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Abstract

The paper considers packing of rectangles into an infinite bin. Similar to the Tetris
game, the rectangles arrive from the top and, once placed, cannot be moved again. The
rectangles are moved inside the bin to reach their place. For the case in which rotations
are allowed, we design an algorithm whose performance ratio is constant. In contrast,
if rotations are not allowed, we show that no algorithm of constant ratio exists. For
this case we design an algorithm with performance ratio of O(log %), where € is the
minimum width of any rectangle. We also show that no algorithm can achieve a better

ratio than Q(y/log 1) for this case.

1 Introduction

In this paper we consider the problem of orthogonal packing. We are given a bin with a
fixed width (assuming equal to 1, without loss of generality) and an unbounded height, and
also a set of open oriented rectangles. The rectangles have to be placed in the bin with the
bottom of the rectangle parallel to the bottom of the bin. The spaces occupied by different
rectangles may not overlap. The original rectangle packing problem was first proposed
in 1980, by Baker et al. [1]. They present an approximation algorithm that achieves a
performance ratio of 3 for rectangles and 2 for squares. Coffman et al. [8] present various
algorithms with better performance ratio, and in particular split fit that has ratio of 1.5.
We discuss the version of the problem, in which each rectangle has to be placed before the
next one arrives.

There are a few models, which differ in the allowed movements inside the bin. In the
original two-dimensional packing problem, a rectangle could be placed directly in any free
space of the size of the rectangle, the concept of getting into a place was not discussed. In
contrast, in our models, a rectangle arrives from the top as in the Tetris game, and should
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be moved continuously around only in the free space until it reaches its place, (see figure 1),
and then cannot be moved again. Moreover, it is possible either to allow rotations or not.
If rotations are allowed, the rectangle may be rotated at any stage, and can be assigned on
its side or on its bottom. If rotations are not allowed, the rectangle may only be moved
with its bottom parallel to the bottom of the bin. It is also possible, to consider the integer
case in which all widths and heights of rectangles are integers. In this case, the width of
the bin is also an integer.
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Figure 1: The narrow rectangle moves continuously in the unoccupied space to its place.

We note that our model in which the rectangles are not assigned directly, but should
reach their place in a free space movement, has different applications. One possible applica-
tion for this model is loading trucks with boxes, since while loading a truck, it is impossible
to put anything under a large box that has already been packed (see figure 2). Also,
the integer model with free space movement and rotations resembles the well known Tetris
game. The main difference between the game, and our models is the goal. Our goal is to
minimize the total height used, and in the Tetris game, the goal is, roughly, to maximize
the number of full rows.

Figure 2: The big rectangle blocks the smaller rectangle

The cost of the algorithm is measured by the height of the packing, i.e. the maximum
height, measured from the bottom of the bin, that is occupied by some rectangle. As usual,
we try to compute the ratio between the cost of the on-line packing and the optimal off-line
packing (the best packing that can be done for this sequence of rectangles).

The main results presented in this paper are as follows:
e A 4 competitive algorithm for the model with rotation.

o An Q(y/log 1) lower bound for the model without rotation, for the case that the width
is bounded below by € or/and bounded above by 1 — e. This implies that there is no



competitive algorithm for the unbounded width case. Our lower bound holds for
deterministic and randomised algorithms.

e An O(log 1) algorithm for the model without rotation for the case when widths are
bounded below by € or/and bounded above by 1 — .

o A 4 competitive algorithm for squares in both models. This immediately follows from
the first result and the fact that squares do not change their form when rotated.

It is interesting to note that although the two main algorithms that we present (one
without rotation, and one with rotation) are quite similar, there is a substantial difference
in their analysis and performance.

We note that, Karloff [17], independently, provided a lower bound of £(y/log %) for
deterministic algorithms for the case where only up and down movements are allowed. It
does not seem obvious to extend his bound for randomised algorithms or for algorithms
with arbitrary movements.

Other related work. A special case of the problem considered in the model without
rotations is, when all widths are equal. In fact this is equivalent to the list scheduling
problem, that was first studied by Graham [15] and later in [10, 2, 4, 14, 5, 18, 3].

In the case that all heights of the rectangles are equal it can be easily shown that
the packing should consist of strips of that height. This problem is similar to the one-
dimensional bin packing problem, since we can treat each strip as a bin. However the
problems are not equivalent since full strips can block rectangles to reach other strips. Bin
packing has been widely studied. Results on on-line bin packing appear in [16, 19, 22, 20,
21]

The problem in which the rectangles are packed directly into bounded bins has been also
studied. Here the goal is to minimize the number of bins. For the on-line version constant
competitive algorithms have been designed in [9]. Improvements and lower bounds on the
constant appear in [9, 11, 7, 13, 21]. In both [13, 21] three dimensional packing of boxes
into three dimensional bins is also considered.

Definitions and notations. We consider sequences o of open rectangles r;. The rectangles
have to be packed into a bin of infinite height. Fach rectangle, r; has a width w; (a real
number between 0 and 1), and a height h; (also real). The cost of the algorithm is measured
by the maximum height, measured from the bottom of the bin, that is occupied by some
rectangle of the packing. We denote the optimal off-line cost for the sequence by Co,i(0),
(or Copt, if the sequence is clear from the context). This is the smallest height that the
sequence can occupy. The on-line algorithm’s cost for o is denoted by C,,.(0) , (or Cop).
An on-line algorithm has competitive ratio ¢r if for all o

Con <ecr- COpt +

for some constant ¢;. We also use the notation of A(c¢), which is the total area of the

rectangles in o i.e.
Ao) = Zwihi



2 The Model With Rotations

We first discuss the model in which rotations are allowed. Here we obviously assume that
both the width and the height of each rectangle is bounded by 1. The most natural thing
to do is to rotate the rectangles and assign them on their wide side. Unfortunately, it can
be shown that this method does not work well. In fact, our algorithm assigns the rectangles
on their narrow side. Our algorithm divides the bin into horizontal strips, one on top of the
other. Fach strip will be used for a certain range of heights of rectangles. Let W and « be
real constants: 0 < o < land 0 < W < %

The Algorithm A: When a rectangle arrives, it is first rotated on its narrow side and
then is placed as follows:

1. If the rectangle is a buffer (i.e the width after rotation is at least W), a new strip of
height of the buffer is open for it and the buffer is placed into the strip to the left.

2. If the rectangle is not a buffer, it is placed into a strip with the height equal to that of
the rectangle rounded up to the closest power of a. The algorithm checks if there is
such a strip that is reachable by the rectangle and the total width of all the rectangles
in this strip (including the new rectangle) does not exceed 1 — W. If there is such a
strip, the rectangle is assigned there, otherwise, a new strip is opened on top of all
previous strips, and the rectangle is placed there to the left.

If a piece can reach some open strip of the suitable height, and can be placed there, it is
placed into the lowest strip of this type, next to the pieces that are already there to the left.
We call rectangles of width between W and 1 —W small buffers, and those of width between
1 —W and 1, large buffers. Note that only large buffers might block some future rectangles
from getting into a suitable place since we try to assign only non-buffers in previous strips.

Theorem 2.1 If we choose W = % and a = %, then the algorithm A is 4-competitive.

Proof: Since all heights are bounded (the width and the height of the rectangle are bounded
by 1), we allow an additive constant. We are going to show that Cy,, < 4-Copr + 3. We
define a strip as full, if the sum of the widths of the rectangles that were placed in it is
at least 1 — 2W, and non-full otherwise. We denote the subsequence of large buffers by
By, B, ..., Br. To prove the theorem it is enough to show that at least a fraction W of the
area is occupied (except a height of 1/(1 — «)) and thus

1
l—-a

COpt Z A(U) Z w- (Con -

).

We first consider strips in which small buffers were put. Since the width of buffers is at
least W, those strips are at least W full. We ignore the first strip of each height that was
ever opened, if it is non-full. The total height we ignore is bounded by > ,soa’ = 1/(1—a).
Consider the other non-full strips. We associate each non-full strip with a large buffer or
full strip, depending on which of three ways a strip is opened:

o The first strip of a certain height (which we already considered).



o A large buffer blocks it from getting into a strip. We associate the strip with the
highest buffer that blocked the rectangle, and caused the opening of the strip.

o A rectangle did not fit into the last strip of this height. The last strip must be full,
otherwise any rectangle which is not a buffer would fit there. We associate the new
strip with the last strip.

Note that for each buffer, there can be only one strip of each height associated with it, and
for each full strip, only one non-full strip associated with it. Consider the full strips with no
non-full strips associated with them. Those strips are at least « full in the height, and at
least 1 — 2W full in the width. The occupied area is at least a(1 — 2W'). We now compute
the occupied area for the full strips with the non-full strips. If we put all the rectangles
in one strip, the width would be at least 1 — W, since the rectangles did not fit into one
strip together. The strip would be a full in the height, and the two strips together would
be a(1 —W)/2 full, because of the second strip of the same height. As for the large buffers,
each buffer was associated with a few strips, at most one of each height. Assume that the
total height of those strips for a certain buffer is £, 0 < A < ﬁ the height of the buffer is
h(B;) and the width is w(B;). Since this is a large buffer, 1 — W < w(B;) < h(B;) < 1. The
occupied height is h4 h(B;) and the occupied area is at least h( B;)w(B;)+a-h-(1—w(B;)),
since the strips are at least a full in the height, and 1 — w(B;) in the width (the rectangles
in each one were blocked by the buffer). It is easy to check that for W = % and a = % the
occupied area is at least % of the total area for each of the cases. This yields the competitive
ratio of 4 which is actually the best ratio that can be achieved in this method. [ |

3 The Lower Bound For The Model Without Rotations

In this section we provide a lower bound for the case of the problem in which the widths of
the rectangles are bigger than €, or all widths are less than 1 — € (or both).

Note that we allow to place rectangles in any free space, and not only above other
rectangles, so that there is no gravity. If we enforced gravity, no algorithm can achieve a
good competitive ratio since we can prove the following claim:

Claim 3.1 Any algorithm for the model with gravity, no rotations, and when all rectangles are
at least of width ¢, is (1) competitive. This holds also if all widths are less than 1 — €.

Proof: The proof is in the appendix. [ |

Thus if we enforced gravity, the trivial algorithm which places the rectangles one on top of
the other, would be optimal, for the case with minimum width e.

We show that there is no constant competitive algorithm for the case without rotations
and without gravity). More precisely, we prove the following theorem:
d without gravity). More precisely, p the following th

Theorem 3.1 Any on-line (deterministic or randomised) algorithm for this problem has a com-

petitive ratio of at least Q(y/log 1).



Proof: We assume that ¢ < 11—6, otherwise the lower bound is constant. We first prove the

deterministic lower bound. Later we show how to modify it for the randomised case.
We use a sequence which consists of rectangles with width between ¢ and 1— € and height
between 6 and 1 where 6§ < 1/log % We show that for that sequence the off-line cost is 1,

and the on-line cost is Q(4/log %), we call it a base sequence. By multiplying the heights by
a constant, we can get any off-line cost, and thus get the lower bound even if we allow an
additive constant. Moreover, the bound is correct even if the heights of the rectangles are
bounded by 1 (or any other constant). To build the sequence, we repeat the base sequence
several iterations, separating the iterations by a rectangle with width 1 — $ and height é.
(Here we prove lower bound for § instead of ¢€). Thus any rectangle that arrives after this
rectangle can’t be placed under this one, since the minimum width of rectangle is .

We can now introduce the base sequence. We define n such that ¢ = 2%, which implies

that ¢ < % To prove the lower bound consider the sequence of rectangles that consists of
two types:

o Tall rectangles (with height ﬁ and widths 2/ 1e for i = 1 to 2)

o Buffers, (rectangles with height § and widths 1 — 2% + %)

The sequence consists of two types of phases. The & phase, consists of 4 tall pieces of
width 2¢~'¢, and one buffer of width either 1 — 2% + Sorl— 2= 1e 4 5, which corresponds
to type 1 or type 2 phase. We run the sequence until the completion of § phases, or \/n
phases of type 2, whatever happens first. We show that the off-line packing uses a maximum
height of 1, and that the height required for any on-line algorithms is at least 4/log %/8, the
available space of the off-line algorithm is called a box. First, the off-line algorithm uses an
1x 1 (height 1 and width 1) box. All the rectangles and buffers must be packed in this box.
After each phase the on-line algorithm will have a smaller box available, (see figure 4).

Figure 3: The on-line packing at state 1

The on-line algorithm is forced to put the buffer in such a way that no rectangle that
arrives after this buffer can fit under the buffer hence for the on-line algorithm all the
rectangles of one phase are above all the rectangles of the previous phase. Therefore the
on-line algorithm may use at each phase width 1 to pack all rectangles of that phase. We
call two rectangles overlapping, if it is possible to draw a horizontal line that intersects
them both.



We build the sequence inductively. Assume we constructed the first ¢ phases of the

sequence, (i.e. chose the type of each phase). At phase ¢ the 4 tall pieces arrive, and the
type is chosen according to the way the on-line algorithm has placed them. There are two

possible states.

1. If at least two current phase pieces overlap, (figure 3), then the phase becomes type
1 and a buffer of width of 1 — 2'¢ + § arrives. The off-line places all the pieces one on

Figure 4: The off-line packing at state 1

top of the other, and the buffer near them, as low as possible (see figure 4). Packing
the rectangles like this, the off-line wastes height § and width 2:~te.

2. Otherwise, if no two current phase pieces overlap, then the phase becomes type 2 and
a buffer of width 1 —2°=1e + 5 arrives. The off-line places all the pieces in one row on
the bottom of the available rectangle. The buffer is placed on top of them, to the left.
In this off-line packing the height wasted is ﬁ + ¢ and there is no wasted width.

Claim 3.2 Assume that up to (including) phase i, there are j phases of type 2. Then the on-line
has wasted height of at least

(i = )/ + /3 (1)
and the off-line has a free box of height

1= b — j/(4/m) (2)
and width

1— (28— 1)e (3)
Proof: The proof is in the Appendix. [ |

Recall that we run the sequence until the completion of % phases or \/n type 2 phases,
whatever happens first. Using Claim 3.2, it is easy to show that in both cases the on-line
NG

must have height of at least *= and mxthe off-line algorithm can pack all the pieces in the
box which completes the deterministic lower bound.

It is possible to modify the proof of the lower bound also for randomised algorithms.
We omit the details. [



4 Algorithms For The Model Without Rotations

As we proved in the last section, no constant competitive algorithm exists for the general
problem, however we construct algorithms with competitive ratio which depends on the
minimum width rectangle. In this section we present the algorithm for the case in which
rotations are not allowed. The algorithm achieves competitive ratio of O(log 1) where € is
the minimum width of each rectangle. We also show how to change it for the case that the
width of rectangles is bounded above by 1 —¢ and not bounded below. Note that the heights
of the rectangles are arbitrary and may be larger than 1. The algorithm uses horizontal
strips, that are used for certain types of rectangles. Each strip is used for a certain range of
heights, and a certain range of widths. An (4, 7) strip is a strip that is used for rectangles
of height h: 2771 < h < 27 and width w: 277! < w < 277, ( j is any integer, and 7 is
a positive integer). The algorithm uses other separate strips for the rectangles of width
at least %, those rectangles will be called buffers. Those strips are used only for buffers,
one for each, and have the exact height of the buffer. We define a strip as available for a
certain rectangle, if the rectangle can reach the strip (i.e. no buffer blocks the strip from
the rectangle) and if after the rectangle is placed into the strip, the sum of all widths of the
rectangles in the strip will not exceed %.

The Algorithm B: When a rectangle arrives it is classified and assigned as follows:

o If it is a buffer, a new strip of height of the buffer is opened for it, above all the
previous strips, and the buffer is placed into this strip to the left.

o If it is a non-buffer, it is classified as an (7, ;) rectangle for some ¢ and j. If there
exists an available (7, 7) strip then we place it there to the left. Otherwise, we open

a new strip of height 27, just above all previous strips, to be an (4, j) strip, and place
the rectangle there, to the left.

Theorem 4.1 The algorithm B is O(log 1) competitive, where € is the minimum width of any
rectangle.

Corollary 4.1 For the integer case, the algorithm is O(log n) competitive, where n is the width
of the bin.

Proof: Substitute ¢ = % []

Proof: (of theorem). We assume without loss of generality that e < i, (otherwise, the

upper bound is constant) We define a strip as full, if the sum of widths of the rectangles
placed there is at least % We also define all buffer strips as full. We now can reduce the
sequence o to o', so that there are no full strips for the on-line algorithm. We remove all
rectangles that were placed into the full rows, but are not buffers. We also reduce the height
of the buffers to zero, but we do not remove them. Those buffers remain in the sequence as
one-dimensional buffers: they do not have height, but block the same rectangles as before
the reduction from getting to strips.

Lemma 4.1 If the competitive ratio of the reduced sequence o’ is O(log %), so is the competitive
ratio of the original sequence.



Proof: The proof is in the Appendix. [ |

Note that since our algorithm keeps the width of all non-buffer strips below %,

of different ranges of width are packed independently. We reduce the sequence further. For
each 7, we define o; to be the subsequence of all the buffers, and rectangles of width w:
27=1 < w < 27%. Note that the same strips are opened for the rectangles in o; as in o’

rectangles

Lemma 4.2 If the algorithm is constant competitive on each such subsequence o;, then it is
O(log 1) competitive on o’

Proof: The proof is in the Appendix. [ |

Note that by the last reduction, the on-line algorithm has no full strips also for each o;.

Lemma 4.3 For a subsequence o; of rectangles of widths w: 271=1 <« w < 277, and one-
dimensional buffers, the algorithm is 10 competitive.

Proof: For this subsequence we can also omit all buffers of width 1 — 27¢ and less, since
they cannot block any non-buffer rectangle from o;. We can also assume that there are no
buffers wider than 1 —27¢~1. If there are, we can treat all the rectangles between two wide
buffers as the subsequence we are considering. Since those wide buffers block all subsequent
rectangles, and force the off-line and the on-line begin a new packing, as if a new sequence
has begun.

Consider the off-line packing for o;, and consider all remaining buffers: Bufy,..., Buf,
(from the bottom of the packing to the top). (See figure 5). Recall that the buffers are
one-dimensional and thus are assigned at some height in the bin. We denote by hj the
height that Buf; was assigned by the off-line algorithm. Denote hg = 0, hp11 = Cop(0),
the bottom and the top are treated as buffers. Recall that two rectangles overlap, if it is
possible to draw a horizontal line that intersects them both.

=
—
=

Figure 5: The off-line packing for o;

Consider all non-buffer rectangles, there are 3 types of possible packing for them at the
off-line assignment:

1. A rectangle is considered "pioneer”, if there was no previous rectangle that overlapped
it.



2. The rectangle is not a pioneer, and was placed between two buffers, i.e. there exists
k such that the top of the rectangle is not higher than hgiq, and the bottom of the
rectangle is not lower than hy.

3. If the rectangle is not pioneer, and wasn’t placed between buffers, then it must have
been placed near some buffer.

We consider all strips that were opened for each type of rectangles by the on-line algorithm.

Claim 4.1 The strips used for type 1 rectangles, occupy at most height of 2Co,¢(0;).
Proof: The proof is in the Appendix. [ |
Claim 4.2 The strips opened for type 2 rectangles, occupy at most height of 4Co:(0;).

Proof: Denote by 5% the type 2 rectangles that were placed between Buf; and Bufi+1 by
the off-line. We first prove the following lemma.

Lemma 4.4 The on-line algorithm opened at most one strip of each height in order to place
the rectangles in S%.

Proof: By contradiction. Assume that two different strips of the same height were opened
for the rectangles in Sk. Denote by r; and ry the two rectangles, that the two above strips
were opened for. Since there are no full strips in the on-line packing, the second strip was
opened since a buffer blocked ry from being placed at the same strip as ry. This buffer
arrived between rq and ry since all the buffers that arrived before r; were placed by the
on-line algorithm below 7.

We consider the place of this buffer in the off-line packing. Since ry is between two
buffers, the buffer can not overlap ry in the packing and thus there are two possibilities for
the off-line location of the buffer.

e The buffer is under ry. The buffer should have passed near ry to reach its location.
However, 71 is not a pioneer and therefore any rectangle that passes near it must
have width less than 1 — 27%. The buffer has width of at least 1 — 2% which is a
contradiction.

e The buffer is above r1, The buffer is also above ry, since both rectangles are between
the same two buffers. ry arrived after the buffer and therefore its width is smaller
than 1 minus the width of the buffer. Since the on-line algorithm assigns the buffers
in a separate strip, it could not block ro which is a contradiction.

We continue the proof of Claim 4.2. All the rectangles in 5 have height of at most
hg+1 — hr. Thus the highest strip that may be opened by the on-line algorithm for those
rectangles is at most 2(hgy1 — hy). There is at most one strip for each height, so the total
height of strips opened for the rectangles in Sy is 4(hgy1 — hg). Summing for all k& we get

10



that the total height is 4Coy, since

m

43 (hggr — hg) <4Cop
k=0

Claim 4.3 The strips used for type 3 rectangles, occupy at most height of 4Co,¢(0;).

Proof: First consider the off-line packing. Note that there is at most one rectangle near
each buffer, since the width of the buffer is at least 1 — 27%, and the width of any rectangle
is larger than 27'~!. Moreover, consider the rectangles that were placed to the left of the
buffers. Clearly, there are no rectangles to their left. All those rectangles can be moved so
that they are just to the right of the left border of the bin. There is at most one rectangle
at each height, and hence their total height is at most C'o,¢(0;). Since in the on-line packing
the height of each strip is at most twice the height of the rectangle, the total height they
might occupy is at most 2Copi(0;). The proof for the rectangles at the right of buffers is
similar. ]

Now we conclude the proof of Lemma 4.3. Note that there might be strips that were
used for more than one type of rectangles. Nevertheless, by the three Claims, the total
height occupied by the o; rectangles is at most 10Co,¢(0;), and thus the algorithm is 10
competitive. [ |

The proof of Theorem 4.1 follows immediately from Lemmas 4.1, 4.2 and 4.3. [ |

Next, we claim that our analysis it tight.

Claim 4.4 The algorithm B is Q(log 1) competitive.
Proof: The proof is in the Appendix. [ |

We can modify algorithm B to somewhat more natural algorithm B’ as follows. The
strips of a certain height are used for all widths of rectangles (instead of a separate strip
for each width), in a way similar to the algorithm in section 2.

Theorem 4.2 The algorithm B’ is ©(log 1) competitive.
Proof: The proof is in the Appendix. [ |

Now we change the algorithm B to an algorithm C' for the case that the width is not
bounded below, but bounded above by 1 —e. When a rectangle of width less than € arrives,
we define how to place it, otherwise we place it in the same way as in algorithm B or B’.
We open special strips for those rectangles. When a narrow rectangle arrives, its height is
rounded up to a negative power of 2. If there is a non-full strip of narrow rectangles, for
this height, the rectangle is placed there. Otherwise, a new strip of this height is opened,
and the rectangle is placed there.

Theorem 4.3 The algorithm C' is O(log 1) competitive, where 1 — ¢ is the maximum width of
any rectangle.

11



Proof: The proof is in the Appendix. [ |
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5 Appendix

5.1 Proof of claim 3.1

To prove the claim we introduce the following sequence.

Fisrt at most 1 pieces of height 1 and width 2e¢ arrive (we assume ¢ < 1). The pieces
arrive until the on-line places two of the pieces in an overlapping way.

If the on-line did not place two pieces in an overlapping way, then C,,, = %, the off-line
places them in two rows, and thus Cp,; = 2.

Otherwise, if £ pieces arrived, the height of the on-line is £ — 1, and the off-line will
place them one on top of the other, yeilding the height of k.

Now for 7 =1 to i we repeat the following sequence of two pieces:

o A buffer of small height 6, (6 < ¢), and width 1 — 2¢ 4 6¢.
e One piece of height & — 1 + 67, and width 2¢ — é¢.

The off-line places all pieces under all buffers, since the total width of the rectangles is
less than 2¢ + i -2¢ < 1. This is possible since the height of any rectangle is less than k,
and each rectangle can be moved near any buffer that arrived before it. The total off line

cost is k + O(£) = O(k) for small 6.

When a new non-buffer rectangle arrives, the on-line must either create a new ”shelf”
for it, or to place it in a previous ”shelf”. The shelfs are formed exactly in the height of
the rectangle in the phase, since the next buffer is too wide and must be placed above the
rectangle, which closes the shelf from the top. There can be at most two rectangles in each
shelf: the one that opened it, and another one may be placed near the buffer that closes
this shelf. Thus the number of shelves, is at least half of the number of phases.

The cost of the on-line is at least k — 1 + £(k — 1) = O(22L) = O(%). And thus
Con Z O(%)C()pt-

5.2 Proof of Claim 3.2

We prove the claim by induction on the number of phases i. Before we begin (¢ = j = 0) the
on-line lost no height, and the off-line has an 1 x 1 free box, as claimed. Suppose the claim
is correct for the ¢ first phases, which includes j type 2 phases. There are two possibilities:

1. Type 1 phase. There are two pieces that overlap in the on-line packing, since the sum
of widths of the buffer and the two pieces is

(1—2i+1€+%)+2-2%: 1—2i+1e+%+2i+1e: 1+%> 1.
Then the buffer must be put above the line where they overlap. This adds the height
of ﬁ + 6, and proves ( 1). The off-line packs all the tall pieces one on top of the
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other to the left of the free box. This can be done since the height of all \/_ pieces
N

together is 5= - i/r =8 and since the available height of the available box is
1—61——_1—6——ﬁ2l
4/n 2 4yn 4

as 6 < %
Now the width left is
(1—(21—1)e)—2e=1—(2-2—1)e=1— (2T = 1)¢

Moreover the width of the buffer is 1 — (21 — 1)e > 1 — 2i*!e + £ We can put it in
the bottom of the available box, wasting the height of §. Thus the height of the box
is ;
1—62—U_—6—1 6(2—|—1)—m

and the available width remains 1 — (2+! — 1)e which proves ( 2) and ( 3) .

. Type 2 phase. The on-line algorithm did not put two tall overlapping pieces, (it is
impossible to draw a horizontal line through two of the pieces), thus pieces must be
put one on top of the other. Their total height is 1 5 since there are \/—_ pieces of height
4\/— The only way to place the buffer is on top of all the tall pleces since a buffer
and a tall piece can not be placed one next to the other, as the sum of their widths is

(1—2%+%)+(2%):1+%>1.

The algorithm could not place any pieces under the buffers from previous phases,
since the widths of buffers Were at least 1 — 2% + % The height added is at least the
height of big pieces, which is £, and this proves ( 1).

The off-line puts the big pieces in one row. This can be done since on one hand the
available width is

1
2n

On the other hand there are \/TE pieces of width 2¢ and the total width is

i Vs Vi L Vi i F 1
2 — 2

e X coie. XYoo= — o X =

2 2 e 2

since € = 2% and L < 1,Yn € N. The buffer has width 1 — 2l + % and also fits into

the width of 1 — (22 - 1)6. Thus the width of the available box does not change, but
the height is reduced by ﬁ by the big pieces and also é by a buffer. By induction,

1—(2—De>1-(22e=1-(22"H—=1-(2"2"H>1-2" 125

the height of the available rectangle was 1 — 67 — ﬁ at the beginning of the phase.

Note that the number of type 2 phases has increased by 1 at the end of the phase.
The height becomes

. 1 . J+1
1—6i——=—§——==1-6(i+1)—
! 4v/n 4/n (i+1) 4v/n

and the available width is 1 — (2° — 1)e > 1 — (27! — 1)e as needed to prove.
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5.3 Proof of Lemma 4.1

We denote the sum of the heights of full strips as H s, and the sum of heights of non-full
strips as Hyon—pur. Clearly Cop, = Hypuy + Hpon—guu- The full strips for non-buffers are
at least % full in the height, and at least % full in the width. The buffer strips are full in
the height, and at least % full in the width. For the subsequent ¢ of rectangles in those
strips: Copi(0) > A(o) > A(¢) > %Hfu”, and thus Hyyy < 4Cop(0). The off-line cost of
o’ may only be smaller than the off-line cost of o. One can easily check that the behavior
of the on-line algorithm on ¢’ is similar to its behavior on . More precisely, all buffers
and rectangles that are not in a full strip are placed in the same way they were in o, and
the same strips are opened. (Since the buffers were left and they block the same rectangles
they did before.) The new on-line cost is Cy,(0") = Hyon— s, which satisfies:

1 1
Hnon—full S O(log E)COpt(UI) S O(log ;)COpt(U) .
Thus 1 1
Con < (Oog 1) + )0y = Ollog +)Clop

5.4 Proof of Lemma 4.2

We denote the maximum competitive ratio over 2 < 7 < [log 1] as ¢. The on-line cost is
actually the sum of costs for all the subsequences of various ranges of width. Since there
are O(log 1) different ranges of width, and the off-line cost for each subsequence is bounded
by the original off-line cost, we get:

Con(gl) S CZCOpt(Ui)
1 7 1 7
< ¢-O(log ;)Copt(a ) = O(log ;)Copt(a ).

5.5 Proof of Claim 4.1

In the off-line packing, there is at most one pioneer rectangle at each height. (If there were
two, one of them was packed earlier, and thus the second one is not pioneer). Thus the total
height of pioneer rectangles is at most C'ope(0;). Since in the on-line packing, the height of
each strip is at most twice the height of the rectangle in that strip. The total height those
rectangles occupy is bounded by 2Co,(0;).

5.6 Proof of Claim 4.4

We introduce the following sequence: We define n = [log 5-]. For i = 0 to n — 1 we repeat
the following sequence of three pieces:

1. A rectangle of width €2! and height 1.
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2. Another rectangle of width €2° and height 1.

3. A buffer of width 1 — 27! + £ and height ¢ (small height).

The on-line algorithm places each pair in a strip, and the buffer above them. Each buffer
blocks subsequent rectangles, as in the lower bound sequence. Thus the height of the on-line
packing is O(n) = ©(log 1). The off-line packs each pair one above the other, and the buffer
near them as low as possible. The off-line cost is 1 + n - é. For a small ¢, the cost is O(1).

5.7 Proof of Theorem 4.2

We modify the proof of Algorithm B to prove this theorem. We eliminate full strips in the
packing of B” and get a subsequence o’. The full strips add a constant to the competitive
ratio. We show that the height of B” on o’ is at most the height of B on o’. We consider
the set of first rectangles in each strip of B’. We claim that any two such rectangles are in
different strips in B, which completes the proof. The claim is obvious If the two rectangles
have different height ranges. If they have the same height range, there must be a buffer
that arrived after the first rectangle, and before the second one, and blocks the second one
to reach lower strips (since there are no full strips). Hence in B the same buffer blocks the
second rectangle to be assigned in the same strip as the first rectangle.

5.8 Proof of Theorem 4.3

The narrow rectangles are not blocked by a buffer, since the width of buffers is bounded
by 1 — €. To prove the claim, we follow the proof of theorem 4.1. We need to bound the
height wasted by the new strips, in the on-line packing. Since we reduce the sequence so
that there are no full strips, we have at most one strip of each height. Consider the highest
strip for narrow rectangles. Consider one of the rectangles inside the strip: r. The height
of the strip is at most 2r. The total height of the strips is at most 4r. Since the rectangle
is packed in the off-line packing too, h(r) < Copt, thus the wasted height is at most 4Cop
and the algorithm is still O(log 1) competitive.
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