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Abstract Stopping games (without simultaneous stopping) are sequential games
in which at every stage one of the players is chosen, who decides whether to conti-
nue the interaction or stop it, whereby a terminal payoff vector is obtained. Periodic
stopping games are stopping games in which both of the processes that define it,
the payoff process as well as the process by which players are chosen, are periodic
and do not depend on the past choices. We prove that every periodic stopping game
without simultaneous stopping, has either periodic subgame perfect ε-equilibrium or
a subgame perfect 0-equilibrium in pure strategies.

Keywords Stopping games · Dynkin games · Stochastic games · Subgame-perfect
equilibrium

1 Introduction

Stopping games (without simultaneous stopping) are n-player sequential games in
which, at every stage, one player is chosen according to a stochastic process, and that
player decides, whether to continue the game or to stop it. Once the chosen player
decides to stop, the players receive a terminal payoff that is determined by a second
stochastic process.
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Stopping games were introduced by Dynkin (1969), who studied two-player zero-
sum games with bounded payoffs. Dynkin proved the existence of the value and pure
ε-optimal strategies.

Since the game has perfect information, by Mertens (1987) it follows that every
multi-player stopping game has an ε-equilibrium. Since the ε-equilibrium strategies
that were constructed by Mertens (1987) employ threats of punishment, which might
be non-credible, subsequent work concentrated on the existence of subgame perfect
equilibria.

Solan and Vieille (2003) studied multi-player stopping games, where the order by
which players are chosen is deterministic, and the probability that the game terminates
once the chosen player decides to stop may be strictly less than 1. This game has a
subgame perfect ε-equilibrium in Markovian strategies. Furthermore, if the game is
not degenerate, this ε-equilibrium is actually in pure strategies.

Solan (2005) studied an n-player game in which both the terminal payoff pro-
cess and the process by which players are chosen are stationary. Solan proved the
existence of either a stationary ε-equilibrium or a subgame perfect 0-equilibrium.
Solan leaves open the question whether the same result holds when the process
by which players are chosen, as well as the terminal payoff process, are non-
stationary.

Stopping games in which players can stop simultaneously have been studied by, e.g.,
Kiefer (1971), Neveu (1975), Rosenberg et al. (2001) and Shmaya and Solan (2004).
These authors provide conditions for the existence of the value in pure strategies,
and prove that in general the value in mixed strategies exists, as well as a mixed
ε-equilibrium in two player non-zero-sum games.

In this paper, we answer the open problem posed in Solan (2005), and show that
every periodic stopping game has either a periodic ε-equilibrium or a subgame perfect
0-equilibrium in pure strategies. Our approach is to construct a sequence of equilibria
in finite stopping games, and using a diagonal extraction argument to construct an
equilibrium in the infinite game. The novelty of our approach is that the finite stage
games that we consider do not terminate at a given stage t [as done in Rosenberg et al.
(2002) and Solan and Vieille (2003)], but rather at a properly chosen stopping time,
such that the probability that at least one player stops in an equilibrium of this game
is bounded away from 0.

Our study can be useful to the study of both stopping games and stochastic games.
First, it seems possible that our approach, together with the technique developed in
Shmaya and Solan (2004), may be used to prove the existence of a subgame per-
fect equilibrium in every stopping game (without simultaneous moves). Second, since
periodic stopping games form a class of n-player stochastic games, our approach
may prove useful to study equilibria in other classes of n-player stochastic games
(cf., e.g., Flesch et al. (2007) and Flesch et al. (2008) for recent results in this
area).

The paper is organized as follows: In Sect. 2, we present the model, some basic
definitions and the main result, and introduce an example that illustrates some features
of the model. In Sect. 3, we present the proof of the result for periodic stopping
games.
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2 The model and the main results

2.1 The model

A Markovian stopping game is given by � = (I, (p(t), (ai (t))i∈I )t∈N, a∞) where:

• I = {1, . . . , n} is a non-empty finite set of players.
• p(t) ∈ �(I ) is1 a distribution over the players according to which players are

chosen at stage t ∈ N.
• ai (t) ∈ �n is a terminal payoff, for every i ∈ I and every t ∈ N.
• a∞ ∈ �n is a payoff vector.

The game is played as follows: at every stage t ∈ N one player it ∈ I is chosen
according to the distribution p(t), and that player decides whether to stop the game or
to continue. Thus, players are not allowed to stop simultaneously. The game terminates
as soon as one player chooses to stop, in which case the terminal payoff vector is ait (t).
If the game never terminates, the players receive a payoff according to2 a∞. The aim
of every player is to maximize his nominal payoff.

Definition 2.1 A Markovian stopping game is called a periodic stopping game if there
is an integer C ≥ 1, such that p(t) = p(t mod C) and ai (t) = ai (t mod C) for every
t ∈ N and every i ∈ I . The minimal C that satisfies these conditions is the period of
the game.

2.2 Strategies and main results

In a stopping game, the set of actions available to any player at any stage is A =
{Continue, Stop}. To save notations, we assume that the players choose actions even
after the game terminates.

Let Ht = (I × A)t be the space of all histories of length t, H = ∪t∈N Ht be the
space of all finite histories, and H∞ = (I × A)N be the set of all infinite histories.
H∞, equipped with the σ -algebra spanned by the cylinder sets, is a measurable space.
We denote by Ht the sub-σ -algebra induced by the cylinder sets defined by Ht .

Definition 2.2 A pure strategy for player i ∈ I is a function σ i : H → {0, 1}. For
every h ∈ Ht , σ

i (h) = 1 if player i stops the game in case history h occurs and player
i is chosen at stage t +1 (provided the game did not terminate before that stage), while
σ i (h) = 0 if player i continues if history h occurs and player i is chosen at stage t +1.

We denote by 0i the strategy of player i in which he continues whenever he is
chosen.

Definition 2.3 A (behavior) strategy for player i is a function σ i : H → [0, 1]. For
every h ∈ Ht , σ

i (h) is the probability that player i stops the game if history h occurs

1 For every finite set I , �(I ) is the set of probability distributions over I .
2 a∞ will not be normalized to 0 as could seem natural at this point, because another normalization will
be used later.
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and player i is chosen at stage t + 1 (provided the game did not terminate before that
stage).

A strategy σ i of player i is called ̂C-periodic, for some ̂C ∈ N, if σ i (h) = σ i (h′, h)

for every t ∈ N, every h ∈ Ht , and every (h′, h) ∈ H
̂C+t . Here (h′, h) is the concate-

nation of h′ and h.
A profile is a vector of strategies, one for each player. We denote by σ−i the vector

of strategies of all the players excluding player i . Each profile σ induces a probability
distribution Pσ over the set of plays.

Let θ be the terminal stage, the first stage in which the chosen player chooses to
stop. In case the game never terminates we set θ = +∞. If θ < ∞, iθ is the player
who terminates the game. A profile σ is called terminating if Pσ (θ < ∞) = 1.

Let Eσ be the expectation operator that corresponds to Pσ . The expected payoff
vector under σ is

γ (σ ) = Eσ

[

1{θ<∞}aiθ (θ) + 1{θ=∞}a∞
]

.

Definition 2.4 Let ε ≥ 0. A profile σ is an ε-equilibrium if for every player i ∈ I
and every strategy σ i of player i ,

γ i (σ ) ≥ γ i (σ−i , σ i ) − ε.

The vector γ (σ ) is called an ε-equilibrium payoff vector.

For every finite history h ∈ H , we denote by �|h the restriction of � to the subgame
that start after history h occurs. Given history h ∈ H and strategy σ i of player i ∈ I ,
we define a strategy σ i

|h of player i in �|h by

σ i
|h(h′) = σ i (h, h′) ∀h′ ∈ H.

σ i
|h is the continuation strategy of player i given history h occurs. Let γ|h(σ ) be the

expected payoff vector which corresponds to the profile σ|h in the subgame �|h .

Definition 2.5 Let ε ≥ 0. A profile σ is a subgame perfect ε-equilibrium if for every
history h ∈ H , the profile σ|h is an ε-equilibrium in the subgame �|h .

Every stopping game is a game with perfect information, so by Mertens (1987)
it has an ε-equilibrium. However, the existence of a subgame perfect ε-equilibrium
is still an open problem. In this paper, we prove the existence of a subgame perfect
ε/0-equilibrium in the class of periodic stopping games.

The main result of the paper is:

Theorem 2.6 Every periodic stopping game has either a periodic subgame perfect
ε-equilibrium, or a subgame perfect 0-equilibrium in pure strategies.

The period ̂C of the subgame perfect ε-equilibrium that we construct is either 1 or
C , the period of the game. Recall that if simultaneous stopping is allowed, the length
of the subgame perfect ε-equilibrium may be unbounded, as ε goes to 0 (Solan 2001).
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The result of Theorem 2.6 was proved by Solan (2005) in the case C = 1. The
proof of Solan uses tools from differential inclusions. It is not clear whether Solan’s
technique can be used for C > 1. Our proof uses a completely different technique,
which is closer in spirit to other proofs in the field, as will be clarified in Sect. 2.3.

2.3 Example

We provide here an example that illustrates some features of the model. The example
exhibits a periodic stopping game with period 2, that has a subgame perfect
0-equilibrium in pure strategies.

Example 1 Let I = {1, 2, 3, 4}, be a set of players. At every odd stage player 1 is
chosen with probability 1, and at every even stage one player of I2 = {2, 3, 4} is
chosen according to a uniform distribution. The terminal payoff vectors are stationary,
and given by

a1 := a1(t) = (0, 3,−1,−1), t = 1, 2, . . .

a2 := a2(t) = (−4, 0, 6, 6), t = 1, 2, . . .

a3 := a3(t) = (1,−1, 0, 2), t = 1, 2, . . .

a4 := a4(t) = (1,−1, 2, 0), t = 1, 2, . . .

a∞ = (1,−1, 1, 1)

The stationary profile (0i )i∈I , in which no player ever stops, is not an equilibrium.
Indeed, in every subgame player 2 is better off by deviating and stopping whenever he is
chosen. It follows that every subgame perfect ε-equilibrium is necessarily terminating.

We now construct a profile σ that is a subgame perfect 0-equilibrium, by construc-
ting a sequence of finite games, such that every game terminates by one of the players
with a probability which is bounded away from 0. For every positive integer l, every
bounded stopping time τ > l, and every real v, let �(l, τ, v) be an auxiliary finite-stage
stopping game that is the same as the original game with the following changes:

(1) It starts at stage l of the original game: the probability distribution according to
which a player is chosen at stage t , and the terminal payoff at that stage, are
p(l + t − 1) and a(l + t − 1), respectively.

(2) If not terminated before, the game terminates at stage τ with a terminal payoff v.

In Figs. 1, 2 and 3, we describe three such auxiliary games, together with subgame
perfect 0-equilibria in these games. In the figures below c indicates “continue”, and s
indicates “stop”.

The game �(l1, τ1, v1) is described in Fig. 1, where v1 = (− 22
27 ,− 2

27 , 70
27 , 58

27 ),
l1 = 1 and τ1 = 2. This is a one-shot game with terminal payoff v1. Since v1

1 < 0 = a1
1 ,

Fig. 1 The game �(l1, τ1, v1)
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Fig. 2 The game �(l2, τ2, v2)

Fig. 3 The game �(l3, τ3, v3)

an equilibrium σ1 in this game is that player 1 stops. The equilibrium payoff under σ1
is v2 = (0, 3,−1,−1).

The game �(l2, τ2, v2) that is described in Fig. 2 is not a t-stage game. Rather,
here l2 = 2, τ2 = 3 if player 4 is chosen at the first stage, and τ2 = 5 otherwise. The
subgame perfect 0-equilibrium σ2 is described in Fig. 2 by arrows. The equilibrium
payoff under σ2 is v3 = ( 7

9 , − 1
9 , 8

9 , 2
9 ).

The game �(l3, τ3, v3) that is described in Fig. 3 is a two stage game: l3 = 2 and
τ3 = 4. The subgame perfect 0-equilibrium σ3, which can be found using a backward
induction procedure, is described in Fig. 3 by arrows. The equilibrium payoff under
σ3 is v1 = (− 22

27 ,− 2
27 , 70

27 , 58
27 ).
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We use σ1, σ3 and σ2 to construct a subgame perfect 0-equilibrium σ in the periodic
stopping game: follow the profile σ1, then σ3 and then σ2, and so forth. Since vk , the
terminal payoff in the auxiliary game �(lk, τk, vk), is equal to the equilibrium payoff in
the auxiliary game �(lk−1, τk−1, vk−1), and since in these strategies at least two players
stop with positive probability (actually all players stop with positive probability), it
follows that this is indeed a subgame perfect 0-equilibrium.

In the general case, we construct a denumerable set of auxiliary finite games, such
that the equilibrium payoff in one game is the terminal payoff in the other. We then
construct the equilibrium in the periodic stopping game by concatenating the equilibria
in the auxiliary finite-stage games.

There is some similarity between our proof and that of Mertens and Parthasarathy
(1987) or Solan (1998). In these papers, there is some parameter, the continuation
payoff, which changes at every stage, and the players act corresponding to its value.
Here the parameter does not change at every stage, but only occasionally.

3 The proof of Theorem 2.6

Let � be a periodic stopping game with period C , so that p(t) = p(t mod C) and
ai (t) = ai (t mod C) for every t ∈ N and every i ∈ I .

3.1 Preliminaries

We assume w.l.o.g. that for every player i ∈ I,
∑C

t=1 pi (t) > 0; Otherwise, player i
is never chosen, and can be eliminated. Let

δ := min{pi (t) : i ∈ I, t ∈ {1, . . . , C}; pi (t) > 0}. (1)

In addition, we assume w.l.o.g. that the absolute values of the payoffs are bounded
by 1, and the maximal payoff which every player can gain by terminating the game
by himself is zero, that is

max{ai
i (t) : t ∈ {1, . . . , C}, pi (t) > 0} = 0, ∀ i ∈ I.

Definition 3.1 A player i ∈ I is called a dummy player if ai∞ ≥ 0 and ai
j (t) ≥ 0 for

every player j ∈ I , and every t ∈ N such that p j (t) > 0.

A dummy player has no reason to terminate the game, since whatever happens his
payoff is at least 0, his maximal payoff if he stops. Consider the game � in which all
dummy players were recursively eliminated. Every subgame perfect ε-equilibrium in
� can be extended to a subgame perfect ε-equilibrium in �, by instructing all dummy
players to continue whenever chosen. Therefore, we assume w.l.o.g. that there is no
dummy player in �.

We now study some cases where a periodic subgame perfect ε-equilibrium exists.
We then turn to the case that a subgame perfect 0-equilibrium in pure strategies exists.
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3.2 Periodic equilibria

In this section, we identify two cases where a periodic equilibrium exists. We first
discuss the case in which the vector a∞ is non-negative.

Lemma 3.2 If ai∞ ≥ 0 for every i ∈ I , then (0i )i∈I , where all players always
continue, is a stationary 0-equilibrium.

From now on we assume the following:
A.1. There is j ∈ I such that a j∞ < 0.

For the second type of equilibrium we need the next definition.

Definition 3.3 A social welfare player is a non-dummy player i ∈ I who has a pure
C-periodic strategy µi , such that

γ i
|h(0−i , µi ) = 0 ∀h ∈ H and, (2)

γ
j

|h(0−i , µi ) ≥ γ
j

|h(0−i,− j , µi , µ j ) ∀ j 	= i, µ j 	= 0 j and h ∈ H. (3)

By Assumption A.1, since µi is periodic, it is necessarily terminating. Furthermore,
by Eq. (2) player i can gain 0 by following µi , and therefore under the strategy µi ,
player i stops only at stages t where ai

i (t) = 0.
By Eq. (3), if i is a social welfare player then every player j 	= i prefers that player

i terminates the game according to the strategy µi rather he himself does so. This
leads us to next type of equilibrium:

Lemma 3.4 If there is a social welfare player, then there is a periodic subgame perfect
ε-equilibrium, with period C.

Proof Let i ∈ I be a social welfare player. Since i is not dummy, either:

1. ai∞ < 0, in which the case the profile “player i follows µi and all the other players
continue whenever chosen” is a periodic subgame perfect 0-equilibrium, or

2. ai
j (t

′) < 0 for some j ∈ I, t ′ ∈ {1, 2, . . . , C} and p j (t ′) > 0, in which the profile

“player i follows µi , player j stops with some sufficient small probability ε′ at
every stage t such that (t mod C) = t ′ if chosen, and all the other players continue
whenever chosen” is a periodic subgame perfect ε-equilibrium. 
�

The result of Lemma 3.4 is tight, in the sense that the game needs not have a subgame
perfect ε-equilibrium in pure strategies, nor a subgame perfect 0-equilibrium (cf. Solan
and Vieille 2003, Example 3).

From now on we assume the following:
A.2. There are no social welfare players.

Assumption A.1 ensures that the profile (0i )i∈I (according to which all players
always continue) is not a subgame perfect ε-equilibrium. Furthermore, by Assump-
tion A.2, every player i ∈ I is not a social welfare player. Therefore, for every
C-periodic strategy µi of player i , there is some player j ∈ I and a history h ∈ H
such that γ

j
|h(0−i , µi ) < 0.
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Under these assumptions we prove the next theorem:

Theorem 3.5 If A.1 and A.2 hold, then the game has a subgame perfect 0-equilibrium
in pure strategies.

3.3 Proof of Theorem 3.5

To prove Theorem 3.5, we define a sequence of finite games.
As we have seen in Sect. 2.3, for every l ∈ N, every bounded stopping time

τ > l, and every vector v ∈ �n , we define an auxiliary finite-stage game �(l, τ , v)

as the stopping game that starts at stage l and, if not terminated before by one of
the players, terminates at stage τ with terminal payoff v. Observe that the terminal
payoff is independent of past history. Furthermore, since � is a periodic game, we
can restrict the initial stages to stages 1, . . . , C . Since τ is bounded, by a backward
induction argument, �(l, τ, v) has a subgame perfect 0-equilibrium, σ . Denote by
γ i (σ ;�(l, τ, v)) the payoff of player i under σ in �(l, τ, v).

We will construct a sequence (lk)k∈N of initial stages, a sequence (τk)k∈N of bounded
stopping times, a sequence (vk)k∈N of real vectors, and a sequence (σk)k∈N of subgame
perfect 0-equilibria in (�(lk, τk, vk))k∈N in pure strategies, such that the following
conditions will hold:

C.1. The stopping time τk+1 is restricted to stages t such that (t mod C) = lk , for
every k ∈ N—the auxiliary finite-stage game �(lk+1, τk+1, vk+1) ends in stages
where �(lk, τk, vk) can begin.

C.2. vk+1 = γ (σk;�(lk, τk, vk)), for every k ∈ N − vk+1, the terminal payoff in
�(lk+1, τk+1, vk+1), is the equilibrium payoff in �(lk, τk, vk).

C.3. The probability that the game �(lk, τk, vk) terminates before stage τk under σk

is at least δ [cf. Eq. (1)], for every k ∈ N.
C.4. For every i ∈ I , for infinitely many k’s, the probability that �(lk, τk, vk) termi-

nates before stage τk under (σ−i
k , 0i ) is at least δ.

The proof of Theorem 3.5 is proven in two steps.

Proposition 3.6 If A.1 and A.2 hold, then there are sequences (lk)k∈N, (τk)k∈N,
(vk)k∈N and (σk)k∈N in pure strategies such that C.1–C.4 hold.

Proposition 3.7 If there are sequences (lk)k∈N, (τk)k∈N, (vk)k∈N and (σk)k∈N in pure
strategies such that C.1–C.4 hold, then the game has a subgame perfect 0-equilibrium
in pure strategies.

We start by explaining the main ideas of the proofs of these two steps. The formal
proof follows.

In order to prove Proposition 3.6, we will simultaneously construct by induction the
four sequences. The sequence (vk)k∈N will also satisfy that vk �

−→
0 for every k ∈ N.

The proof uses the idea presented in the example of Sect. 2.3. By Condition C.1, the
k +1 auxiliary finite-stage game only terminates at stages t , such that (t mod C) = lk ,
with terminal payoff vk+1 which, by Condition C.2, equal to the equilibrium payoff
in �(lk, τk, vk). Suppose vk+1 �

−→
0 , hence there is a set of players I ′ 	= ∅, such that
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vi
k+1 < 0, for every player i ∈ I ′. Therefore, there is some player i∗ ∈ I ′, such that

at some stage t∗, player i∗ will strongly prefer stopping to continuing and getting a
payoff v

i∗
k+1 < 0. To simplify the presentation, assume t∗ < lk . Observe the finite-

stage stopping game �(t∗, lk, vk+1) which starts at stage t∗ and terminates at stage lk
with terminal payoff vk+1. Using a backward induction, we can find an equilibrium
in �(t∗, lk, vk+1) where i∗ stops at stage t∗. Denote by v∗ the equilibrium payoff in
�(t∗, lk, vk+1).

If v∗ �
−→
0 , then take �(t∗, lk, vk+1) as the k + 1 auxiliary finite-stage stopping game.

If v∗ ≥ −→
0 , we add some stages to the game �(t∗, lk, vk+1) before stage t∗, where

we force player i∗ to stop (e.g., in Fig. 2 in Example 1, Player 4 is forced to stop);
If i∗ is chosen at some stage t such that (t mod C) = t∗ and does not stop, the game
terminates with terminal payoff vk+1, so he receives a lower payoff than the payoff he
receives by stopping, otherwise, the game continues to the next stage. Since i∗ is not
a social welfare player, adding enough stages, but not too much, where only player i

has the incentive to stop, ensures that vk+2 �
−→
0 .

The proof of Proposition 3.7 uses a diagonal extraction argument—a limit of conca-
tenations of (σt )t∈N is the desired subgame perfect 0-equilibrium.

To state the formal construction we need additional notions.
By Assumption A.2 every player is not a social welfare player. Therefore the follo-

wing quantity m, which represents the “minimal possible punishment”, is well defined:

m = max{γ j
|h(0−i , µi ) < 0 | i, j ∈ I, µi 	= 0i a pure C-periodic strategy, h ∈ H}.

(4)

Define

B = min
{

t ∈ N
∣

∣(1 − δ)t · 1 + (1 − (1 − δ)t ) · m < 0
}

. (5)

Suppose γ j (0−i , µi ) < 0, where µi 	= 0i is a pure C-periodic strategy. In particular
γ j (0−i , µi ) ≤ m. If during B · C stages, all players other than i continue, and if i
follows µi , player j’s expected payoff if he continues whenever chosen is at most

(1 − δ)B · 1 + (1 − (1 − δ)B) · m,

and it is, therefore, negative (The quantity 1 is an upper bound on the continuation
payoff after stage B · C).

3.3.1 Proof of Proposition 3.6

Assume A.1 and A.2 hold. We simultaneously construct by induction the four
sequences as needed in the proposition. As mentioned before, the sequence (vk)k∈N
will also satisfy that for every k ∈ N there is i ∈ I such that vi

k < 0.
Let l0 = τ0 = 1 and v0 = a∞; that is, �(l0, τ0, v0) is a degenerate game, such

that the game terminates at the same stage it starts and the players do not have the
opportunity to act. In that game σ0 = ∅ is a subgame perfect 0-equilibrium, so that
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γ (σ0;�(l0, τ0, v0)) = a∞. By Assumption A.1 there is at least one player i ∈ I
whose expected payoff is negative.

Assume we already defined the first k elements of each sequence as required in the
proposition. We also assume that γ (σk;�(lk, τk, vk)) 	≥ −→

0 .
Define vk+1 := γ (σk;�(lk, τk, vk)), as required by Condition C.2. We now define

lk+1, τk+1 and σk+1.
Since vk+1 	≥ −→

0 , there is a player i such that vi
k+1 < 0. Furthermore, the maximal

payoff every player can gain by terminating the game by himself is 0. In particular,
there is 1 ≤ t ≤ C where ai

i (t) = 0 > vi
k+1.

Let t∗ ∈ {1, . . . , lk − 1} be the maximal integer which is strictly smaller than lk
such that there is some player i who satisfies

ai
i (t∗) > vi

k+1. (6)

If there is no t∗ as required above, let t∗ be the maximal integer in {lk, . . . , C} such that
there is some player i who satisfies (6). In the example of Sect. 2.3, if vi

k+1 = a∞ and
lk = 1 then t∗ = 2. Denote by I∗ the set of all players who satisfy (6). Consider the
game that starts at stage t∗ and terminates at the earliest stage t such that (t mod C) =
lk with payoff vk+1. The game has a subgame 0-equilibrium in which all the player in
I∗ stop at stage t∗, and all the other players continue whenever chosen. The equilibrium
payoff is v∗ as follows:

v∗ :=
∑

i∈I∗
pi (t∗) ai (t∗) +

⎛

⎝1 −
∑

i∈I∗
pi (t∗)

⎞

⎠ vk+1.

Case 1: v∗ �
−→
0 .

Define

lk+1 := t∗.
τk+1 := min{t ≥ t∗ : (t mod C) = lk}.
σk+1 := at stage t∗, all players in I∗ stop, all the other players continue.

Case 2: v∗ ≥ −→
0 .

Choose a player, i∗ in I∗. Then v
i∗
k+1 < 0. For every r ≥ 0, define an auxiliary

finite-stage game �(r) which starts at stage t∗ and terminates at stage t∗ + r · C
with terminal payoff v∗, except for, whenever player i∗ is chosen at stage t such that
(t mod C) = t∗ and chooses to continue, the game terminates at once with payoff
vk+1. For every r ≥ 0, the game �(r) has an equilibrium in which at least i∗ stops
whenever he is chosen at stage t where (t mod C) = t∗. Furthermore, for a sufficient
small r (at least for r = 0 and r = 1), all the players except i∗ continue whenever
chosen, so the equilibrium payoff is as follows:

a∗(r) = (

1 − (

1 − pi∗(t∗)
)r )

ai∗ (t∗) + (

1 − pi∗ (t∗)
)r

v∗.
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For r = 0, a∗(r) = v∗ ≥ −→
0 . For every r ≥ B, a∗(r) �

−→
0 , by Eq. (5), however,

a∗(r) is not necessarily an equilibrium payoff in �(r). Let r∗ be the minimal integer
in {1, . . . , B} such that a∗(r∗) �

−→
0 . Notice, for every r < r∗, a∗(r) ≥ −→

0 , hence, all
the players, except i∗, prefer to continue whenever chosen in �(r∗), and a∗(r∗) is an
equilibrium payoff.

Define
lk+1 := t∗.
τk+1 := During r∗ · C stages, whenever player i∗ is chosen at stage t such that
(t mod C) = t∗, and chooses to continue, the game terminates at stage t̃ = min{t ′ >

t : (t ′ mod C) = lk}. If the game does not terminate before the end of those r∗ · C
stages, it terminates at stage t̂ = min{t ′ > t∗ + r∗ · C : (t ′ mod C) = lk}. σk+1 :=
(a) player i∗ stops at every stage t such that t∗ = (t mod C).
(b) at stage r∗ · C + 1 all players in I∗ stop.
(c) otherwise, the chosen player continues.

The construction implies that Conditions C.1–C.3 are satisfied. It is left to prove
that Condition C.4 is satisfied as well.

Assume to the contrary that Condition C.4 does not hold—there is some player i and
an integer k0 such that for every k > k0, the auxiliary finite-stage game �(lk, τk, vk),
under the profile σk , terminates by player i with probability at least δ, while all the
other players always continue.

If for every k > k0 player i is the only one who stops in �(lk, τk, vk) then vi
k < 0

for every k > k0. It might happen that player i will stop even if he receives a negative
payoff. However, such a case happens only finitely many times: if only player i stops,
and if vi

k < 0 for every k > k0 then player i always stops whenever ai
i (t mod C) = 0.

Therefore, for every k > k0, vi
k is a weighted average of vi

k0
, 0 and possibly negative

payoffs that player i may find more worthwhile than the continuation payoffs. Since
the weight of 0 in that average increases with k, vi

k increases with k as well. Thus,
there is a bounded k1 > k0 such that at every finite game �(lk, τk, vk) where k > k1,
player i stops only at stages where his payoff is 0.

Since i is not a social welfare player, there are necessarily some k2 such that
k1 < k2 < k1 + B, and a player j 	= i such that v

j
k < 0, for every k > k2. Therefore

j is better off by deviating and terminating one of the games �(lk, τk, vk), for some
k > k2, a contradiction. 
�

3.3.2 Proof of Proposition 3.7

Assume there are sequences (lk)k∈N, (τk)k∈N, (vk)k∈N and (σk)k∈N in pure strategies
such that Conditions C.1–C.4 hold.

The play consists of the sequence of chosen players (in)
∞
n=1 and the terminal stage

θ ∈ N ∪ {∞}. For every two stopping times τ̂1 and τ̂2 define

(̂τ1 ⊕ τ̂2)(i1, i2, . . . , θ) = τ̂1(i1, i2, . . . , θ) + τ̂2(iτ̂1+1, iτ̂1+2, . . . ,̂θ)

where

̂θ = max{1, θ − τ̂1(i1, i2, . . . , θ)}.
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In words, at stage τ̂1 forget past play, and stop τ̂2 stages later (where the history to use
to calculate τ̂2 is the partial history after stage τ̂1). Let

τ ∗
k = τk ⊕ τk−1 ⊕ · · · ⊕ τ1.

By Condition C.1 the auxiliary finite-stage game �(lk, τ ∗
k , v0) is the concatenation of

the games �(lk, τk, vk), �(lk−1, τk−1, vk−1), . . . , �(l0, τ0, v0).
One can verify that, by C.1 and C.2, the following profile σ ∗

k is a subgame perfect
0-equilibrium in �(lk, τ ∗

k , v0): first follow σk , then σk−1 and so on until σ1.
By Condition C.3, the probability that under σ ∗

k the game terminates before stage
τ ∗

k is at least 1 − (1 − δ)k .
By Condition C.4, for every player i ∈ I and for a large enough k, the game

�(lk, τ ∗
k , v0) terminates under (σ

∗,−i
k , 0i ) before stage τ ∗

k with probability that is as
close to 1 as we wish, as k goes to infinity.

The profile σ ∗
k is an element in the space [0, 1]nk for some nk ∈ N.σ ∗

k can be
identified with a point in [0, 1]N, by identifying the nk initial coordinates with σ ∗

k and
the other coordinates with 0.

The space [0, 1]N is compact, therefore (σ ∗
k )kt∈N has a subsequence which

converges to the limit σ ∗.
Using a limiting argument, it is standard to prove that σ ∗ is a subgame perfect

0-equilibrium (cf. Solan and Vieille 2003). 
�
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