, € V, such that w;d(vi,v;) = c,
forallv,eV,i+k.
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