
On Two Dimensional Packing �Yossi Azary Leah EpsteinzApril 29, 1996AbstractThe paper considers packing of rectangles into an in�nite bin. Similar to the Tetrisgame, the rectangles arrive from the top and, once placed, cannot be moved again. Therectangles are moved inside the bin to reach their place. For the case in which rotationsare allowed, we design an algorithm whose performance ratio is constant. In contrast,if rotations are not allowed, we show that no algorithm of constant ratio exists. Forthis case we design an algorithm with performance ratio of O(log 1� ), where � is theminimumwidth of any rectangle. We also show that no algorithm can achieve a betterratio than 
(qlog 1� ) for this case.1 IntroductionIn this paper we consider the problem of orthogonal packing. We are given a bin with a�xed width (assuming equal to 1, without loss of generality) and an unbounded height, andalso a set of open oriented rectangles. The rectangles have to be placed in the bin with thebottom of the rectangle parallel to the bottom of the bin. The spaces occupied by di�erentrectangles may not overlap. The original rectangle packing problem was �rst proposedin 1980, by Baker et al. [1]. They present an approximation algorithm that achieves aperformance ratio of 3 for rectangles and 2 for squares. Co�man et al. [8] present variousalgorithms with better performance ratio, and in particular split �t that has ratio of 1:5.We discuss the version of the problem, in which each rectangle has to be placed before thenext one arrives.There are a few models, which di�er in the allowed movements inside the bin. In theoriginal two-dimensional packing problem, a rectangle could be placed directly in any freespace of the size of the rectangle, the concept of getting into a place was not discussed. Incontrast, in our models, a rectangle arrives from the top as in the Tetris game, and should�This work was submitted as part of the M.Sc. thesis of the second authoryDept. of Computer Science, Tel-Aviv University. E-Mail: azar@math.tau.ac.il. Research supportedin part by Allon Fellowship and by the Israel Science Foundation administered by the Israel Academy ofSciences.zDept. of Computer Science, Tel-Aviv University. E-Mail: lea@math.tau.ac.il1



be moved continuously around only in the free space until it reaches its place, (see �gure 1),and then cannot be moved again. Moreover, it is possible either to allow rotations or not.If rotations are allowed, the rectangle may be rotated at any stage, and can be assigned onits side or on its bottom. If rotations are not allowed, the rectangle may only be movedwith its bottom parallel to the bottom of the bin. It is also possible, to consider the integercase in which all widths and heights of rectangles are integers. In this case, the width ofthe bin is also an integer.Figure 1: The narrow rectangle moves continuously in the unoccupied space to its place.We note that our model in which the rectangles are not assigned directly, but shouldreach their place in a free space movement, has di�erent applications. One possible applica-tion for this model is loading trucks with boxes, since while loading a truck, it is impossibleto put anything under a large box that has already been packed (see �gure 2). Also,the integer model with free space movement and rotations resembles the well known Tetrisgame. The main di�erence between the game, and our models is the goal. Our goal is tominimize the total height used, and in the Tetris game, the goal is, roughly, to maximizethe number of full rows.Figure 2: The big rectangle blocks the smaller rectangleThe cost of the algorithm is measured by the height of the packing, i.e. the maximumheight, measured from the bottom of the bin, that is occupied by some rectangle. As usual,we try to compute the ratio between the cost of the on-line packing and the optimal o�-linepacking (the best packing that can be done for this sequence of rectangles).The main results presented in this paper are as follows:� A 4 competitive algorithm for the model with rotation.� An 
(qlog 1� ) lower bound for the model without rotation, for the case that the widthis bounded below by � or/and bounded above by 1� �. This implies that there is no2



competitive algorithm for the unbounded width case. Our lower bound holds fordeterministic and randomised algorithms.� An O(log 1� ) algorithm for the model without rotation for the case when widths arebounded below by � or/and bounded above by 1� �.� A 4 competitive algorithm for squares in both models. This immediately follows fromthe �rst result and the fact that squares do not change their form when rotated.It is interesting to note that although the two main algorithms that we present (onewithout rotation, and one with rotation) are quite similar, there is a substantial di�erencein their analysis and performance.We note that, Karlo� [17], independently, provided a lower bound of 
(qlog 1� ) fordeterministic algorithms for the case where only up and down movements are allowed. Itdoes not seem obvious to extend his bound for randomised algorithms or for algorithmswith arbitrary movements.Other related work. A special case of the problem considered in the model withoutrotations is, when all widths are equal. In fact this is equivalent to the list schedulingproblem, that was �rst studied by Graham [15] and later in [10, 2, 4, 14, 5, 18, 3].In the case that all heights of the rectangles are equal it can be easily shown thatthe packing should consist of strips of that height. This problem is similar to the one-dimensional bin packing problem, since we can treat each strip as a bin. However theproblems are not equivalent since full strips can block rectangles to reach other strips. Binpacking has been widely studied. Results on on-line bin packing appear in [16, 19, 22, 20,21] The problem in which the rectangles are packed directly into bounded bins has been alsostudied. Here the goal is to minimize the number of bins. For the on-line version constantcompetitive algorithms have been designed in [9]. Improvements and lower bounds on theconstant appear in [9, 11, 7, 13, 21]. In both [13, 21] three dimensional packing of boxesinto three dimensional bins is also considered.De�nitions and notations. We consider sequences � of open rectangles ri. The rectangleshave to be packed into a bin of in�nite height. Each rectangle, ri has a width wi (a realnumber between 0 and 1), and a height hi (also real). The cost of the algorithm is measuredby the maximum height, measured from the bottom of the bin, that is occupied by somerectangle of the packing. We denote the optimal o�-line cost for the sequence by COpt(�),(or COpt, if the sequence is clear from the context). This is the smallest height that thesequence can occupy. The on-line algorithm's cost for � is denoted by Con(�) , (or Con).An on-line algorithm has competitive ratio cr if for all �Con � cr � COpt + c1for some constant c1. We also use the notation of A(�), which is the total area of therectangles in � i.e. A(�) =Xi wihi3



2 The Model With RotationsWe �rst discuss the model in which rotations are allowed. Here we obviously assume thatboth the width and the height of each rectangle is bounded by 1. The most natural thingto do is to rotate the rectangles and assign them on their wide side. Unfortunately, it canbe shown that this method does not work well. In fact, our algorithm assigns the rectangleson their narrow side. Our algorithm divides the bin into horizontal strips, one on top of theother. Each strip will be used for a certain range of heights of rectangles. Let W and � bereal constants: 0 < � < 1 and 0 < W < 12 .The Algorithm A: When a rectangle arrives, it is �rst rotated on its narrow side andthen is placed as follows:1. If the rectangle is a bu�er (i.e the width after rotation is at least W ), a new strip ofheight of the bu�er is open for it and the bu�er is placed into the strip to the left.2. If the rectangle is not a bu�er, it is placed into a strip with the height equal to that ofthe rectangle rounded up to the closest power of �. The algorithm checks if there issuch a strip that is reachable by the rectangle and the total width of all the rectanglesin this strip (including the new rectangle) does not exceed 1�W . If there is such astrip, the rectangle is assigned there, otherwise, a new strip is opened on top of allprevious strips, and the rectangle is placed there to the left.If a piece can reach some open strip of the suitable height, and can be placed there, it isplaced into the lowest strip of this type, next to the pieces that are already there to the left.We call rectangles of width between W and 1�W small bu�ers, and those of width between1�W and 1, large bu�ers. Note that only large bu�ers might block some future rectanglesfrom getting into a suitable place since we try to assign only non-bu�ers in previous strips.Theorem 2.1 If we choose W = 14 and � = 23 , then the algorithm A is 4-competitive.Proof: Since all heights are bounded (the width and the height of the rectangle are boundedby 1), we allow an additive constant. We are going to show that Con � 4 � COpt + 3. Wede�ne a strip as full, if the sum of the widths of the rectangles that were placed in it isat least 1 � 2W , and non-full otherwise. We denote the subsequence of large bu�ers byB1; B2; :::; Bk. To prove the theorem it is enough to show that at least a fraction W of thearea is occupied (except a height of 1=(1� �)) and thusCOpt � A(�) � W � (Con � 11� � ) :We �rst consider strips in which small bu�ers were put. Since the width of bu�ers is atleast W , those strips are at least W full. We ignore the �rst strip of each height that wasever opened, if it is non-full. The total height we ignore is bounded byPi�0 �i = 1=(1��).Consider the other non-full strips. We associate each non-full strip with a large bu�er orfull strip, depending on which of three ways a strip is opened:� The �rst strip of a certain height (which we already considered).4



� A large bu�er blocks it from getting into a strip. We associate the strip with thehighest bu�er that blocked the rectangle, and caused the opening of the strip.� A rectangle did not �t into the last strip of this height. The last strip must be full,otherwise any rectangle which is not a bu�er would �t there. We associate the newstrip with the last strip.Note that for each bu�er, there can be only one strip of each height associated with it, andfor each full strip, only one non-full strip associated with it. Consider the full strips with nonon-full strips associated with them. Those strips are at least � full in the height, and atleast 1� 2W full in the width. The occupied area is at least �(1� 2W ). We now computethe occupied area for the full strips with the non-full strips. If we put all the rectanglesin one strip, the width would be at least 1 �W , since the rectangles did not �t into onestrip together. The strip would be � full in the height, and the two strips together wouldbe �(1�W )=2 full, because of the second strip of the same height. As for the large bu�ers,each bu�er was associated with a few strips, at most one of each height. Assume that thetotal height of those strips for a certain bu�er is h, 0 � h � 11�� the height of the bu�er ish(Bi) and the width is w(Bi). Since this is a large bu�er, 1�W � w(Bi) � h(Bi) � 1. Theoccupied height is h+h(Bi) and the occupied area is at least h(Bi)w(Bi)+� �h �(1�w(Bi)),since the strips are at least � full in the height, and 1�w(Bi) in the width (the rectanglesin each one were blocked by the bu�er). It is easy to check that for W = 14 and � = 23 theoccupied area is at least 14 of the total area for each of the cases. This yields the competitiveratio of 4 which is actually the best ratio that can be achieved in this method.3 The Lower Bound For The Model Without RotationsIn this section we provide a lower bound for the case of the problem in which the widths ofthe rectangles are bigger than �, or all widths are less than 1� � (or both).Note that we allow to place rectangles in any free space, and not only above otherrectangles, so that there is no gravity. If we enforced gravity, no algorithm can achieve agood competitive ratio since we can prove the following claim:Claim 3.1 Any algorithm for the model with gravity, no rotations, and when all rectangles areat least of width �, is 
(1� ) competitive. This holds also if all widths are less than 1� �.Proof: The proof is in the appendix.Thus if we enforced gravity, the trivial algorithm which places the rectangles one on top ofthe other, would be optimal, for the case with minimum width �.We show that there is no constant competitive algorithm for the case without rotations(and without gravity). More precisely, we prove the following theorem:Theorem 3.1 Any on-line (deterministic or randomised) algorithm for this problem has a com-petitive ratio of at least 
(qlog 1� ). 5



Proof: We assume that � � 116 , otherwise the lower bound is constant. We �rst prove thedeterministic lower bound. Later we show how to modify it for the randomised case.We use a sequence which consists of rectangles with width between � and 1�� and heightbetween � and 1 where � � 1= log 1� . We show that for that sequence the o�-line cost is 1,and the on-line cost is 
(qlog 1� ), we call it a base sequence. By multiplying the heights bya constant, we can get any o�-line cost, and thus get the lower bound even if we allow anadditive constant. Moreover, the bound is correct even if the heights of the rectangles arebounded by 1 (or any other constant). To build the sequence, we repeat the base sequenceseveral iterations, separating the iterations by a rectangle with width 1 � �2 and height �.(Here we prove lower bound for �2 instead of �). Thus any rectangle that arrives after thisrectangle can't be placed under this one, since the minimum width of rectangle is �.We can now introduce the base sequence. We de�ne n such that � = 12n , which impliesthat � � 1n . To prove the lower bound consider the sequence of rectangles that consists oftwo types:� Tall rectangles (with height 14pn and widths 2i�1� for i = 1 to n2 )� Bu�ers, (rectangles with height � and widths 1� 2i�+ �2)The sequence consists of two types of phases. The ith phase, consists of pn2 tall pieces ofwidth 2i�1�, and one bu�er of width either 1� 2i�+ �2 or 1� 2i�1�+ �2 , which correspondsto type 1 or type 2 phase. We run the sequence until the completion of n2 phases, or pnphases of type 2, whatever happens �rst. We show that the o�-line packing uses a maximumheight of 1, and that the height required for any on-line algorithms is at least qlog 1�=8, theavailable space of the o�-line algorithm is called a box. First, the o�-line algorithm uses an1�1 (height 1 and width 1) box. All the rectangles and bu�ers must be packed in this box.After each phase the on-line algorithm will have a smaller box available, (see �gure 4).
Figure 3: The on-line packing at state 1The on-line algorithm is forced to put the bu�er in such a way that no rectangle thatarrives after this bu�er can �t under the bu�er hence for the on-line algorithm all therectangles of one phase are above all the rectangles of the previous phase. Therefore theon-line algorithm may use at each phase width 1 to pack all rectangles of that phase. Wecall two rectangles overlapping, if it is possible to draw a horizontal line that intersectsthem both. 6



We build the sequence inductively. Assume we constructed the �rst i phases of thesequence, (i.e. chose the type of each phase). At phase i the pn2 tall pieces arrive, and thetype is chosen according to the way the on-line algorithm has placed them. There are twopossible states.1. If at least two current phase pieces overlap, (�gure 3), then the phase becomes type1 and a bu�er of width of 1� 2i�+ �2 arrives. The o�-line places all the pieces one onFigure 4: The o�-line packing at state 1top of the other, and the bu�er near them, as low as possible (see �gure 4). Packingthe rectangles like this, the o�-line wastes height � and width 2i�1�.2. Otherwise, if no two current phase pieces overlap, then the phase becomes type 2 anda bu�er of width 1� 2i�1�+ �2 arrives. The o�-line places all the pieces in one row onthe bottom of the available rectangle. The bu�er is placed on top of them, to the left.In this o�-line packing the height wasted is 14pn + � and there is no wasted width.Claim 3.2 Assume that up to (including) phase i, there are j phases of type 2. Then the on-linehas wasted height of at least(i� j)=(4pn) + j=8 (1)and the o�-line has a free box of height1� �i� j=(4pn) (2)and width1� (2i � 1)� (3)Proof: The proof is in the Appendix.Recall that we run the sequence until the completion of n2 phases or pn type 2 phases,whatever happens �rst. Using Claim 3.2, it is easy to show that in both cases the on-linemust have height of at least pn8 and mxthe o�-line algorithm can pack all the pieces in thebox which completes the deterministic lower bound.It is possible to modify the proof of the lower bound also for randomised algorithms.We omit the details. 7



4 Algorithms For The Model Without RotationsAs we proved in the last section, no constant competitive algorithm exists for the generalproblem, however we construct algorithms with competitive ratio which depends on theminimum width rectangle. In this section we present the algorithm for the case in whichrotations are not allowed. The algorithm achieves competitive ratio of O(log 1� ) where � isthe minimum width of each rectangle. We also show how to change it for the case that thewidth of rectangles is bounded above by 1�� and not bounded below. Note that the heightsof the rectangles are arbitrary and may be larger than 1. The algorithm uses horizontalstrips, that are used for certain types of rectangles. Each strip is used for a certain range ofheights, and a certain range of widths. An (i; j) strip is a strip that is used for rectanglesof height h: 2j�1 < h � 2j and width w: 2�i�1 < w � 2�i. ( j is any integer, and i isa positive integer). The algorithm uses other separate strips for the rectangles of widthat least 14 , those rectangles will be called bu�ers. Those strips are used only for bu�ers,one for each, and have the exact height of the bu�er. We de�ne a strip as available for acertain rectangle, if the rectangle can reach the strip (i.e. no bu�er blocks the strip fromthe rectangle) and if after the rectangle is placed into the strip, the sum of all widths of therectangles in the strip will not exceed 34 .The Algorithm B: When a rectangle arrives it is classi�ed and assigned as follows:� If it is a bu�er, a new strip of height of the bu�er is opened for it, above all theprevious strips, and the bu�er is placed into this strip to the left.� If it is a non-bu�er, it is classi�ed as an (i; j) rectangle for some i and j. If thereexists an available (i; j) strip then we place it there to the left. Otherwise, we opena new strip of height 2j , just above all previous strips, to be an (i; j) strip, and placethe rectangle there, to the left.Theorem 4.1 The algorithm B is O(log 1� ) competitive, where � is the minimum width of anyrectangle.Corollary 4.1 For the integer case, the algorithm is O(logn) competitive, where n is the widthof the bin.Proof: Substitute � = 1n .Proof: (of theorem). We assume without loss of generality that � � 116 , (otherwise, theupper bound is constant) We de�ne a strip as full, if the sum of widths of the rectanglesplaced there is at least 12 . We also de�ne all bu�er strips as full. We now can reduce thesequence � to �0, so that there are no full strips for the on-line algorithm. We remove allrectangles that were placed into the full rows, but are not bu�ers. We also reduce the heightof the bu�ers to zero, but we do not remove them. Those bu�ers remain in the sequence asone-dimensional bu�ers: they do not have height, but block the same rectangles as beforethe reduction from getting to strips.Lemma 4.1 If the competitive ratio of the reduced sequence �0 is O(log 1� ), so is the competitiveratio of the original sequence. 8



Proof: The proof is in the Appendix.Note that since our algorithm keeps the width of all non-bu�er strips below 34 , rectanglesof di�erent ranges of width are packed independently. We reduce the sequence further. Foreach i, we de�ne �i to be the subsequence of all the bu�ers, and rectangles of width w:2�i�1 < w � 2�i. Note that the same strips are opened for the rectangles in �i as in �0.Lemma 4.2 If the algorithm is constant competitive on each such subsequence �i, then it isO(log 1� ) competitive on �0.Proof: The proof is in the Appendix.Note that by the last reduction, the on-line algorithm has no full strips also for each �i.Lemma 4.3 For a subsequence �i of rectangles of widths w: 2�i�1 < w � 2�i, and one-dimensional bu�ers, the algorithm is 10 competitive.Proof: For this subsequence we can also omit all bu�ers of width 1 � 2�i and less, sincethey cannot block any non-bu�er rectangle from �i. We can also assume that there are nobu�ers wider than 1� 2�i�1. If there are, we can treat all the rectangles between two widebu�ers as the subsequence we are considering. Since those wide bu�ers block all subsequentrectangles, and force the o�-line and the on-line begin a new packing, as if a new sequencehas begun.Consider the o�-line packing for �i, and consider all remaining bu�ers: Buf1; :::; Bufm(from the bottom of the packing to the top). (See �gure 5). Recall that the bu�ers areone-dimensional and thus are assigned at some height in the bin. We denote by hk theheight that Bufk was assigned by the o�-line algorithm. Denote h0 = 0, hk+1 = COpt(�i),the bottom and the top are treated as bu�ers. Recall that two rectangles overlap, if it ispossible to draw a horizontal line that intersects them both.
Figure 5: The o�-line packing for �iConsider all non-bu�er rectangles, there are 3 types of possible packing for them at theo�-line assignment:1. A rectangle is considered "pioneer", if there was no previous rectangle that overlappedit. 9



2. The rectangle is not a pioneer, and was placed between two bu�ers, i.e. there existsk such that the top of the rectangle is not higher than hk+1, and the bottom of therectangle is not lower than hk.3. If the rectangle is not pioneer, and wasn't placed between bu�ers, then it must havebeen placed near some bu�er.We consider all strips that were opened for each type of rectangles by the on-line algorithm.Claim 4.1 The strips used for type 1 rectangles, occupy at most height of 2COpt(�i).Proof: The proof is in the Appendix.Claim 4.2 The strips opened for type 2 rectangles, occupy at most height of 4COpt(�i).Proof: Denote by Sk the type 2 rectangles that were placed between Bufk and Bufk+1 bythe o�-line. We �rst prove the following lemma.Lemma 4.4 The on-line algorithm opened at most one strip of each height in order to placethe rectangles in Sk.Proof: By contradiction. Assume that two di�erent strips of the same height were openedfor the rectangles in Sk. Denote by r1 and r2 the two rectangles, that the two above stripswere opened for. Since there are no full strips in the on-line packing, the second strip wasopened since a bu�er blocked r2 from being placed at the same strip as r1. This bu�erarrived between r1 and r2 since all the bu�ers that arrived before r1 were placed by theon-line algorithm below r1.We consider the place of this bu�er in the o�-line packing. Since r1 is between twobu�ers, the bu�er can not overlap r1 in the packing and thus there are two possibilities forthe o�-line location of the bu�er.� The bu�er is under r1. The bu�er should have passed near r1 to reach its location.However, r1 is not a pioneer and therefore any rectangle that passes near it musthave width less than 1 � 2�i. The bu�er has width of at least 1 � 2�i which is acontradiction.� The bu�er is above r1, The bu�er is also above r2, since both rectangles are betweenthe same two bu�ers. r2 arrived after the bu�er and therefore its width is smallerthan 1 minus the width of the bu�er. Since the on-line algorithm assigns the bu�ersin a separate strip, it could not block r2 which is a contradiction.We continue the proof of Claim 4.2. All the rectangles in Sk have height of at mosthk+1 � hk . Thus the highest strip that may be opened by the on-line algorithm for thoserectangles is at most 2(hk+1 � hk). There is at most one strip for each height, so the totalheight of strips opened for the rectangles in Sk is 4(hk+1 � hk). Summing for all k we get10



that the total height is 4COpt, since4 mXk=0(hk+1 � hk) � 4COpt :Claim 4.3 The strips used for type 3 rectangles, occupy at most height of 4COpt(�i).Proof: First consider the o�-line packing. Note that there is at most one rectangle neareach bu�er, since the width of the bu�er is at least 1� 2�i, and the width of any rectangleis larger than 2�i�1. Moreover, consider the rectangles that were placed to the left of thebu�ers. Clearly, there are no rectangles to their left. All those rectangles can be moved sothat they are just to the right of the left border of the bin. There is at most one rectangleat each height, and hence their total height is at most COpt(�i). Since in the on-line packingthe height of each strip is at most twice the height of the rectangle, the total height theymight occupy is at most 2COpt(�i). The proof for the rectangles at the right of bu�ers issimilar.Now we conclude the proof of Lemma 4.3. Note that there might be strips that wereused for more than one type of rectangles. Nevertheless, by the three Claims, the totalheight occupied by the �i rectangles is at most 10COpt(�i), and thus the algorithm is 10competitive.The proof of Theorem 4.1 follows immediately from Lemmas 4.1, 4.2 and 4.3.Next, we claim that our analysis it tight.Claim 4.4 The algorithm B is 
(log 1� ) competitive.Proof: The proof is in the Appendix.We can modify algorithm B to somewhat more natural algorithm B0 as follows. Thestrips of a certain height are used for all widths of rectangles (instead of a separate stripfor each width), in a way similar to the algorithm in section 2.Theorem 4.2 The algorithm B0 is �(log 1� ) competitive.Proof: The proof is in the Appendix.Now we change the algorithm B to an algorithm C for the case that the width is notbounded below, but bounded above by 1� �. When a rectangle of width less than � arrives,we de�ne how to place it, otherwise we place it in the same way as in algorithm B or B0.We open special strips for those rectangles. When a narrow rectangle arrives, its height isrounded up to a negative power of 2. If there is a non-full strip of narrow rectangles, forthis height, the rectangle is placed there. Otherwise, a new strip of this height is opened,and the rectangle is placed there.Theorem 4.3 The algorithm C is O(log 1� ) competitive, where 1� � is the maximum width ofany rectangle. 11
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5 Appendix5.1 Proof of claim 3.1To prove the claim we introduce the following sequence.Fisrt at most 1� pieces of height 1 and width 2� arrive (we assume � < 14). The piecesarrive until the on-line places two of the pieces in an overlapping way.If the on-line did not place two pieces in an overlapping way, then Con = 1� , the o�-lineplaces them in two rows, and thus COpt = 2.Otherwise, if k pieces arrived, the height of the on-line is k � 1, and the o�-line willplace them one on top of the other, yeilding the height of k.Now for i = 1 to 14� we repeat the following sequence of two pieces:� A bu�er of small height �, (� < �), and width 1� 2�+ �i.� One piece of height k � 1 + �i, and width 2�� �i.The o�-line places all pieces under all bu�ers, since the total width of the rectangles isless than 2� + 14� � 2� < 1. This is possible since the height of any rectangle is less than k,and each rectangle can be moved near any bu�er that arrived before it. The total o� linecost is k +O( �� ) = O(k) for small �.When a new non-bu�er rectangle arrives, the on-line must either create a new "shelf"for it, or to place it in a previous "shelf". The shelfs are formed exactly in the height ofthe rectangle in the phase, since the next bu�er is too wide and must be placed above therectangle, which closes the shelf from the top. There can be at most two rectangles in eachshelf: the one that opened it, and another one may be placed near the bu�er that closesthis shelf. Thus the number of shelves, is at least half of the number of phases.The cost of the on-line is at least k � 1 + 18�(k � 1) = O(k�1� ) = O(k� ). And thusCon � O(1� )COpt.5.2 Proof of Claim 3.2We prove the claim by induction on the number of phases i. Before we begin (i = j = 0) theon-line lost no height, and the o�-line has an 1� 1 free box, as claimed. Suppose the claimis correct for the i �rst phases, which includes j type 2 phases. There are two possibilities:1. Type 1 phase. There are two pieces that overlap in the on-line packing, since the sumof widths of the bu�er and the two pieces is(1� 2i+1� + �2) + 2 � 2i� = 1� 2i+1�+ �2 + 2i+1� = 1 + �2 > 1 :Then the bu�er must be put above the line where they overlap. This adds the heightof 14pn + �, and proves ( 1). The o�-line packs all the tall pieces one on top of the14



other to the left of the free box. This can be done since the height of all pn2 piecestogether is pn2 � 14pn = 18 and since the available height of the available box is1� �i� j4pn � 1� �n2 � pn4pn � 14as � � 1n .Now the width left is(1� (2i � 1)�)� 2i� = 1� (2 � 2i � 1)� = 1� (2i+1 � 1)�Moreover the width of the bu�er is 1� (2i+1 � 1)� > 1� 2i+1�+ �2 . We can put it inthe bottom of the available box, wasting the height of �. Thus the height of the boxis 1� �i� j4pn � � = 1� �(i+ 1)� j4pnand the available width remains 1� (2i+1 � 1)� which proves ( 2) and ( 3) .2. Type 2 phase. The on-line algorithm did not put two tall overlapping pieces, (it isimpossible to draw a horizontal line through two of the pieces), thus pieces must beput one on top of the other. Their total height is 18 since there are pn2 pieces of height14pn . The only way to place the bu�er is on top of all the tall pieces, since a bu�erand a tall piece can not be placed one next to the other, as the sum of their widths is(1� 2i�+ �2) + (2i�) = 1 + �2 > 1 :The algorithm could not place any pieces under the bu�ers from previous phases,since the widths of bu�ers were at least 1� 2i�+ �2 . The height added is at least theheight of big pieces, which is 18 , and this proves ( 1).The o�-line puts the big pieces in one row. This can be done since on one hand theavailable width is1� (2i � 1)� � 1� (2n2�1)� = 1� (2n2�1) 12n = 1� (2�n2�1) � 1� 2�1 = 12 :On the other hand there are pn2 pieces of width 2i� and the total width is2i� � pn2 � 2n2�1� � pn2 < 2n2 � � pn2 = 1p� � � � pn2 = p�pn2 = q n2n2 � 12since � = 12n and n2n � 1; 8n 2 N . The bu�er has width 1� 2i� + �2 and also �ts intothe width of 1� (2i � 1)�. Thus the width of the available box does not change, butthe height is reduced by 14pn by the big pieces and also � by a bu�er. By induction,the height of the available rectangle was 1� �i� j4pn at the beginning of the phase.Note that the number of type 2 phases has increased by 1 at the end of the phase.The height becomes1� �i� j4pn � � � 14pn = 1� �(i+ 1)� j + 14pnand the available width is 1� (2i � 1)� � 1� (2i+1 � 1)� as needed to prove.15



5.3 Proof of Lemma 4.1We denote the sum of the heights of full strips as Hfull and the sum of heights of non-fullstrips as Hnon�full. Clearly Con = Hfull + Hnon�full. The full strips for non-bu�ers areat least 12 full in the height, and at least 12 full in the width. The bu�er strips are full inthe height, and at least 14 full in the width. For the subsequent � of rectangles in thosestrips: COpt(�) � A(�) � A(�) � 14Hfull, and thus Hfull � 4COpt(�). The o�-line cost of�0 may only be smaller than the o�-line cost of �. One can easily check that the behaviorof the on-line algorithm on �0 is similar to its behavior on �. More precisely, all bu�ersand rectangles that are not in a full strip are placed in the same way they were in �, andthe same strips are opened. (Since the bu�ers were left and they block the same rectanglesthey did before.) The new on-line cost is Con(�0) = Hnon�full, which satis�es:Hnon�full � O(log 1� )COpt(�0) � O(log 1� )COpt(�) :Thus Con � (O(log 1� ) + 4)COpt = O(log 1� )COpt :5.4 Proof of Lemma 4.2We denote the maximum competitive ratio over 2 � i � dlog 1� e as c. The on-line cost isactually the sum of costs for all the subsequences of various ranges of width. Since thereare O(log 1� ) di�erent ranges of width, and the o�-line cost for each subsequence is boundedby the original o�-line cost, we get:Con(�0) � cXi COpt(�i)� c �O(log 1� )COpt(�0) = O(log 1� )COpt(�0) :5.5 Proof of Claim 4.1In the o�-line packing, there is at most one pioneer rectangle at each height. (If there weretwo, one of them was packed earlier, and thus the second one is not pioneer). Thus the totalheight of pioneer rectangles is at most COpt(�i). Since in the on-line packing, the height ofeach strip is at most twice the height of the rectangle in that strip. The total height thoserectangles occupy is bounded by 2COpt(�i).5.6 Proof of Claim 4.4We introduce the following sequence: We de�ne n = dlog 12�e. For i = 0 to n � 1 we repeatthe following sequence of three pieces:1. A rectangle of width �2i and height 1. 16



2. Another rectangle of width �2i and height 1.3. A bu�er of width 1� �2i+1 + �2 , and height � (small height).The on-line algorithm places each pair in a strip, and the bu�er above them. Each bu�erblocks subsequent rectangles, as in the lower bound sequence. Thus the height of the on-linepacking is �(n) = �(log 1� ). The o�-line packs each pair one above the other, and the bu�ernear them as low as possible. The o�-line cost is 1 + n � �. For a small �, the cost is O(1).5.7 Proof of Theorem 4.2We modify the proof of Algorithm B to prove this theorem. We eliminate full strips in thepacking of B0 and get a subsequence �0. The full strips add a constant to the competitiveratio. We show that the height of B0 on �0 is at most the height of B on �0. We considerthe set of �rst rectangles in each strip of B0. We claim that any two such rectangles are indi�erent strips in B, which completes the proof. The claim is obvious If the two rectangleshave di�erent height ranges. If they have the same height range, there must be a bu�erthat arrived after the �rst rectangle, and before the second one, and blocks the second oneto reach lower strips (since there are no full strips). Hence in B the same bu�er blocks thesecond rectangle to be assigned in the same strip as the �rst rectangle.5.8 Proof of Theorem 4.3The narrow rectangles are not blocked by a bu�er, since the width of bu�ers is boundedby 1 � �. To prove the claim, we follow the proof of theorem 4.1. We need to bound theheight wasted by the new strips, in the on-line packing. Since we reduce the sequence sothat there are no full strips, we have at most one strip of each height. Consider the higheststrip for narrow rectangles. Consider one of the rectangles inside the strip: r. The heightof the strip is at most 2r. The total height of the strips is at most 4r. Since the rectangleis packed in the o�-line packing too, h(r) � COpt, thus the wasted height is at most 4COptand the algorithm is still O(log 1� ) competitive.
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