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Abstract

Stopping games (without simultaneous stopping) are sequential
games in which at every stage one of the players is chosen according
to a stochastic process, and that player decides whether to continue the
interaction or stop it, whereby the terminal payoff vector is obtained
by another stochastic process.
We prove that if the payoff process is integrable, a δ-approximate
subgame perfect ε-equilibrium exists; that is, there exists a strategy
profile that is an ε-equilibrium in all subgames, except possibly in a
set of subgames that occurs with probability smaller than δ (even after
deviation by some of the players).

1 Introduction

Stopping games (without simultaneous stopping) are n-player sequential
games in which, at every stage, one player is chosen according to a stochastic
process, and that player decides, whether to continue the game or to stop it.
Once the chosen player decides to stop, the players receive a terminal payoff
that is determined by a second stochastic process.
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Stopping games have been introduced by Dynkin (1969), who studied two-
player zero-sum games with bounded payoffs. Dynkin proved the existence
of the value and pure optimal strategies in that game.

Dynkin’s result has been extended to the case in which players can stop
simultaneously (see, e.g., Kifer (1971), Neveu (1975), Rosenberg, Solan and
Vieille (2001)).

Multi player stopping games (without simultaneous stopping) are a subclass
of sequential games with perfect information. By Mertens (1987) it follows
that every such game has an ε-equilibrium. The ε-equilibrium strategies that
were constructed by Mertens (1987) employ threats of punishment, which
might be non-credible. Stopping games were used to model, e.g., exit from
shrinking markets (Fine and Li (1989), Ghemawat and Nalebuff (1985)), du-
els (Karlin (1959)), and investments (Kifer (2000)). In such applications, it is
not clear whether the players will implement a Nash equilibrium that involves
non-credible threats. Recent work concentrates on the existence of subgame
perfect equilibria. The question whether every sequential game with perfect
information has a subgame perfect equilibrium is still open and the existence
was proved only for some subclasses of these games.

Solan and Vieille (2003) studied multi-player stopping games, where the or-
der by which players are chosen is deterministic, and the probability that
the game terminates once the chosen player decides to stop may be strictly
less than 1. They proved that this game has a subgame perfect ε-equilibrium
in Markovian strategies. Furthermore, if the game is not degenerate, this
ε-equilibrium is actually in pure strategies.

Solan (2005) studied an n-player game in which both the terminal payoff
process and the process by which players are chosen are stationary. Solan
proved the existence of either a stationary ε-equilibrium or a subgame perfect
0-equilibrium.

Mashiah-Yaakovi (2008) generalized Solan’s (2005) result to the case where
both of the processes that define the stopping game are Markovian and peri-
odic, rather than stationary. Mashiah-Yaakovi proved the existence of either
a periodic subgame perfect ε-equilibrium or a subgame perfect 0-equilibrium
in pure strategies.
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Maitra and Sudderth (2007) present sufficient conditions for the existence
of subgame perfect equilibria in multi player stochastic games with Borel
state space and compact metric action sets. Their conditions do not hold
when the payoff is undiscounted.

Recently, Flesch et al. (2008) proved the existence of a subgame perfect
ε-equilibrium in every n-player limiting average recursive games with perfect
information in which the payoffs in all absorbing state are non-negative.1

In a general stopping game there might be a continuum of subgames. Fur-
thermore, the expected continuation payoff at a given stage k is a measurable
function (with respect to the σ-algebra generated by the play up to stage k),
and therefore it is defined almost surely, and not for every history. Hence,
the traditional concept of a subgame perfect equilibrium should be adapted.

In this paper we define a variant of the concept of subgame perfect equi-
librium, a δ-approximate subgame perfect ε-equilibrium, which is ap-
propriate to stopping games. A strategy profile σ is a δ-approximate sub-
game perfect ε-equilibrium if there is an event G that occurs with probability
smaller than δ, such that for every stage K ∈ N, and every event F ∈ Fk in
the complement of G that occurs with positive probability, no player can gain
more than ε by deviating in the game that starts at stage K, conditioned that
the event F occurs. That is, σ induces an ε-equilibrium in every subgame,
except perhaps a set of subgames that occur with probability smaller than
δ.

We show that every stopping game (without simultaneous stopping) has a
δ-approximate subgame perfect ε-equilibrium, under merely an integrability
condition on the payoff process.

The structure of the proof is similar to that of Shmaya and Solan (2004),
who proved that every two-player stopping game (with simultaneous stop-
ping) has an ε-equilibrium in randomized stopping times. Their proof is

1A state s in a stochastic game is called absorbing, if once the game reaches that state,
it stays there forever, whatever the players play; otherwise it is called non-absorbing. A
stochastic game is called recursive if the stage payoff in every non-absorbing state is 0.
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based on a stochastic variation of Ramsey Theorem, which allows to reduce
the problem of existence of an ε-equilibrium in a general two-player stop-
ping game to that of studying properties of ε-equilibria in a simple class
of stochastic games with finite state space: the class of two-player absorb-
ing games, that always have stationary ε-equilibria (Flesch, Thuijsman and
Vrieze (1997)).

In the model that we study the approximating game is equivalent to a multi-
player absorbing game, yet stationary equilibria may not exist in such games,
and it was not known whether such games have subgame perfect ε-equilibria.
The core of our proof is that indeed subgame perfect ε-equilibria exist in
this class of games. Furthermore, under some sufficient conditions, one can
bound from below the probability of termination in each period of the game,
under these ε-equilibria, a property which is needed for using the technique
of Shmaya and Solan.2

The paper is organized as follows: In Section 2 we present the model, some
basic definitions, and the main result. In Section 3 we study the class of
periodic stopping games whose filtration consists of finite σ-algebra, and we
prove that games in this class have a subgame perfect ε-equilibrium. The
proof of the main result appears in Section 4.

2 The model and the main results

2.1 The model

Definition 2.1 A stopping game is given by Γ = (I, Ω,A,P,F , (ik)
∞
k=1 , (ak)

∞
k=1 , a∞)

where:

• I = {1, ..., n} is a non-empty finite set of players.

• (Ω,A,P) is a probability space.

• F = (Fk)
∞
k=1 is a filtration over (Ω,A,P), representing the information

available to the players at stage k.

2Flesch et al. (2008) study recursive games with positive payoffs, whereas we study
stopping games with general payoff process. It is therefore not clear whether their result
can be used in our proof.

4



• (ik)
∞
k=1 and (ak)

∞
k=1 are F-adapted processes. (ik)

∞
k=1 is an I-valued

process, which indicates the player who decides whether to stop the
game or to continue at stage k. (ak)

∞
k=1 is a <n-valued process, which

indicates the terminal payoff if player ik stops.

• a∞ ∈ L1(P) is a payoff function, representing the payoff if no player
ever stops at stage k.

The game is played as follows: An element ω ∈ Ω is chosen according to P.
At every stage k ∈ N, the players learn the atom of Fk that contains ω, and
player ik (ω) decides whether to stop the game or to continue.3 If player ik (ω)
decides to stop, the game terminates with terminal payoff vector ak (ω). If
player ik (ω) decides to continue, the play continues to stage k + 1. If the
game never terminates, the payoff is a∞(ω).

2.2 Strategies and equilibria

To save notations, we assume that each player i chooses actions in stages in
which ik = i, even after the game terminates.

Definition 2.2 A pure strategy for player i ∈ I is a {0, 1}-valued F-
adapted process σi := (σi

k)
∞
k=1. σi

k (ω) = 1 if player i stops the game at ω
when chosen at stage k (provided the game did not terminate before that
stage), while σi

k (ω) = 0 if player i continues at ω when chosen at stage k.

We denote by 0i the strategy of player i in which he continues whenever he
is chosen.

Definition 2.3 A (behavior) strategy for player i is a [0, 1]-valued F-
adapted process σi = (σi

k)
∞
k=1. σi

k (ω) is the probability that player i stops at
ω when chosen at stage k (provided the game did not terminate before that
stage).

A profile is a vector of strategies, one for each player. We denote by σ−i the
vector of strategies of all the players excluding player i.

Let θ be the termination stage, that is, the first stage k in which player
ik chooses to stop. In case the game never terminates we set θ = +∞. Note

3Formally, for every A ∈ Fk the players learn whether ω ∈ A or ω 6∈ A.
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that aθ is the payoff in the game.

A profile σ is called terminating if Pσ (θ < ∞) = 1; Namely, under σ,
the game terminates with probability 1.

A play is given by ω together with an infinite sequence of players’ actions.
Notice that the play is infinite even when θ is finite, since players choose
actions even after the game terminates.

Each profile σ together with P induces a distribution Pσ over the set of
plays. Let Eσ be the expectation operator that corresponds to Pσ. The
expected payoff vector under σ is

γ (σ) := Eσ[aθ].

For every F ∈ A such that P (F ) > 0, denote by γ|F (σ) the conditional
expected payoff vector under σ given F occurs, that is

γ|F (σ) = Eσ[aθ|F ].

Definition 2.4 Let ε ≥ 0, and F ∈ A such that P (F ) > 0. A profile σ is
an ε-equilibrium given F if for every player i ∈ I and every strategy σi of
player i,

γi
|F (σ) ≥ γi

|F
(
σ−i, σi

)
− ε.

The vector γ|F (σ) is called an ε-equilibrium payoff vector given F .

In particular, σ is an ε-equilibrium if and only if it is an ε-equilibrium given Ω.

For every K ∈ N define the game that starts at stage K, by

Γ|K := (I, Ω,A,P, (Fk)
∞
k=K , (ik)

∞
k=K , (ak)

∞
k=K , a∞) .

Every strategy σi of player i in Γ induces a strategy σi
|K in Γ|K , by ignoring

the play in the first K − 1 stages.

In finite games in extensive form, a profile is a subgame perfect equilib-
rium if it induces an equilibrium in every subgame. In a stopping game,
there is a continuum of subgames. Therefore, it is natural to define the
concept of subgame perfect equilibrium, such that for every K ∈ N, and
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every event F ∈ FK such that P(F ) > 0, the profile induces an equilib-
rium in the subgame which starts at stage K given F occurs. We will study
a weaker concept of subgame perfect equilibrium, a δ-approximate sub-
game perfect ε-equilibrium, which requires that the induced strategy be
an ε-equilibrium in every subgame that starts at stage K, given event F oc-
curs, for every K ∈ N, and every event F ∈ FK such that P (F ) > 0, except
possibly a set of subgames which occurs with probability smaller than δ.

Definition 2.5 Let ε, δ ≥ 0. A profile σ is a δ-approximate subgame
perfect ε-equilibrium if there is an event G ∈ A with P(G) < δ, such that
for every stage K ∈ N, and every event F ∈ Fk, such that P (F ) > 0 and
F ∩G = ∅, σ|K is an ε-equilibrium in Γ|K given F .

2.3 The main result

The main result of the paper is:

Theorem 2.6 Every stopping game such that ‖a∞‖∞, supk∈N ‖ak‖∞ ∈ L1 (P)
has a δ-approximate subgame perfect ε-equilibrium, for every δ, ε > 0.

It is not known whether the game has a subgame perfect ε-equilibrium. The
rest of the paper is devoted to the proof of Theorem 2.6. We first provide a
sketch of the proof.

To simplify presentation, suppose that each σ-algebra Fk is finite. For every
positive integer k, every stopping time τ > k, every atom F of Fk, and every
ω ∈ F , define a periodic stopping game Γk,τ (ω) that starts at stage k, and
if no player stops before stage τ , then it restart at stage k with a new state
ω′ ∈ F that is chosen according to P conditioned on F . The game Γk,τ (ω)
is a finite stochastic game with perfect information. In Section 3 we prove
that the game has a subgame perfect ξ-equilibrium with special properties.
If Fk is general, the fact that they can be approximated by finite filtrations
without affecting the strategic properties of Γk,τ is proven in Shmaya and
Solan (2004, Section 6).

We now attach a color ck,τ from a finite set C to each of the periodic stop-
ping games Γk,τ (ω); the color captures the properties of the subgame perfect
ξ-equilibrium in Γk,τ (ω). Using a stochastic variation of Ramsey’s Theorem
(Shmaya and Solan (2004), Theorem 4.3), we concatenate subgame perfect
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ξ-equilibria in (Γk,τ (ω)) to construct a δ-approximate subgame perfect ε-
equilibrium in Γ.

The structure of the proof is similar to that of Shmaya and Solan (2004),
yet some details are quiet different. Shmaya and Solan studied two-player
stopping games with simultaneous stopping; they show that the two-player
approximating game is equivalent to a two-player absorbing game, and they
used the fact that two-player absorbing games have stationary ξ-equilibria
(cf. Flesch, Thuijsman and Vrieze (1997)). In the model that we study the
approximating game is equivalent to a multi-player stochastic game, yet sta-
tionary equilibria may not exist in such games, and it was not known whether
the induced multi-player stochastic games have subgame perfect equilibria.
Another difficulty arises with the concatenation of the subgame perfect equi-
libria in the finite games: when a stationary equilibrium exists, one can bound
from below the probability of termination in each period of the game, and use
this property to properly concatenate strategies in different approximating
games. When a stationary equilibrium does not exist, such a lower bound is
not available. In section 3 we provide sufficient conditions for the existence
of such a lower bound, and in Section 4 we show that these conditions can
be assumed w.l.o.g.

3 Periodic stopping games with a finite fil-

tration

Periodic stopping games in which the filtration is finite play an important
role in the proof of Theorem 2.6. In the present section we prove that these
games have subgame perfect ε-equilibria.

Suppose that the filtration is finite, that is, each Fk has finitely many atoms,
and F1 has a single atom. Given a bounded stopping time τ , consider the
game that restarts at time τ : if no player stops before time τ , then at time
τ the game restarts, with a new state ω ∈ Ω that is chosen according to P ,
independently of previous choices of the state. Such a game can be repre-
sented as a stochastic game in which each atom of each Fk correspond to a
state. We call such a game “a stopping game on a finite tree”.

Definition 3.1 A stopping game on a finite tree is given by T =
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(
S, S0, r, (Cs, ps, is, as)s∈S0

, a∞
)
, where

•
(
S, S0, r, (Cs)s∈S0

)
is a tree. S is a nonempty finite set of nodes, S0 ⊂ S

is the set of nodes which are not leaves, S1 := S \S0 is a nonempty set
of leaves, r ∈ S is the root, and for each s ∈ S0, Cs ⊆ S \ {r} is the
nonempty set of children of s.

• For every s ∈ S0, ps is a probability distribution over Cs.

• For every s ∈ S0, is ∈ I is the player who can terminate the game at
node s, and as ∈ R is the terminal payoff at that node.

• a∞ ∈ <n is a payoff vector.4

A stopping game on a finite tree starts at the root r. If the current node
is s ∈ S0 and the game did not terminate before, player is decides whether
to stop the game or to continue. If he stops, the game terminates and the
terminal payoff vector is as. Otherwise, the game continues, and a new node
s′ ∈ S is chosen according to ps. If s′ ∈ S0, the process repeats itself with s′

as the current node; if s′ ∈ S1, the process repeats itself with r as the current
node. If the game never terminates, the payoff vector is a∞.

A stopping game on a finite tree is a stochastic game with perfect infor-
mation. A (behavior) strategy σi for player i is a function from the set of all
finite histories that end at a decision node of player i, to [0, 1]. A strategy
σi is stationary if the play after every given history is a function of the last
decision node in the history.

Denote by H the space of all finite histories, and by H∞ the set of all infinite
histories. H∞, equipped with the σ-algebra spanned by the cylinder sets, is
a measurable space.

Let θ be the termination node, that is, the first node s in which player
is chooses to stop. In case the game never terminates we set θ = +∞. Thus
aθ is the payoff vector in the game.

4For simplicity, in this model, unlike the general one, we assume that a∞ is a payoff
vector, rather than an integrable payoff function.
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Each profile σ together with the distributions (ps)s∈S0 , induces a distribu-
tion Pσ over H∞. Let Eσ be the expectation operator that corresponds to
Pσ. The expected payoff vector under σ is

γ (σ) := Eσ[aθ].

For every finite history h ∈ H, we denote by T|h the restriction of T to
the subgame that start after history h occurs. Given a finite history h =
(s1, b1, s2, b2, ..., sL) ∈ H (such that sl is a node and bl is a chosen action
of player isl

), and strategy σi of player i ∈ I, we define the continuation
strategy of player i given the history h occurs by

σi
|h (h′) := σi (h, h′) ,

for every h′ = (s′1, b
′
1, s

′
2, b

′
2, ..., s

′
M) ∈ H such that sL = s′1, is′M = i, and

(s1, b1, ..., sL, b′1, s
′
2, b

′
2, ..., s

′
M) ∈ H. Note that σi

|h is a strategy in T|h.

Let γ|h (σ) be the expected payoff vector that corresponds to the profile σ|h
in the subgame T|h.

Definition 3.2 Let ε ≥ 0. A profile σ is a subgame perfect ε-equilibrium
if for every history h ∈ H, the profile σ|h is an ε-equilibrium in the subgame
T|h.

Assuming no player ever stops, the collection (ps)s∈S0
of probability distri-

butions at the nodes induces a probability distribution over the set S1 of
leaves, and over the set of branches that connect the root to the leaves. For
every set E ⊆ S, denote by πE the probability that the chosen branch passes
through E.

Let S0,i := {s ∈ S0|is = i} be the set of decision nodes of player i. In
general, given a set of nodes E, we indicate by Ei := E ∩ S0,i the subset of
E which contains the decision nodes of player i in E.

Let Zi := {s ∈ S0,i | ai
s = 0} be the set of decision nodes of player i in

which his terminal payoff is zero. Below we will assume w.l.o.g. that the
maximal payoff that a player can achieve when all other players continue is
0, so that Zi will be the set of all states in which player i can stop and obtain
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his optimal payoff.

The next theorem states that if πZi
, the probability that the game passes

through Zi, is close to 1, for every i ∈ I, and if every player can gain at
most 0 by terminating the game by himself, then the game has a subgame
perfect 2ε-equilibrium, for every ε > 0. Furthermore, unless the equilibrium
is stationary, there is a lower bound on the termination probability, even in
case one player deviates, and this bound does not depend on the filtration
or on the depth of the finite tree.

Theorem 3.3 Let D ∈ N, D > 2, and let ε ∈ (0, min{ 1
2D

, 1
n
}). Let

T =
(
S, S0, r, (Cs, ps, is, as)s∈S0

, a∞
)

be a stopping game on a finite tree that
satisfies the following conditions :

Q.1 for every s ∈ S0, as ∈ R :=
{
0,± 1

D
,± 2

D
, ...,±D

D

}n
;

Q.2 maxs∈S0,i
ai

s = 0, for every i ∈ I;

Q.3 πZi
> 1− ε3

32
, for every i ∈ I.

Then the game has a subgame perfect 2ε-equilibrium σ∗. Furthermore, unless
the equilibrium is stationary, there is an integer B = B (ε, n) such that under
σ∗ the game terminates during every 3B periods with probability at least ε6

72B

even if one of the players deviates.

The proof of Theorem 3.3

The proof distinguishes between three cases. We start with identifying two
cases where a stationary equilibrium exists (Section 3.1). We then study the
periodic game excluding these cases (Section 3.2).

3.1 Stationary equilibria

We first discuss the case in which the vector a∞ is non-negative. By Condition
Q.2, the highest payoff that a player can obtain by stopping is 0. Therefore
we obtain the following:

Lemma 3.4 If ai
∞ ≥ 0 for every i ∈ I, then (0i)i∈I is a stationary 0-

equilibrium.
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From now on we assume the following:
A.1. There is a player j ∈ I such that aj

∞ < 0.

For the second type of equilibrium we need some definitions.

Definition 3.5 A player i ∈ I is called dummy if ai
∞ ≥ 0, and ai

s ≥ 0 for
every s ∈ S0 such that is 6= i.

A dummy player has no reason to terminate the game, since whatever hap-
pens his payoff is at least 0, his maximal payoff if he stops. Consider the game
T in which all dummy players were recursively eliminated. Every subgame
perfect ε-equilibrium in T can be extended to a subgame perfect ε-equilibrium
in T , by instructing all dummy players to continue whenever chosen. There-
fore, we assume the following w.l.o.g. :
A.2. There are no dummy players in T .

Assume that the profile σ is a stationary profile. Since σ is stationary, σ
is a subgame perfect (ε-) equilibrium in T , if and only if for every s ∈ S0,
σ induces an (ε-) equilibrium in the subgame which starts at stage s. We
denote by γ|s (σ) the expected payoff when the initial node is s rather than
r when the players follow a stationary strategy σ.

Assume next that there is a player i ∈ I who has a stationary strategy
σi such that all the players (excluding player i) prefer that player i follows
σi while all the other players continue whenever chosen, rather than they
stop the game by themselves. Assume also that by following this strategy
player i obtains 0, in every subgame (which is the maximal payoff he can
receives by stopping). In this case we say that player i is a social welfare
player. We show that under Assumptions A.1 and A.2, if player i is a so-
cial welfare player, then the game has a subgame perfect (ε-) equilibrium, in
which player i follows σi, and all the other players (except, perhaps, for one)
continue whenever chosen (see Lemma 3.7).

Definition 3.6 A social welfare player is a non-dummy player i ∈ I
who has a pure stationary strategy σi of player i, such that

γi
|s′
(
0−i, σi

)
= 0 ∀s′ ∈ S0 and, (1)

γj
|s′
(
0−i, σi

)
≥ γj

|s′
(
0−i,−j, σi, σj

)
∀j 6= i, σj 6= 0j and s′ ∈ S0, (2)
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where 0−i,−j is the profile in which all the players, excluding players i and j,
continue whenever they are chosen.5

Consider Definition 3.6. By Assumption A.1 and Condition Q.2, and since
σi is stationary, such σi is necessarily terminating. Furthermore, by Eq. (1)
player i can gain 0 by following σi, and therefore under the strategy σi, player
i stops only at nodes s ∈ Zi, that is, at nodes s ∈ S0,i where ai

s = 0.

By Eq. (2), if player i is a social welfare player, then every player j 6= i
prefers that player i terminates the game according to the strategy σi rather
than he himself does so. This leads us to next type of equilibrium:

Lemma 3.7 If there is a social welfare player, then there is a stationary
subgame perfect ε-equilibrium, for every ε > 0.

Proof : Let i ∈ I be a social welfare player. There are two cases.

1. ai
∞ < 0: the profile “player i follows σi and all other players continue

whenever chosen” is a stationary subgame perfect 0-equilibrium.

2. ai
s < 0 for some s ∈ S0: the profile “player i follows σi, player is

stops with probability ε′ sufficiently small, whenever the game reaches
node s, and all other players continue whenever chosen” is a stationary
subgame perfect ε-equilibrium.

Since player i is not dummy, at least one of these cases hold.

The result of Lemma 3.7 is tight, in the sense that the game needs not have
a subgame perfect ε-equilibrium in pure strategies, nor a subgame perfect
0-equilibrium (cf. Solan and Vieille (2003), Example 3).

From now on we assume the following:
A.3. There are no social welfare players.

5The strategy σi of a social welfare player i could be a behavior strategy rather than
pure. Later we prove that if there is no player that has a pure strategy which satisfies Eq.
(1) and Eq. (2) then the game has a subgame perfect ε-equilibrium in pure strategies.
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3.2 Non-stationary equilibria

Assumption A.1 ensures that the profile (0i)i∈I (according to which all play-
ers always continue) is not a subgame perfect equilibrium. By Assumption
A.3, every player i ∈ I is not a social welfare player. Therefore, for every
player i ∈ I and every s ∈ S0,i, there is a player j ∈ I such that aj

s < 0.

Under these Assumptions we prove the next theorem:

Theorem 3.8 If Conditions Q.1-Q.3 and Assumptions A.1-A.3 hold, then
the game T has a subgame perfect 2ε-equilibrium in pure strategies.

The rest of this section is devoted to the proof of Theorem 3.8. For every
v = (vs)s∈S1

∈ <|S1|×n define an auxiliary game G (v), as a single round of
the game T (that start at the root r), such that if no player stopped in this
round, the game ends when it reaches a leaf s ∈ S1, with final payoff vs.

To prove Theorem 3.8, we construct a sequence of final payoffs (vm)m∈N,
and a sequence (µm)m∈N of subgame perfect ε-equilibria in (G (vm))m∈N with
corresponding payoffs vectors (um)m∈N, in which for every m > 1, the final
payoff in the leaves vm := (vm,s)s∈S1

are subgame perfect ε-equilibrium pay-
offs in earlier games in the sequence (that is, for every leaf s ∈ S1, vm,s = ul

for some l < m). We will then properly concatenate the profiles (µm)m∈N one
after the other. Finally, we use a diagonal extraction argument to show that
a limit of the concatenations of the profiles (µm)m∈N is a subgame perfect
ε-equilibrium in T .

We start by explaining the main ideas of the construction of these sequences.
The formal construction follows. We will simultaneously construct the three
sequences by induction. Assume we already constructed the first m elements
of each sequence as required.

The naive construction is to set vm+1,s = um for every leaf s ∈ S1. That
is, the final payoff in G (vm+1) is the ε-equilibrium payoff in the previously
constructed game. If um has a negative coordinate, that is, there is a player
who prefers to stop rather than obtaining the final payoff um, then in any
equilibrium in G (vm+1) the game terminates (by the players) with positive

probability. If moreover um � −
−→
ε2

2
:=
(
− ε2

2
, ...,− ε2

2

)
, that is the final payoff
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is below − ε2

2
for some player,6 then we could bound from below the proba-

bility of termination in any equilibrium in G (vm+1). If um � −
−→
ε2

2
for every

m ∈ N, one can construct a subgame perfect equilibrium along the lines
described in the previous paragraph.

Unfortunately, um may not be a non-positive vector, in which case all play-
ers will prefer to continue in G (vm+1), and we will not be able to use this

procedure to construct a terminating profile. Therefore, when um ≥ −
−→
ε2

2
our

construction is more intricate. Roughly, we set m′ < m to be the maximal

index such that um′ � −
−→
ε2

2
. In G (vm+1), for some nodes s ∈ S0, we instruct

the player is who controls s to stop at s, if he stopped at s in one of the
strategies µm′ , µm′+1, ..., µm. If player is stops at s according to µm̂, where
m′ ≤ m̂ ≤ m, then it means that player is prefer to stop at s, when the
play after s coincides with µm̂ and the final payoff in all leaves s′ that can
be reached from s, is vm̂,s′ . We then set vm,s′ = vm̂,s′ in these leaves. We
will show that in such a construction, infinitely many vectors among (um)m∈N

are � −
−→
ε2

2
, and therefore a subgame perfect ε-equilibrium can be constructed

along the lines described above.

To state the formal construction we need additional preparation, which are
done in Step 1. The formal construction of the sequences will be given in
Steps 2-4.

Step 1: Perturbation of the payoffs in T
Assumption A.1 ensures that in any subgame perfect equilibrium the game
terminates with probability 1. Assumptions A.1-A.3 ensure that if at most
one player, say player i, uses a stationary strategy in T that is not 0i, and
all the other players continue, then there is some player j whose expected
payoff is negative. In particular, there is at least one node s ∈ S0,j in which
player j is better off by stopping than continuing. If it was possible to bound
from above the negative payoff of player j uniformly (over all the trees), one
could bound from below the probability that player j stops, and use this
bound for constructing a subgame perfect ε-equilibrium in the game T . Un-
fortunately, such a uniform bound does not necessarily exist. In order to

6For every b, a ∈ <n, denote b ≥ a if and only if bi ≥ ai for every i ∈ I; b � a if and
only if there is i ∈ I such that bi < ai.
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get some bound, we will perturb the payoffs in T as follows: we reduce the
payoff ai

∞ by ε2 for every i ∈ I. Likewise, for every node s, we reduce the
payoff of every player who does not control the node by ε2. Formally, let
T̂ :=

(
S, S0, r, (Cs, ps, is, âs)s∈S0

, â∞
)

where âj
∞ := aj

∞ − ε2 for every j ∈ I;
âj

s := aj
s − ε2 for every s ∈ S0 and every j 6= is. Every subgame perfect

ε-equilibrium in T̂ is a subgame perfect 2ε-equilibrium in T .

Assumptions A.1-A.3 hold for T̂ . Hence there is a player j ∈ I such that
âj
∞ < −ε2. In addition, for every i ∈ I and every stationary strategy µi 6= 0i

of player i such that i stops at a set E ⊆ Zi and otherwise he continues,
there is a player j ∈ I who loses at least ε2 in T̂ under the profile (µi, 0−i).

We are now ready to simultaneously construct the sequences (vm)m∈N, (µm)m∈N,

and (um)m∈N in the perturbed game T̂ .

Step 2: The initial value u0

Set u0 := â∞. Then u0 � −
−→
ε2

2
.

Assume we already constructed the first m elements of each sequence as

required. We first discuss the case in which um � −
−→
ε2

2
.

Step 3: The case um � −
−→
ε2

2

In this case there is a nonempty set of players I ′, such that ui
m < − ε2

2
for every

player i ∈ I ′. We set vm+1,s := um for every s ∈ S1. We also set gm+1,s := m,
for every s ∈ S1. This is the index of the game whose ε-equilibrium payoff
was determined as vm+1,s.

By using an (approximate) backward induction process, we will construct
a specific ε-equilibrium in G (vm+1). Let µm+1 be the profile obtained by
using a backward induction in which at every node s ∈ S0:

• If is ∈ I ′, player is stops at s if and only if his payoff if he stops is at
least as much as his expected payoff if he continues.

• If is 6∈ I ′, player is stops at s if and only if his payoff if he stops exceeds
his expected payoff if he continues by at least ε.
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We say that players i ∈ I ′ use the regular rule, and players i 6∈ I ′ use the
ε-rule

This backward induction process produces a profile µm+1, in which, in every
subgame, no player can gain more than ε by deviating. That is, µm+1 is a
subgame perfect ε-equilibrium in G (vm+1).

Note that, since the players in I ′ use the regular rule, and since (by Condi-
tion Q.2) every player has nodes in which he is allowed to stop and receive
zero, the game will terminate with positive probability. Furthermore, all the
players who are not in I ′ use the ε-rule, so they delay their stopping even if
they lose, thereby increasing the probability that players in I ′ stop. As a re-
sult, and by Condition Q.3, the game G (vm+1) terminates with some positive
probability which is bounded from below (see Corollary 3.10). Moreover the
probability that either the game G (vm+1) or the game G (vm+2) terminate
is bounded from below, even if one of the players deviates (see Corollary 3.13).

We now formally state and prove some properties of the subgame perfect

ε-equilibrium µm+1 in case um � −
−→
ε2

2
.

Denote by φ (µm+1) the probability that under the profile µm+1 the game
G (vm+1) terminates, and by φi (µm+1) the probability that G (vm+1) is ter-
minated by player i.

The following lemma presents a lower bound on the probability φi(µm+1),
that the game G (vm+1) is terminated by a player i ∈ I ′. The lower bound
depends on the probability φ−i(µm+1) that the game is terminated by the
other players. Furthermore, this bound is a decreasing function of φ−i(µm+1).

Lemma 3.9 For every player i ∈ I ′ (that is, ui
m < − ε2

2
), the probability that

the game G (vm+1) will be terminated by player i, satisfies

φi (µm+1) ≥ 1− ε3

32
−

φ−i (µm+1)
(
1 + ε2

2

)
ε2

2

.

Proof Assume all the players follow µm+1. Recall that the set Zi is the set of
decision nodes of player i in which his terminal payoff is zero. For every node
s ∈ Zi, the game G (vm+1) does not terminate in s with positive probability
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only if one of the following two cases holds:
(i) the game is terminated before it reaches s by some player, which happens
with probability at least π{s};

7

(ii) the game does not terminate before it reaches s, and player i (who uses
the regular rule) prefers to continue, since his continuation payoff at s is not
negative.
Denote by rs and qs the probability that the subgame that starts at s is
terminated by player i, and by all of the players except i, respectively. The
subgame that starts at s is terminated either by player i, in which case i
receives at most 0, or by the other players, in which case he receives at most
1, or it might ends at the leaves, in which case player i receives at most
ui

m < − ε2

2
. As a result, the continuation payoff for player i at s is at most

rs · 0 + qs · 1 + (1− rs − qs) · (−
ε2

2
).

Hence, a necessary condition for player i to prefer continuing is:

qs · 1 + (1− rs − qs) · (−
ε2

2
) > 0,

which is equivalent to:

rs > 1− qs

1 + ε2

2
ε2

2

. (3)

In particular, if all players except i continue (that is, if qs = 0), then player
i stops at s with probability rs = 1.

By Condition Q.3, the probability that the chosen branch passes through Zi is
at least 1− ε3

32
. For every s ∈ S, denote by Succ (s) the set of all descendants of

s in the finite tree
(
S, S0, r, (Cs)s∈S0

)
. Let ZF

i := {s ∈ Zi| ∀s′ ∈ Zi, s 6∈ Succ(s′)}
be the frontier of Zi, that is the set of all the nodes in s′ ∈ Zi such that
there is no node in Zi that appears before s′. We divide the set ZF

i into
three disjoint sets X, Y and W : X contains the nodes in which the game is
terminated by one of the players except i before it reaches s (i.e., case (i)
holds); Y contains the nodes in which the game does not terminate before it
reaches s, but player i prefers to continue (i.e., case (ii) holds); W contains

7Recall that, for every set E ⊆ S, πE is the probability that the chosen branch passes
through E, given all the players continue whenever chosen.
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the nodes s ∈ ZF
i in which the game is terminated by player i, either at the

s, or at some node which appears before s.

If the chosen branch passes through X (with probability πX), then the game
is necessarily terminated by a player other than i; if the chosen branch passes
through Y (with probability πY ), then by Eq. (3), the conditional probability

that the game is terminated by player i is higher than 1−
∑

s∈Y π{s}qs

πY

1+ ε2

2
ε2

2

; if

the chosen branch passes through W (with probability πW ), then the game
is necessarily terminated by player i. The probability that the chosen branch
passes through either X, Y , or W is equal to the probability that the chosen
branch passes through Zi, so that

πX + πY + πW = πZi
≥ 1− ε3

32
.

To summarize the probability that the game is terminated by player i,
φi (µm+1), satisfies:

φi (µm+1) ≥ πY · (1−
∑

s∈Y π{s}qs

πY

1 + ε2

2
ε2

2

) + πW

= πY + πW −
∑
s∈W

π{s}qs

1 + ε2

2
ε2

2

= πZi
− πX −

∑
s∈W

π{s}qs

1 + ε2

2
ε2

2

≥ 1− ε3

32
− πX −

∑
s∈W

π{s}qs

1 + ε2

2
ε2

2

.

One can verify that the probability φ−i (µm+1) that the game is terminated
by one player other than i, is at least πX +

∑
s∈W π{s}qs, hence

φi (µm+1) ≥ 1− ε3

32
−πX −

∑
s∈W

π{s}qs

1 + ε2

2
ε2

2

≥ 1− ε3

32
−

φ−i (µm+1)
(
1 + ε2

2

)
ε2

2

.

From Lemma 3.9, one can derive a lower bound on the probability that
G (vm+1) terminates, which only depends on ε.
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Corollary 3.10 φ (µm+1) > ε2

4
.

The next lemmas introduce bounds on the probability that the game G (vm+1)
terminates when one player deviates. The following lemma claims that if the
deviator i is not in I ′ (i.e., ui

m ≥ − ε2

2
), then the game terminates with

probability at least ε4

6
, even if player i deviates.

Lemma 3.11 Let i ∈ I such that ui
m ≥ − ε2

2
. Then

φ
(
µ−i

m+1, 0
i
)
≥ ε4

6
. (4)

Proof If the probability that the game is terminated by player i satis-
fies φi (µm+1) < ε2

4n
, then Eq. (4) follows from Corollary 3.10. Assume

then that the probability that the game is terminated by player i satisfies
φi (µm+1) ≥ ε2

4n
.

Denote by X the set of decision nodes of player i in which the game G (vm+1)
is terminated by player i. In particular, πX = φi (µm+1).

Fix a node s ∈ X. Since i 6∈ I ′, player i uses the ε-rule. Since player i
stops at s, his continuation payoff at s is necessarily at most -ε.

Let qs be the probability that the subgame that starts at s terminates under(
µ−i

m+1, 0
i
)
. In that case, player i’s payoff is at least

qs ·
(
−1− ε2

)
+ (1− qs)

(
−ε2

2

)
.

Therefore, if player i follows µi
m+1 in the subgame that starts at s, he def-

initely receives at least this amount. A necessary condition for player i to
prefer stopping at s is,

qs ·
(
−1− ε2

)
+ (1− qs)

(
−ε2

2

)
≤ −ε,

which is equivalent to

qs ≥
ε− ε2

2

1 + ε2

2

≥ 2

3
ε.
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As a result, in case that player i deviates, the game terminates with proba-
bility φ

(
µ−i

m+1, 0
i
)
, which is at least

φ
(
µ−i

m+1, 0
i
)
≥
∑
s∈X

πs · qs ≥
∑
s∈X

πs ·
2

3
ε = φi (µm+1) ·

2

3
ε. (5)

Consequently, since φi (µm+1) ≥ ε2

4n
, and ε < 1

n
, Eq. (4) follows from Eq. (5).

As opposed to the previous case, if the deviator is a member of I ′, the
probability that the game G (vm+1) terminates when player i deviates is not
necessarily bounded from below. Nevertheless, the following lemma asserts
that if this probability is too small, then um+1, the ε-equilibrium in G (vm+1)

satisfies um+1 � −
−→
ε2

2
, and ui

m+1 ≥ − ε2

2
. As a result, player i is not a member

of I ′ in the game G (vm+2). Hence, by Lemma 3.11, the probability that the
game G (vm+2) terminates when player i deviates, is bounded from below
(see Corollary 3.13).

Lemma 3.12 Assume there is a player i ∈ I who satisfies:
(a) ui

m < − ε2

2
, and (b) φ

(
µ−i

m+1, 0
i
)

< ε6

64
. Then

(i) φi (µm+1) ≥ 1 − ε2

32
, (ii) ui

m+1 ≥ − ε2

2
, and (iii) there is a player j 6= i

such that uj
m+1 < − ε2

2
.

Proof
By Lemma 3.9 and by Conditions (a) and (b),

φi (µm+1) ≥ 1− ε3

32
−

ε6

64

(
1 + ε2

2

)
ε2

2

≥ 1− ε2

32
, (6)

and (i) follows.

Consider a pure strategy µi of player i in which he only stops whenever
he is chosen at nodes s ∈ Zi, that is, at each node s in which âi

s = 0.
By Condition (b) and Condition Q.3, if player i uses the strategy µi, while
all the other players follow µ−i

m+1, the game is terminated by player i with

probability at least 1 − ε3

32
− ε6

64
, so that his expected payoff is at least(

1− ε3

32
− ε6

64

)
· 0 +

(
ε3

32
+ ε6

64

)
· (−1− ε2) ≥ − ε3

16
.
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Since player i uses the regular rule, µi
m+1 is a best response against µ−i

m+1

in G (vm+1), and therefore ui
m+1 ≥ − ε3

16
, and (ii) follows.

Since ui
m+1 ≥ − ε3

16
, the probability q by which under µi

m+1 player i ter-
minates the game at a node in which he receives a negative payoff is low.
Indeed, in G (vm+1) one of the following cases occur: (1) player i terminates
the game in nodes in which he receives at most − 1

D
< −ε, with probability

q; (2) player i terminates the game at nodes in which he receives 0; (3) the
game is terminated by the other players with probability ε6

64
and player i

receives at most 1; (4) the game ends at the leaves, in which case player i
receives less than 0. Therefore, player i’s payoff is at most

q (−ε) +
ε6

64
· 1 > ui

m+1 > − ε3

16
,

so that

q <
ε2

8
.

Consider the strategy µi of player i in which he stops according to µi
m+1,

unless his terminal payoff is negative, in which case he continues. Since player
i is not a social welfare player, there is a player j such that his expected payoff
is less than -ε2, given player i played µi, the other players follow µ−i

m+1, and
the game terminates by player i. Hence, if the players (including player i)
follow µm+1, then with probability at least 1 − ε2

32
− ε2

8
− ε6

64
, the game is

terminated by player i as if he follows µi, and player j receives less than -ε2;
otherwise player j receives at most 1−ε2. Therefore, the ε-equilibrium payoff
of player j satisfies

uj
m+1 <

(
1− ε2

32
− ε2

8
− ε6

64

)(
−ε2
)

+

(
ε2

32
+

ε2

8
+

ε6

64

)(
1− ε2

)
= −ε2 +

ε2

32
+

ε2

8
+

ε6

64
< −ε2

2
,

and (iii) follows.

Summarizing the last two lemmas, if the probability that the game G (vm+1)
terminates when player i deviates is less than ε6

64
, then the probability that

the game G (vm+2) is terminated when player i deviates, is bounded from
below by ε6

64
.
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Corollary 3.13 For every i ∈ I, if φ
(
µ−i

m+1, 0
i
)

< ε6

64
then φ

(
µ−i

m+2, 0
i
)
≥

ε6

64
.

Proof By Lemma 3.11, if φ
(
µ−i

m+1, 0
i
)

< ε6

64
, necessarily ui

m < − ε2

2
.

Therefore, by Lemma 3.12, ui
m+1 ≥ − ε2

2
and um+1 � −

−→
ε2

2
.

Using again Lemma 3.11, it follows that, φ
(
µ−i

m+2, 0
i
)
≥ ε4

6
≥ ε6

64
.

Step 4: The case um ≥ −
−→
ε2

2

As mentioned before, if we set um to be the final payoff in every leaf in
G (vm+1), then we might not be able to use the iterative process to construct
a subgame perfect ε-equilibrium. To overcome this difficulty, we choose the fi-
nal payoffs (vm+1,s)s∈S1

from the set of the previous equilibrium payoffs, such
that the following conditions hold: (C1) The game G (vm+1) will terminate
with positive probability that is bounded from below; (C2) there will be an
integer B, such that for every 3B games G (vm+1) , G (vm+2) , ..., G (vm+3B),
and every player i ∈ I, one of these games terminates with positive proba-
bility which is bounded from below, even if player i deviates; and (C3) there
will be infinitely many games in the sequence such that the equilibrium pay-

offs � −
−→
ε2

2
.

Let m′ < m be the maximal index such that um′ � −
−→
ε2

2
. m′ is well defined

since u0 = â∞ � −
−→
ε2

2
. By Corollary 3.13, the game G (vm′+1) terminates

with some positive probability, which is bounded from below, given that all
players, except possibly one, follow µm′+1.

Assume we already defined vm+1. Consider the following profile in the game
G (vm+1): at every node s ∈ S1, player is stops, if and only if he stops at s ac-
cording to one of the profiles µm′+1, µm′+2..., µm. Denote this profile by µ. Let
Em+1 := {s ∈ S0|µis(s) = 1} be the set of nodes in which the players stop
according to µ. Denote, EF

m+1 := {s ∈ Em+1 | ∀s′ ∈ Em+1, s 6∈ Succ (s′)}
the frontier of Em+1. This is the set of the “highest” nodes in Em+1-there
is no node in Em+1 which appears before them in the tree. In particular, if
the players stop only in nodes which are in the frontier EF

m+1, rather than
in every node in Em+1, the probability that the game terminates, does not
change: πEm+1 = πEF

m+1
.
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By Corollary 3.10, φ (µm′+1) > ε2

4
, and therefore under µ the game G (vm+1)

terminates with probability πEm+1 > ε2

4
. In the construction below we will

use this property.

Although, the profile µ is not necessarily an ε-equilibrium in the game G (vm+1),
we can define a game G (vm+1) for which there is a subgame perfect ε-
equilibrium, such that the players stop at the frontier EF

m+1. Let s be a
node in EF

m+1. We can give player is an incentive to stop at s, by choosing
appropriate payoffs in the leaves of the subgame that start at s, as follows.
We choose some ms ∈ {m′, m′ + 1, ...,m} such that player is stops at s ac-
cording to µis

ms
, i.e., µis

ms
(s) = 1 (if there are more than one such ms, choose

one arbitrarily). We then set the payoff for every leaf s′ that can be reached
from s, to be equal to its payoff in the game G (vms), i.e., vm+1,s′ := vms,s′ .
Furthermore, during the backward induction in G (vm+1), we instruct the
players to follows µms in the subgame of G (vm+1) that starts at s. In other
words, the subgame of G (vm+1) that starts at node s, coincides with the
subgame G (vms) that starts at node s, and the profile µm+1|s coincides with
the profile µms|s.

Unfortunately, this profile might not satisfy Condition (C3), and therefore we
cannot use the iterative process to construct a subgame perfect ε-equilibrium.
Hence, in the game G (vm+1), we choose only a subset of nodes Am+1 ⊆ EF

m+1

such that only for each node s ∈ Am+1, we instruct the players to follow the
profile µms|s in the subgame that starts at node s. In each node which is not
in one of these subgames, we instruct the players to use the ε-rule.

We now explain how we choose the set Am+1. We first divide the set EF
m+1

into n disjoint subsets: for every player i ∈ I, let EF
m+1,i be the subset of

nodes s ∈ EF
m+1 that are controlled by player i. Let i0 be the index that

maximizes the probability πEF
m+1,i

that the chosen branch passes through

this set (given the players continue whenever chosen). We next divide the
chosen subset EF

m+1,i0
into two disjoint subsets: the first set is Zm+1,i0 which

includes each node s ∈ EF
m+1,i0

such that the terminal payoff ai0
s to player i0

is 0, and the second set is Nm+1,i0 which includes each node s ∈ EF
m+1,i0

such
that the terminal payoff ai0

s to player i0 is negative. Finally, we determine
either the set Zm+1,i0 or the set Nm+1,i0 to be the set Am+1, according to the
following rule:

24



(I) If in the previous game G (vm), either the set Am was not defined, or there
was a set Am but Am 6= Zm,i0 , then

• If in the current game, the probability to path through the set Nm+1,i0

is higher than the probability to path through the set Zm+1,i0 , then we
set Am+1 := Nm+1,i0 .

• Otherwise, we set Am+1 := Zm+1,i0 .

(II) If in the previous game G (vm), there was a set Am that satisfies Am =
Zm,i0 then:

• If in the current game, the probability to pass through the set Nm+1,i0

exceeds the probability to pass through the set Zm+1,i0 by more than
ε4

8n
, then we set Am+1 := Nm+1,i0 .

• Else, we set Am+1 := Zm+1,i0 .

The motivation of the choice of the set Am+1 is as follows. The set Am+1

is contained in a set EF
m+1,i0

, so each node in Am+1 is controlled by player
i0. Assume that player i0 is forced to stop in each node s ∈ Am+1, and all
the other players continue whenever chosen. Then, by Corollary 3.10, and
by (I) and (II), the game terminates with probability at least ε2−ε4

8n
. If, in

addition, Am+1 = Zm+1,i0 then, since player i0 is not a social welfare player,
there is another player j who is damaged in case that the game is terminated
by player i0, and after bounded number of games player j will prefer to stop.
By (II), this argument is also proper in case that the game is terminated
by the players other than i0 with a low probability. On the other hand,
if Am+1 = Nm+1,i0 then, by the properties of the expectation, after finitely
many games player i0 will prefer to stop only at nodes in which he obtains
0.

As was explained before, for every node s ∈ Am+1, we choose some ms ∈
{m′, m′ + 1, ...,m} such that µi

ms
(s) = 1. For every leaf s′ ∈ S1 ∩ Succ (s)-in

the subgame that starts at s define vm+1,s′ := vms,s′ , and the index of the game
that its ε-equilibrium payoff was determined as vm+1,s, is gm+1,s′ := gms,s′ ,
the same index as in the game G (vms). Furthermore, during the backward
induction in G (vm+1), we instruct the players to follows µms in the subgame
of G (vm+1) that starts at s.
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For every leaf s′ ∈ S1 that cannot be reached by nodes in Am+1, we set
vm+1(s) = um and gm+1,s′ := m. In addition, we instruct the players to
use the ε-rule during the backward induction in every node that cannot be
reached by nodes in Am+1. Let µm+1 be the appropriate ε-equilibrium.

If all the players follow µm+1, then (since um ≥ −
−→
ε2

2
and the players use

the ε-rule) every subgame that does not include nodes in Am+1 terminates
only in the leaves. Yet, Condition (C1) holds in G (vm+1), and the game
terminates with probability at least ε2−ε4

8n
(by Corollary 3.10). It is there-

fore left for us to prove that Conditions (C2) and (C3) also hold. In the
next lemmas we prove that the way we choose the sets (Am) guarantees that
these conditions hold. That is, although there need not exist a lower bound
for the probability of termination when one player deviates, Condition (C2)
holds: there is a bound B (which only depends on ε and n), such that if the

ε-equilibria payoffs um, um+1, ..., um+3B ≥ −
−→
ε2

2
, then for every player i ∈ I,

there is at least one game G (vm̂), for m̂ ∈ {m + 1, m + 2, ...,m + 3B}, such
that the game is terminated by one of the players with a probability which is
bounded from below, even if player i deviates (cf. Lemma 3.15). In addition,
Condition (C3) holds: there are infinite many games in the sequence such

that the equilibrium payoffs � −
−→
ε2

2
.(cf. Lemma 3.16).

We next formally present and prove the properties of the subgame perfect

ε-equilibrium µm+1 in case um ≥ −
−→
ε2

2
, which were introduced in the previous

paragraph.

The following lemma claims that there is a bound B that depends on ε and n,
such that if there are B+1 consecutive games G (vm+1) , G (vm+2) , ..., G (vm+B+1)
that satisfy that (i) the ε-equilibrium payoffs in these games are high, and
(ii) the players other than i stop with sufficiently small probability in these
games, then in one of these games player i is forced to stop in nodes in which
he obtains 0 by stopping.

A node s is called a “zero-node” if ais
s = 0: the terminal payoff to the

player who control the node is 0. It is called a “negative-node” if ais
s < 0.

Lemma 3.14 There is an integer B = B (ε, n) such that, if

(i) um, um+1, ...um+B ≥ −
−→
ε2

2
; and
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(ii) φ
(
µ−i

m+1, 0
i
)
, φ
(
µ−i

m+2, 0
i
)
, ...φ

(
µ−i

m+B+1, 0
i
)

< ε6

30n
; Then

there is m̂ ∈ {m, m + 1, ...,m + B} such that Am̂+1 includes zero nodes of
player i.

Proof Let B be a sufficiently large integer; below we determine how large

it should be. Assume that (i) and (ii) hold. By (i) um′′ ≥ −
−→
ε2

2
for every

m′′ ∈ {m + 1, m + 2, ...,m + B + 1}, and by (ii) player i is forced to stop due
to the construction in all the games G (vm+1) , G (vm+2) , ..., G (vm+B+1). In
particular, every game is necessarily terminated by player i with probability
at least ε2−ε4

8n
− ε6

30n
.

If Am+1 includes zero nodes, we are done. Otherwise, assume that for every
m′′ ∈ {m, m + 1, ...,m + B − 1}, Am′′+2 includes negative nodes. Therefore,
the probability that player i terminates the game G (vm′′+1) at nodes in which
he receives 0, is less than the probability that player i terminates the game
at nodes in which he receives a negative payoff. Consequently, if the game
is terminated by player i, his expected payoff is less8 than − ε

2
. Hence, if the

game terminates, player i’s expected payoff is at most

ε2−ε4

8n
− ε6

30n
ε2−ε4

8n

·
(
− ε

2

)
+

ε6

30n
ε2−ε4

8n

· 1 < −2ε2

3
.

Therefore, the game G (vm′′+1) terminates with probability at least ε2−ε4

8n
in

which case player i receives at most −2ε2

3
; otherwise, the game ends at a leaf

with probability at most 1− ε2−ε4

8n
in which case player i receives ui

m′′ > − ε2

2
,

so that

ui
m′′+1 <

ε2 − ε4

8n
·
(
−2ε2

3

)
+

(
1− ε2 − ε4

8n

)
· ui

m′′ .

Consequently, and by the construction of the games, it follows that, player
i’s expected payoff in the game G (vm′′+1) is at most

ui
m′′+1 <

(
1− ε2 − ε4

8n

)m′′+1−m

·1+

(
1−

(
1− ε2 − ε4

8n

)m′′+1−m
)
·
(
−2ε2

3

)
.

(7)

8Recall that, by Condition Q.1, for every s ∈ S0, as ∈ R =
{
0,± 1

D ,± 2
D , ...,±D

D

}n
,

where 1
D > ε.

27



For a sufficiently large m′′ the value of the right-hand side of Inequality (7)
is less than − ε2

2
. We set B to be the minimal m′′+1−m such that the value

in the right side is less than − ε2

2
, so the lemma follows.

Let

B = B (ε, n) = min

{
k ∈ N

∣∣ (1− ε2 − ε4

8n

)k

· 1 +

(
1−

(
1− ε2 − ε4

8n

)k
)
·
(
−2ε2

3

)
< −ε2

2

}
.

(8)
B is an appropriate bound for the previous lemma.

The next lemma deals with the constructions in Steps 3 and 4. It asserts that,
for every consecutive games G (vm+1) , G (vm+2) , ..., G (vm+3B), and every
player i ∈ I, there is at least one game G (vm′′), where m′′ ∈ {m, ..., m + B},
in which the probability that the game is terminated, when player i deviates,
is bounded from below.

Lemma 3.15 For every 3B consecutive games G (vm+1) , G (vm+2) , ..., G (vm+3B),
and every player i ∈ I, there is m′′ ∈ {m + 1, m + 2, ...,m + 3B} such that
the probability that the game G (vm′′) terminates, when player i deviates, is
at least φ

(
µ−i

m′′+1, 0
i
)
≥ ε6

64B
.

Proof In case that for some m′′ ∈ {m,m + 1, ...m + 3B − 2}, there is

um′′ � −
−→
ε2

2
, then the argument follows Corollary 3.13.

In addition, if there are m̃, m ∈ {m, m + 1, ...,m + 3B − 2}, in which

um̃, um ≥ −
−→
ε2

2
, and in G (vm̃+1) player i is forced to stop, while in G (vm+1)

player j 6= i is forced to stop, then we are done.

We next assume that, for every m′′ ∈ {m + 1, m + 2, ...,m + 3B − 2},
um′′ ≥ −

−→
ε2

2
, and player i is forced to stop in each game G (vm′′+1).

In particular, for every m′′ ∈ {m + 1, m + 2, ...,m + 3B − 2}, and every
player j 6= i,

φ
(
µ−j

m′′+1, 0
j
)
≥ φ

(
µi

m′′+1, 0
−i
)
≥ ε2 − ε4

8n
>

ε3 − ε5

8
>

ε6

64B
.

28



It is left to prove that φ
(
µ−i

m′′+1, 0
i
)
≥ ε6

64B
for some m′′.

Case 1: Assume to the contrary that for every m′′ ∈ {m + 1, m + 2, ...,m +
3B − 2},

φ
(
µ−i

m′′+1, 0
i
)

<
ε6

64B
.

We first deal with the case that Am+1 includes negative nodes. By Lemma
3.14 there is a minimal index m̂ ∈ {m,m + 1, ...,m + B} such that Am̂+1

includes zero nodes of player i. Furthermore, the probability that the chosen
branch passes the zero nodes in Em̂+1 is at least the probability that the
chosen branch passes the negative nodes in Em̂+1.

We will now estimate the probability that the game G (vm̂+1) is terminated
by player i in nodes which do not belong to Am̂+1.

Let X be the set of nodes in which the game G (vm̂+1) is terminated by
player i, excluding nodes in Am̂+1. By the construction, for every s ∈ X, the
node s cannot be reached by nodes in Am̂+1, and player i uses the ε-rule at s.
Denote by qs the probability that the subgame of G (vm̂+1) that starts at s is
terminated by the other players. Then, if player i continues in every nodes
in the subgame that starts at s, except for nodes in Am+1, his payoff is at

least qs · (−1− ε2) + (1− qs) ·
(
− ε2

2

)
. Hence, by following µi

m̂+1 his payoff is

at least this amount. Yet, he prefers to stop at s, so that

qs ·
(
−1− ε2

)
+ (1− qs) ·

(
−ε2

2

)
≤ −ε,

and therefore
2ε

3
≤ qs.

Thus, the probability πX , that the game is terminated by player i at nodes
which do not belong to Am̂+1 satisfies,

πX =
∑
s∈X

πs =
3

2ε
·
∑
s∈X

2ε

3
πs ≤

3

2ε
·
∑
s∈X

qsπs ≤
3

2ε
· φ
(
µ−i

m+1, 0
i
)

<
3ε5

2 · 64B
.

As a result of the upper bound on πX , the set Am̂+2 also includes zero nodes,
since the probability that the chosen branch passes the zero nodes in Em̂+1
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might decrease by at the most πX , while the probability that the chosen
branch passes through negative nodes in Em̂+1 increase by at the most πX .
Hence, the probability that the chosen branch passes through negative nodes
in Em̂+2 may exceeds the probability that the chosen branch passes through
zero nodes but by no more than

2 · 3ε5

2 · 64B
+

ε6

·64B
<

ε4

8n
.

By repeating this argument for the following B games in the sequence, it
follows that for every m′′ ∈ {m̂ + 1, m̂ + 2, ..., m̂ + B}, Am′′ includes zero
nodes.

Let H =
⋂m̂+B

m′′=m̂+1 Am′′ , be the set of nodes in which player i is forced
to stop in each game G (vm̂+1) , G (vm̂+2) , ..., G (vm̂+3B). By the upper bound
of πX it follows that

πH ≥ ε2 − ε4

8n
−B ·

(
3ε5

2 · 64B
+

ε6

64B

)
=

ε2 − ε4

8n
− ε5

64
·
(

3

2
+ ε

)
.

Player i is not a social welfare player, so there is a player j 6= i whose ex-
pected payoff given the game terminates at H is less than -ε2.

Hence, for every m′′ ∈ {m̂, ..., m̂ + B}, the expected payoff of j in G (vm′′+1)
under µm′′+1, given the game terminates, is at most

ε2−ε4

8n
− ε5

64
·
(

3
2

+ ε
)

ε2−ε4

8n

·
(
−ε2
)

+
ε5

64
·
(

3
2

+ ε
)

ε2−ε4

8n

· 1 ≤ −2ε2

3
.

Therefore, the expected payoff of j in G (vm̂+B) satisfies

uj
m̂+B ≤

(
1− ε2 − ε4

8n

)B

· 1 +

(
1−

(
1− ε2 − ε4

8n

)B
)
·
(
−2ε2

3

)
< −ε2

2
,

a contradiction.

Case 2: Assume now that Am+1 includes zero nodes. If for every m′′ ∈
{m + 1, m + 2, ...,m + B} the set Am′′ includes zero nodes, the proof is sim-
ilar to the previous case. If, on the other hand, there is a m′′ ∈ {m + 1, m +
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2, ...,m + B − 1} such that the set Am′′ includes negative nodes, then we
return to Case 1, and we are done.

The following lemma asserts that situation described in Step 3 occurs in-
finitely often.

Lemma 3.16 There are infinitely many games such that um � −
−→
ε2

2
.

Proof Assume to the contrary that um ≥ −
−→
ε2

2
for every m > m′′. Following

Step 4 in the construction, (Em+1)m>m′′ is a non decreasing sequence in the
following sense: the set of all descendants of Em+1 is contained in the set of
all descendants of Em+2, for every m > m′′. Furthermore, there is an infi-
nite subsequence of (Em+1)m>m′′ which is increasing. Indeed, in each game
G (vm+1), for m > m′′, there is at least one player whose expected payoff,
given the game is terminated at the set Am+1, is less than −ε2. Therefore,
if Em+1 = Em+2 = ..., then Am+1 = Am+2 = ..., thus there is necessarily a

game G (vm), where m > m + 1, such that um � −
−→
ε2

2
, a contradiction.

Since there is an infinite increasing subsequence of (Em+1)m>m′′ , and since
the set of the nodes in each game is a finite set, there is necessarily a game

G (vm) such that Em+1 contains only the root r, so that um � −
−→
ε2

2
, a con-

tradiction.

Concatenating the games and the profiles:
We are going to define a new sequence of finite games (Gm)m∈N, by properly
concatenating the games in (G (vm))m∈N. Let G1 := G (v1). Assume we al-

ready define (Gm)m′′

m=1. Let Gm′′+1 be the game that starts with one round of

T̂ and, if no player terminates, and the game reaches a leaf s ∈ S1, continues9

with Ggm′′+1,s
. In the same way we can concatenate the profiles (µm)m∈N,

and get a sequence of profiles (σm)m∈N that are subgame perfect ε-equilibria
in (Gm)m∈N.

By Lemma 3.16 it follows that, as m goes to infinity, the minimal length
of the path that connects the root to a leaf in Gm goes to infinity.

9Recall that, for every s ∈ S1 and every m ∈ N, gm+1,s is the index of the game that
its ε-equilibrium payoff was determined as vm+1,s.
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By Lemma 3.15, for every player i ∈ I the probability that the game Gm ter-
minates under (σ−i

m , 0i) before it reach a leaf goes to 1, as m goes to infinity.

Note that, every game Gm is equivalent to a finite partial game of T̂ which
start at the root.

The profile σm is an element in the space [0, 1]nm for some nm ∈ N. σm

can be identified with a point in [0, 1]N, by identifying the nm initial co-
ordinates with σm and the other coordinates with 0. The space [0, 1]N is
compact, and therefore (σm)m∈N has a subsequent that converges to a limit
σ.

Using a limiting argument, it is standard to prove that σ is a subgame perfect
ε-equilibrium (cf. Solan and Vieille (2003)).

From the proof it follows that the bound B = B (ε, n) defined in Eq. (8)
satisfies that according to σ the probability that the game terminates at ev-
ery 3B periods in the period stopping game is at least ε6

64B
, even if one of

the players deviates.

Remark 3.17 The proof of an existence of a subgame perfect 2ε-equilibrium
in Theorem 3.8 can be easily generalized to the case of a periodic stopping
game with bounded payoffs, without Conditions Q.1-Q.3. However, in the
absence of Condition Q.3, the upper bound B, as well as the lower bound of
termination probability under deviation, depend on the minimal probability
that the chosen branch reaches a leaf s, over the set of leaves.

4 The proof of Theorem 2.6

4.1 Preliminaries

Let Γ = (I, Ω,A,P,F , (ik)
∞
k=1 , (ak)

∞
k=1 , a∞) be a stopping game such that

‖a∞‖∞ ∈ L1 (P), and supk∈N ‖ak‖∞ ∈ L1 (P). Fix δ, ε > 0 once and for all.
Since every δ-approximate subgame perfect ε-equilibrium is δ′-approximate
subgame perfect ε′-equilibrium, for δ < δ′ and ε < ε′, we can assume that
0 < δ < ε < 1

4
.

Since the payoffs satisfy ‖a∞‖∞ ∈ L1 (P), and supk∈N ‖ak‖∞ ∈ L1 (P), and
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since we want to prove the existence of a δ-approximate subgame perfect
ε-equilibrium, we can assume w.l.o.g. that the absolute values of the payoffs
are bounded by 1, and moreover the range of the payoff processes is included
in the finite set R =

{
0,± 1

D
,± 2

D
, ...,±D

D

}n
, where ε2 < 1

D
< ε (cf. Shmaya

and Solan (2004)).

Fix a value ξ ∈
(
0, ε2

2

)
. In the rest of this subsection we prove that there is

no loss of generality assuming that:
A.4. There is a set of players J ⊆ I, and an increasing sequence 1 ≤ K1 <
K2 < ... of integers such that for every m ∈ N the following condition holds,
with probability at least 1− ξ3δ

64
:

(1) for every player j ∈ J , there is a stage k ∈ {Km, Km + 1, ..., Km+1 − 1}
such that player j receives 0 by terminating the game by himself at stage k,
and
(2) the maximal payoff every player j ∈ J can gain by terminating the game
by himself during stages Km up to Km+1 is 0, and
(3) every player i who does not belong to J , cannot terminates the game
during stages Km up to Km+1.

The motivation for this assumption is as follows. In the proof of Theo-
rem 2.6 we will use a reduction to periodic games ΓKmτ , which are played
between stages Km and a bounded stopping time τ ≥ Km+1. In the next
section it will be argued that these games can be approximated by games
with a finite filtration, that is, a collection of games on tree. Assumption
A.4 guarantees that with probability 1− δ

2
the approximating games satisfy

Conditions Q.1-Q.3 of Theorem 3.3. Therefore these approximating games
have subgame perfect ε-equilibria with some useful properties.

To see that assumption A.4 can be assumed w.l.o.g, let F̃ be a finite fil-
tration of Ω that satisfies:

1. a∞ is measurable with respect to F̃ .

2. For every F ∈ F̃ , and every (i, a) ∈ I ×R either (ik(ω), ak(ω)) = (i, a)
infinitely often, for every ω ∈ F , or (b) (ik(ω), ak(ω)) = (i, a) only
finitely many times, for every ω ∈ F .

Each F ∈ F̃ is measurable, and therefore there is K sufficiently large such
that F̃ can be approximated by sets in FK : there is a finite partition F̂ which
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is FK-measurable such that for every F ∈ F̃ there is F̂ ∈ F̂ that satisfies

P (FOF̂ ) = P (F \ F̂ ) + P (F̂ \ F ) <
ξ3δ

128(n + 1)|R|
.

Likewise, by replacing a∞ by a constant we add an additional noise of
ξ3δ

128(n+1)|R| . Therefore, Theorem 2.6 holds in the subgame that starts at stage
K. By a backward induction we proof that Theorem 2.6 is also holds in Γ.

4.2 Approximating partial games

We will use a stochastic variation of Ramsey’s Theorem due to Shmaya and
Solan (2004). We now introduce the concepts which are needed for the
formulation of this theorem and for using it.

Definition 4.1 Let (Ω,P,F) be a measurable space, and let (Fk)k be a
filtration. Let Y be any space. A function f : (k, τ) 7→ Y that assigns to
every positive integer k and every stopping time τ > k an element in Y , is
F-consistent if for every k ∈ N, every Fk-measurable set F , and every two
bounded stopping times τ1, τ2, we have

τ1 = τ2 > k on F implies fk,τ1 = fk,τ2 on F.

That is, if P (F ∩ {τ1 = τ2 > k}) = P (F ) then P (F ∩ {fk,τ1 6= fk,τ2}) = 0.

For every positive integer k, every stopping time τ > k, and every ω ∈ Ω,
consider the periodic stopping game Γk,τ (ω) that starts at stage k, and if no
player stops before stage τ , then it restart at stage k with a new state ω′ ∈ Ω
which is chosen according to P, such that for every F ∈ Fk either both of
the state ω, ω′ belong to F or not one of them belong to F .

To this end one should approximate this game by a stopping game on a
tree.

Denote by λk = ξ6/216B22k+2 for each k ≥ 0. Set Λk =
∑

k′≥k λk′ =

ξ6/216B22k+1, so that
∑

k≥0 Λk = ξ6/216B2.

Definition 4.2 Let τ1 ≤ τ2 be two bounded stopping times. A λ-approximation
of Γ between τ1 and τ2 is a pair ((Gk) , (qG,k)) such that for every k ≥ 0
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1. Gk is a Fk-measurable finite partition10 of {τ1 ≤ k ≤ τ2},

2. ik and ak are Gk-measurable,

3. τ1 and τ2 are measurable w.r.t. G; that is, for every k ≥ 0, {τ1 = k}
and {τ2 = k} are unions of atoms in Gk,

4. any atom G of Gk such that k < τ2 on G is a union of some atoms in
Gk+1,

5. for every atom G of Gk, qG,k is a probability distribution over the atoms
of Gk+1 that are contained in G, and

6.
∑

G′∈Gk+1
|P (G′ | Fk) (ω)−qG,k (G′) | < λk, for every atom G of Gk and

almost every ω ∈ G.

Theorem 4.3 Let Γ be a stopping game such that supk∈N ‖ak‖∞ ∈ L1 (P).
Then there is a F-consistent function that assigns to every k ≥ 0 and every
bounded stopping time τ , a λ-approximation of Γ between k and τ .

Theorem 4.3 was proven by Shmaya and Solan (2004) for two player stop-
ping games with simultaneous stopping. Their proof extends to multi-player
games.

Every λ-approximation (Gk, (qG,k)) of Γ between τ1 and τ2, defines a finite
collection of games on trees, a game Tτ1,τ2 (G) for each atom G ∈ Gτ1 , as
follows:

• The root of the tree is G.

• The nodes are all the non-empty atoms F of (Gk) such that (a) F ⊆ G,
and (b) if F ∈ Gk, then τ2 ≥ k on F .

• The leaves are all the atoms F ∈ ∪k≥τ1Gk where there is equality in
(b).

• The chosen players and the terminal payoffs are given by (ik)τ1≤k≤τ2
and (ak)τ1≤k≤τ2

.

10We identify Gk with the finite σ-algebra generated by Gk, and we denote G = (Gk)k≥0.
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• The children of each atom F in Gk are all atoms F ′ in Gk+1 which are
subsets of F .

• Transition from any node F in Gk is given by qF,k.

• a∞ ∈ <n is a payoff vector.

Definition 4.4 Let τ1 ≤ τ2 be two bounded stopping times. A (F , τ1, τ2)-
strategy is a sequence σ = (σk) of random variables such that for every k ≥ 0,
(i) σk : {τ1 ≤ k < τ2} → [0, 1], and (ii) σk is Fk-measurable.

Thus, a (F , τ1, τ2)-strategy prescribes the player what to play in Γ between
stages τ1 and τ2 (excluded).

Let σ(G) be a strategy profile in Tτ1,τ2 (G). The collection (σ (G))G∈Gτ1
de-

fines a (F , τ1, τ2)-strategy profile, by instructing the players to follow the first
period of each profile σ(G) for every G ∈ Gτ1 . Similarly, every (F , τ1, τ2)-
strategy profile σ such that for every k ∈ N, σk is Gk-measurable, defines a
stationary profile in Tτ1,τ2 := (Tτ1,τ2 (G)))G∈Gτ1

. We denote by σ the collec-

tion (σ (G))G∈Gτ1
, as well as the (F , τ1, τ2)-strategy profile which induces by σ.

Let F ∈ A such that P (F ) > 0. Denote by π(σ;F , τ1, τ2 | F ) (respec-
tively, π(σ;G, τ1, τ2 | F )) the conditional probability given F , that under σ
the finite subgame of Γ which is played between stages τ1 and τ2 (respectively,
the game Tτ1,τ2) terminates before stage τ2. Denote by ρ(σ;F , τ1, τ2 | F )
(respectively, ρ(σ;G, τ1, τ2 | F )) the conditional expected payoff given F and
given that this finite subgame (respectively, the game Tτ1,τ2) terminates be-
fore stage τ2.

The following lemma provides an estimate for the difference between the
conditional expected payoff and the difference between the conditional ex-
pected probability of termination, when one changes the filtration. The proof
is similar to that of Lemma 6.3 in Shmaya and Solan (2004).

Lemma 4.5 Let (Gk, (qG,k)) be a λ-approximation of Γ between τ1 and τ2.
For every F ∈ A, such that P (F ) > 0, and every (G, τ1, τ2)-strategy profile
σ,

1. |π(σ;F , τ1, τ2 | F )− (π(σ;G, τ1, τ2 | F )) | < Λτ1 .
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2. |ρ(σ;F , τ1, τ2 | F )− (ρ(σ;G, τ1, τ2 | F )) |∞ < Λτ1.

Let v : Ω → <n be a Gτ2-measurable function. Denote by Γv
τ1,τ2

the partial
game which starts at stage τ1, and if not terminate before, it terminates at
stage τ2 with payoff v. Denote by γv(σ;F , τ1, τ2 | F ) the conditional expected
payoff given F under σ, in this game. The following lemma states that if
(G, (qG,k)) is a λ-approximation of Γ between τ1 and τ2, and if the opponent
plays a (G, τ1, τ2)-strategy, then the player does not lose much in Γv

τ1,τ2
by

considering only (G, τ1, τ2)-strategies (rather than (F , τ1, τ2)-strategies). The
proof is similar to that of Lemma 6.4 in Shmaya and Solan (2004).

Lemma 4.6 Let (Gk, (qG,k)) be a λ-approximation of Γ between τ1 and τ2.
For every F ∈ A, such that P (F ) > 0, every (G, τ1, τ2)-strategy profile σ−i,
and every (F , τ1, τ2)-strategy σi of player i, there is a (G, τ1, τ2)-strategy σi

of player i, such that

|γi
v(σ

−i, σi;F , τ1, τ2 | F )− γi
v(σ;F , τ1, τ2 | F )| < Λτ1 . (9)

4.3 Coloring the periodic games

In this section we define a finite set of “colors”, and attach for every triplet
(k, τ, ω), a color ck,τ (ω) in that finite set. Choose 0 < ξ < min{ ε2

4
, 1

2n
} once

and for all.

By Theorem 4.3, there is a F -consistent function that assigns for every k ≥ 0
and every bounded stopping time τ > k, a λ-approximation of Γ between

k and τ ,
(
Gk,τ

k′ ,
(
qk,τ
G,k′

))
. For each atom G ∈ Gk,τ

k , and every ω ∈ G, we

identify Tk,τ (ω) = Tk,τ (G).

Fix a stage k ∈ N, a bounded stopping time τ > k, and ω ∈ Ω. Let

Tk,τ (ω) be the game on a tree that is defined by
(
Gk,τ

k′ ,
(
qk,τ
G,k′

))
.

From now on, suppose that Tk,τ (ω) satisfies Conditions Q.1-Q.3. By Theo-
rem 3.3, one of the following holds for Tk,τ (ω): either (a) (0i)i∈I is a stationary
equilibrium in the game, or (b) the game has a social welfare player, so that
for every ξ > 0 the game has a stationary subgame perfect ξ-equilibrium, or
(c) Assumptions A.1-A.3 and Conditions Q.1-Q.3 hold for the game, so that
by Theorem 3.8, the game has a subgame perfect ξ-equilibrium σk,τ (ω) in
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pure strategies which is supported by at least two players.

Let σk,τ (ω) be a subgame perfect ξ-equilibrium in Tk,τ (ω) that satisfies the
conditions of Theorem 3.3. Roughly, the color will indicate the type of the
equilibrium σk,τ (ω), namely, whether case (a), (b) or (c) above holds; if case
(b) holds, the color will also indicate the identity of the social welfare player,
and if case (c) holds, the color will also indicate the set of payoffs along the
equilibrium path, as well as some information on the termination probabili-
ties.

Because Tk,τ (ω) is a periodic game, and σk,τ (ω) is a subgame perfect ξ-
equilibrium in that game, every continuation payoffs u under σk,τ (ω) at the
root of the tree at some period of the game is a subgame perfect ξ-equilibrium
payoff. Let Uk,τ (ω) be the set of all the payoff vectors that are a continuation
payoff under σk,τ (ω) at the root of the tree at some period of the game. For
every ξ-equilibrium payoff u ∈ Uk,τ (ω), denote by σk,τ ;u (ω) the ξ-equilibrium
in Tk,τ (ω) which correspond to u. σk,τ ;u (ω) is the reduction of σk,τ (ω) to the
appropriate subgame.

For every ξ-equilibrium payoff u ∈ Uk,τ (ω), define lu ∈ L := {1, 2, ..., 3B} ∪
{∞} as the minimal number of periods of the game Tk,τ (ω) under σk,τ ;u (ω),
that are needed to ensure that even if one player deviates, the probability that
the game terminates is at least ξ6

72B
. That is, if case (a) holds then lu = ∞;

if case (b) holds then lu ∈ {1,∞}; and if case (c) holds then lu ∈ {1, 2, ..., 3B}.

Let
ULk,τ (ω) =

{
(u, lu)

∣∣u ∈ Uk,τ (ω)
}

.

Although the set of payoff R is finite, the set of equilibrium payoff is not
necessarily finite. We therefore have to approximates the set ULk,τ (ω) by a
finite set.

Choose Q ∈ N that satisfies Q > 6 and(
1− ξ6

144B

) Q
3B

−1

<
ε

4
. (10)

Let Y =
{
0,± 1

W
,± 2

W
, ...,±W

W

}n
, where W > 4Q

ε
. Let YL = 2Y×L be the set

of all the subsets of Y × L.
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For every periodic game Tk,τ (ω), let Y Lk,τ (ω) ∈ YL be a discretization of the
set ULk,τ (ω). The set Y Lk,τ (ω) is obtained by replacing each pair (u, lu) ∈
ULk,τ (ω) by a pair (y, lu) ∈ Y × L such that ‖u − y‖∞ ≤ 1

2W
. Note that

the number of elements in Y Lk,τ ;u (ω) is uniformly bounded: |Y L (s, τ) | ≤
|Y | × |L| = (2W )n × (3B + 1).

Denote by IP
k,τ (ω) the set of all players i ∈ I such that σi

k,τ (ω) is a pure
strategy different from 0i:

IP
k,τ (ω) :=

{
i ∈ I ; σi

k,τ (ω) is a pure strategy 6= 0i
}

.

Denote by IM
k,τ (ω) the set of all players such that σi

k,τ (ω) is a non-pure
strategy (which is necessarily different from 0i),

IM
k,τ (ω) :=

{
i ∈ I ; σi

k,τ (ω) is a non-pure strategy
}

.

The set IP
k,τ (ω)

⋃
IM
k,τ (ω) is the set of all the players who stop with positive

probability according to σk,τ (ω).

Let I = 2I be the set of all the subset of I.

We are now ready to attach a color for every triplet (k, τ, ω):
For every positive integer k ∈ N, every bounded stopping time τ > k, and
every ω ∈ Ω such that Tk,τ (ω) satisfies Conditions Q.1-Q.3, attach the color
ck,τ (ω) :=

(
IP , IM , Y L

)
k,τ

(ω) from the finite set I × I × YL.

Observe that if case (a) holds, then IP
k,τ (ω) = IM

k,τ (ω) = ∅; if case (b) holds,
then |IP

k,τ (ω) | = 1 and |IM
k,τ (ω) | ≤ 1; if case (c) holds, then |IM

k,τ (ω) | ≥ 2
and IP

k,τ (ω) = ∅. In particular, |IM
k,τ (ω) | ≤ 1, and if |IM

k,τ (ω) | = 1 then
necessarily |IP

k,τ (ω) | = 1.

Finally, if the game on a tree Tk,τ (ω) does not satisfy at least one of the
Condition Q.1-Q.3, then we attach to it the color ck,τ (ω) = (∅, ∅, ∅).

4.4 Using a stochastic variation of Ramsey’s Theorem

For every positive integer k, every stopping time τ > k, and every ω ∈ Ω,
we attached an element in a finite set. By a stochastic variation of Ram-
sey’s Theorem (Theorem 4.3 in Shmaya and Solan (2004)), there exists
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an increasing sequence of bounded stopping times τ1 < τ2 < ... such that
τt(ω) ∈ {K1, K2, ...} for every t ∈ N, and every ω ∈ Ω, and cτ1,τ2 = cτ2,τ3 = ...,
with high probability. That is,

P
((

IP , IM , Y L
)

τ1,τ2
=
(
IP , IM , Y L

)
τ2,τ3

= ...
)

> 1− δ

2
. (11)

To simplify notations, we exchange the index {τt, τt+1} by t; for example, we
set IP

t (ω) := IP
τt,τt+1

. Denote by Gt the λ-approximation of Γ between τt and
τt+1.

We define a profile σ∗ in Γ as follows:

1. The definition for the subgame that starts at τ1.

(i) We first choose a subgame perfect ξ-equilibrium payoff in the
game T1(ω), for every ω ∈ Ω such that the game T1(ω) satisfies
Conditions Q.1-Q.3.
For every ω ∈ Ω, if the set Y L1 (ω) 6= ∅, choose (y1 (ω) , l1 (ω)) ∈
Y L (ω), such that the choice is G1-consistent. That is, for ev-
ery ω, ω′ in the same atom in G1, (y1 (ω) , l1 (ω)) = (y1 (ω′) , l1 (ω′)).
Let t := 1.
Let X be a set of elements ω ∈ Ω. Set at first X := Ω. During
the process we will remove from X elements that, according to σ∗,
the players are allowed to choose arbitrary actions in the subgame
that starts at stage τt for some t ∈ N.

(ii) We next define a (F , τt, τt+1)-strategies, one for each player.
For every ω ∈ X:

i. if Y Lt (ω) = ∅ (i.e., at least one of the Condition Q.1-Q.3 does
not hold in Tt (ω)), instruct each player to choose arbitrary
actions from now on. Remove ω from X.

ii. Likewise, if
(
IP , IM , Y L

)
t
(ω) 6=

(
IP , IM , Y L

)
t−1

(ω), instruct
each player to choose arbitrary actions from now on, and re-
move ω from X.

iii. Else, choose ut (ω) ∈ Ut (ω), a ξ-equilibrium payoff in Tt (ω),
which is Gt-consistent, such that ‖ut (ω) − yt (ω) ‖∞ ≤ 1

2W
,

and (ut (ω) , lt (ω)) ∈ ULt (ω).
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At stages τt given ω until τt+1 − 1, the players should follow
σt;ut(ω) (ω), the ξ-equilibrium in Tt (ω) which correspond to
the payoff ut (ω).

(iii) We now find, for every continuation payoff at τt+1 in every Tt (ω),
an approximate payoff in Y Lt (ω):
For every ω ∈ X, let ūt+1 (ω) be the continuation payoff at τt+1

given ω in Tt (ω) under σt;ut(ω) (ω), and lt+1 (ω) = lūt+1(ω).
If Y Lt+1 (ω) 6= ∅, and Y Lt (ω) = Y Lt+1 (ω), then choose yt+1 (ω) ∈
Yt+1 (ω) such that ‖yt+1 (ω)− ūt+1 (ω) ‖∞ ≤ 1

2Y
, and the choice is

consistent with Gt+1.
Go back to (ii) with t + 1.

2. Use backward induction to define a subgame perfect equilibrium in the
finite game that terminate at stage τ1 with terminal payoff y1 (ω) for

every ω ∈ Ω such that the set Y L1 (ω) 6= ∅, and y1 (ω) =
−→
0 for every

ω ∈ Ω such that the set Y L1 (ω) = ∅.

Notice, the profile σ∗ is a well defined profile in Γ, since every selection along
the process is consistent with Gt+1, for every t ∈ N. That is, for every t ∈ N
we choose a (G, τt, τt+1)-strategy profile, which, as we already mentioned,
defines a (F , τt, τt+1)-strategy profile, which prescribes the players what to
play in Γ between stages τt and τt+1 (excluded).

4.5 The profile σ∗ is a δ-approximate subgame perfect
ε-equilibrium

We now prove that the profile σ∗ is a δ-approximate subgame perfect ε-
equilibrium. Namely, there is an event G ∈ A with P(G) < δ, such that
for every stage K ∈ N, and every event F ∈ Fk, such that P (F ) > 0 and
F ∩G = ∅, σ|K is an ε-equilibrium in Γ|K given F .

At first we define the event G. Let G1 be an event that includes all the ele-
ments ω ∈ Ω, in which there are at least two finite games, Tt (ω) and Tt+1 (ω)
(for t ∈ N), which do not have the same color, i.e.,

(
IP , IM , Y L

)
t
(ω) 6=(

IP , IM , Y L
)

t+1
(ω). On G1 the profile σ∗ need not be an ε-equilibrium, but

by Eq. (11), P (G1) < δ
2
.

Let G2 include all the elements ω ∈ Ω, in which the game Tt (ω) does not
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satisfies at least one of the Condition Q.1-Q.3, for every t ∈ N. On G2 the
profile σ∗ need not be an ε-equilibrium. By Assumption A.4, and since the
stopping times (τt)t∈N were limited to the set of stages {K1, K2, ...}, it follows
that P (G2) < δ

2
.

We set G := G1 ∪G2. Then P(G) < P(G1) + P(G2) < δ.

For every ω ∈ Ω that does not belong to G, the same color is attached to all
the games Tt (ω), for t ∈ N. That is, for every ω ∈ Ω\G,

(
IP , IM , Y L

)
t
(ω) =(

IP , IM , Y L
)

t+1
(ω), for every t ∈ N. In addition, Conditions Q.1-Q.3 are

satisfied in all the games Tt (ω), for every t ∈ N.

We next prove that for every stage K ∈ N, and every event F ∈ FK such
that F ∩G = ∅ and P (F ) > 0, σ∗|K is an ε-equilibrium in Γ|K given F .

Fix K ∈ N and F ∈ FK such that F ∩ G = ∅ and P (F ) > 0. We de-
fine a partition of the set F to a finite number of subsets, according to cases
(a),(b), and (c) in Section 4.3. For each subset, we verify that the upper
bound over the amount every player can gain by deviating is at most ε.
Hence, we conclude that no player can gain more than ε, by deviating in Γ|K
given F .

1) (0i)i∈I is a stationary equilibrium:

Let F1 includes all the elements ω ∈ F , such that IP
t (ω) = IM

t (ω) = ∅, for
every t ∈ N. Thus, for every ω ∈ F1, each game Tt (ω) has a stationary equi-
librium, such that all the players continue whenever chosen. In particular, for
every i ∈ I, ai

∞ ≥ 0, and every player expects to receive at least 0. However,
by Condition Q.2, each player can gain at most 0 by terminating the game
by himself, in every subgame which starts at K, so no deviation is worthwhile.

Note that, if ai
∞ ≥ 0, for every i ∈ I, then F1 = F , which implies that

no player can gain by deviating in Γ|K given F , and we are done.

If that not the case, i.e., there is at east one player i ∈ I such that ai
∞ < 0,

then F1 = ∅. Assume from now on, that there is at least one player i ∈ I
such that ai

∞ < 0.
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2) j′ is a social welfare player and aj′
∞ < 0:

For every j′ ∈ I, let F j′

2 be the set that includes all the elements ω ∈ F , such
that the game Tt (ω) satisfies Conditions Q.1-Q.3, IP

t (ω) = {j′}, and IM
t (ω) =

∅, for every t ∈ N. Player j′ is a social welfare player in each game Tt (ω); he
has a pure stationary strategy σi

t(ω) that ensures every player i ∈ I (includ-
ing j′) receives a non-negative payoff in Tt (ω), given the game terminates
between stages τt and τt+1 − 1. In particular, the profile in Tt (ω), according
to which player j′ follows this strategy, and all the other continue whenever
chosen, is a stationary equilibrium in Tt (ω) with equilibrium payoff at least
0, for each player, for every t ∈ N.

Observe the game Γ, given ω ∈ F j′

2 is chosen. σ∗(ω) instruct all the play-
ers, except for j′, to continue whenever chosen, while j′ has a terminating

pure strategy, which is derived from the strategies
(
σj′

t (ω)
)

t∈N
of the games

(Tt (ω))t∈N. By Lemma 4.5, every player expect to receive at least 0 − Λt

if the game Γ terminates between τt and τt+1 − 1, thus the expected payoff
for each player in Γ, is at least −Λ0 = −ξ6/432B2 > − ε

8
. However, if player

i 6= j′ deviates and terminates the game, he receive at most 0 (by Q.2), while
if player j′ deviate and continue, the game never terminates, and he receive
a negative payoff. Therefore, every player can gain at most ε

8
. Note that this

argument is valid in every subgame.

3) j′ is a social welfare player and aj′
∞ ≥ 0:

For every two players j′, j′′ ∈ I, let F j′,j′′

3 be the set that includes all the
elements ω ∈ F , such that the game Tt (ω) satisfies Conditions Q.1-Q.3,
IP
t (ω) = {j′}, IM

t (ω) = {j′′}, and Yt (ω) = {y (ω)}, for every t ∈ N. These
sets are similar to the previous case. Player j′ is again a social welfare player
in every game Tt (ω), who has a pure stationary strategy σj′

t that ensures ev-
ery player i ∈ I (including j′) receives a non-negative payoff in Tt (ω) given
the game terminates between stages τt and τt+1 − 1, for every t ∈ N. In
addition, player j′′ has a mixed strategy σj′′

t , which threatens player j′, by
stopping the game with some sufficient small probability, at stages where
the terminal payoff for player j′ is negative, for every t ∈ N. Since y (ω) is
the approximated ξ-equilibrium payoff in the game Tt (ω), given the game
terminates between stages τt and τt+1 − 1, then every player receive at least
y (ω)− 1

2W
under this ξ-equilibrium, and at most y (ω)+ 1

2W
+ξ by deviating,

given the game Tt (ω) terminates between stages τt and τt+1 − 1, for every
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t ∈ N.

Observe the game Γ, given ω ∈ F j′,j′′

3 is chosen. σ∗(ω) instruct all the players,
except for j′, j′′, continue whenever chosen, while j′ has a terminating pure
strategy, and j′′ has a terminating mixed strategy, which are derived from
the strategies in the games Tt (ω).

By Lemma 4.5, the expected payoff of player i in Γ is at least yi − 1
2W

Λt,

given ω ∈ F j′,j′′

5 is chosen, the players follow σ∗(ω), and the game terminated
between stages τt and τt+1 − 1.

On the other hand, assume player i deviates in Γ, and his expected pay-
off is vt, given the game terminates between stages τt and τt+1 − 1. By
Lemma 4.6, there is a (G, τ1, τ2)-strategy of player i in which he can lose at
most Λt by considering this strategy, instead of the original, so its expected
payoff is at least vt − Λt, in Γ, given the game terminates between stages τt

and τt+1 − 1. By Lemma 4.5, if player i deviates to this (G, τ1, τ2)-strategy
in Tt (ω), his expected payoff is at least vt − 2Λt given the game terminates
between stages τt and τt+1 − 1, on the other hand, as we already mentioned,
this amount must be at most yi + ξ + 1

2W
, so, vt ≤ yi + 1

2W
+ ξ + 2Λt.

Therefore, every player can gain at most ξ + 3Λt + 1
W

by deviating in Γ

given ω ∈ F j′,j′′

3 is chosen, and the game terminates between stages τt and
τt+1 − 1. As a result, every player can gain at most ξ + 3Λ0 + 1

W
< ε

8
by

deviating in Γ given ω ∈ F j′,j′′

3 is chosen. These arguments are valid in every
subgame, which start at stage K.

4) There is no social welfare player:

For every subset of players J ⊆ I, |J | ≥ 2, and every Y L ∈ YL, let F J,Y L
4

be the set that includes all the elements ω ∈ F , such that the game Tt (ω)
satisfies Conditions Q.1-Q.3, IP

t (ω) = J , IM
t (ω) = ∅, and Y Lt (ω) = Y L.

Meaning, every player i ∈ J use a pure strategy which is different from 0i in
Tt (ω), and the set of equilibrium payoff is Y , for every t ∈ N.

In order to prove that no deviation in Γ|K can be profitable, we further
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partition the set F J,Y L
4 . For every t′ ∈ N, let

F J,Y L
4,t′ =

{
ω ∈ F J,Y L

4 | τt′ (ω) ≤ K < τt′+1 (ω)
}

The collection
(
F J,Y L

4,t′

)K

t′=1
is a finite partition of F J,Y L

4 . Fix t′ ∈ {1, 2, ..., K}

such that P (F J,Y L
4,t′ ) > 0.

We define a new game on a tree T using the games (Tt (ω))t′+Q
t=t′ on F J,Y L

4,t′

as follows: it starts at stage K in (Tt′ (ω))
ω∈F J,Y L

4,t′
, and for every ω ∈ F J,Y L

4,t′ ,

if the game Tt′ (ω) reaches a leaf, T continues with Tt′+1 (ω), and so on.

σ∗ induces a strategy in T , in which every player can gain at most ξ +2Q 1
2W

,
given T is terminated before τt′+Q. Indeed, every player can gain at most ξ
by deviating in the game Tt (ω), given the game is terminated between stage
τt and τt+1. Furthermore, a player might use the fact that during the con-
struction of σ∗ we used an approximate continuation payoff (cf. Step (iii)),
so by postponing the termination of the game to τt′+Q at least, he can gain
at most 2Q 1

2W
.

By applying Lemmas 4.5 and 4.6 to each of the games Tt (ω), it follows

that if a player deviates in Γ given F J,Y L
4,t′ occurs and the game is terminated

between stage K and τt′+Q, then he can gain at most

2

t′+Q∑
t=t′

Λt + ξ + 2Q
1

2W
<

ε

2
.

We next claim that, if all the players, except perhaps for one, follow σ∗, the

game Γ given F J,Y L
4,t′ is terminated between stage K and τt′+Q with probability

at least 1− ε
4
. In fact, by Theorem 3.3, it follows that the game T is termi-

nated before it reaches τt′+Q with probability at least 1−
(
1− ξ6

72B

) Q
3B

−1

. In

addition, by Lemma 4.5, for every t ∈ N, the difference between the termi-
nation probability between stages τt and τt+1 − 1 under any strategy profile,

in (Tt (ω))
ω∈F J,Y L

4,t′
, and in Γ given F J,Y L

4,t′ occurs, is at most Λτt . Hence, under

σ∗ the game Γ given F J,Y L
4,t is terminated between stage K and τt′+Q with
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probability at least 1−
(
1− ξ6

144B

) Q
3B

−1

> 1− ε
4

To summarize, every player can gain by deviation in Γ|K given F J,Y L
4,t at

most ε
2
, if the game is terminated between stage K and τt′+Q, while he can

gain at most 2, if the game terminates after stage τt′+Q, therefore, he can
gain by deviating at most

ε

2
·
(
1− ε

4

)
+ 2 · ε

8
< ε.
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