
Combining Online Algorithms for Reje
tion and A

eptan
eYossi Azar� Avrim Blumy Yishay Mansour zMay 28, 2003Abstra
tResour
e allo
ation and admission
ontrol are
riti
al tasks in a
ommuni
ation network, thatoften must be performed online. Algorithms for these types of problems have been
onsideredboth under bene�t models (e.g., with a goal of approximately maximizing the number of
allsa

epted) and under
ost models (e.g., with a goal of approximately minimizing the number of
alls reje
ted). Unfortunately, algorithms designed for these two measures
an often be quitedi�erent, even polar opposites (e.g., [1, 8℄). In this work we
onsider the problem of
ombiningalgorithms designed for ea
h of these obje
tives in a way that simultaneously is good under bothmeasures. More formally, we are given an algorithm A whi
h is
A
ompetitive w.r.t. the numberof a

epted
alls and an algorithm R whi
h is
R
ompetitive w.r.t. the number of reje
ted
alls.We derive a
ombined algorithm whose
ompetitive ratio is O(
R
A) for reje
tion and O(
2A) fora

eptan
e. We also show building on known te
hniques that given a
olle
tion of k algorithms,we
an
onstru
t one master algorithm whi
h performs similar to the best algorithm among thek for the a

eptan
e problem and another master algorithm whi
h performs similar to the bestalgorithm among the k for the reje
tion problem. Using our main result we
an
ombine thetwo master algorithms to a single algorithm whi
h guarantees both reje
tion and a

eptan
e
ompetitiveness.1 Introdu
tionResour
e allo
ation is one of the most
riti
al tasks in
ommuni
ation networks. Many resour
esare in
onstant \short supply": this in
ludes the bandwidth (of the various links), queuing delays(or rather the la
k of queuing delays in the swit
hes), uneven s
heduling (or rather bounded jitter)and many more. If one would like to guarantee Quality of Servi
e (QoS), one needs to allo
ateresour
es to the requesting
alls, and sin
e those resour
es are bounded, it implies that in
ertain
ases requests may have to be reje
ted due to the la
k of resour
es. A simple obvious example isbandwidth allo
ation. Suppose we have a
ertain link with a given
apa
ity, and di�erent
alls haverequests for bandwidth on that link. Sin
e the system
annot allo
ate more then the link
apa
ity,it may be for
ed to reje
t some of the requests.The resour
e allo
ation (or admission
ontrol) de
ision must typi
ally be done online. That is,the algorithm will have to de
ide for ea
h request whether or not to a

ept (and grant the requestthe resour
es) while having minimal (or no) knowledge of future requests. This leads very naturally�S
hool of Computer S
ien
e, Tel-Aviv University, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail:azar�tau.a
.il . Resear
h supported in part by the Israel S
ien
e Foundation and by the IST Program of the EU.yS
hool of Computer S
ien
e, Carnegie Mellon University, Pittsburgh PA 15213-3891. E-Mail:avrim�
s.
mu.edu _Resear
h supported in part by NSF grants CCR-0105488, ITR CCR-0122581, and ITR IIS-0121678.zS
hool of Computer S
ien
e, Tel-Aviv University , Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail: man-sour�tau.a
.il . Resear
h supported in part by the Israel S
ien
e Foundation1

to the setting of online algorithms and using
ompetitive analysis to evaluate performan
e. In fa
t,a wide range of resour
e allo
ation problems have been
onsidered in this setting, in
luding,
all
ontrol, admission
ontrol, a
tive queue management, and swit
h throughput.When one applies
ompetitive analysis, one needs to de
ide what
omplexity measure to fo
uson. One
an try either to minimize the number of reje
ted requests or alternatively to maximizethe number of a

epted requests. Even though the optimal solution both maximizes the number ofa

epted requests and minimizes the number of reje
ted requests, it is a well known phenomena inapproximation and online algorithms that approximation ratios are not preserved when
onsideringtwo
omplementary problems. There might be one algorithm A that a
hieves a good ratio formaximizing bene�t but has a lousy ratio in terms of
ost, and a totally di�erent algorithm R thathas a good ratio for minimizing
ost but a lousy ratio in terms of bene�t.In the o�ine setting, the fa
t that we have two di�erent algorithms is not really a problem:given any problem instan
e, we
an always run both algorithms and take the best solution found,whi
h, by assumption, will simultaneously be good under both measures. However, in the onlinesetting, it is not so
lear how to a
hieve simultaneous guarantees, be
ause we need to make oura

ept/reje
t de
isions as we go.Main result: Our main result is to design an on-line algorithm that
an fruitfully
ombinealgorithms with guarantees in ea
h of these measures to produ
e a single algorithm that simulta-neously has a good guarantee for both. Spe
i�
ally, given an algorithm A that has a
ompetitiveratio of
A for the number of a

epted requests, and an algorithm R that has a
ompetitive ratioof
R for the number reje
ted requests, we derive a
ombined algorithm whose
ompetitive ratiois O(
R
A) for reje
tion, and O(
2A) for a

eptan
e. We should note that the
ombined algorithmuses preemption, i.e., the ability to preempt a request that has been a

epted (preempted requestsare regarded as though they have been reje
ted). We also note that our algorithm is deterministi
if both A and R are deterministi
. If A or R are randomized then obviously our algorithm is alsorandomized. To demonstrate the strength of our result, if both
A and
R are
onstant
ompetitivethen the
ombined algorithm is
onstant
ompetitive.Our
ombining algorithm follows a simple intuitive notion. If only a small fra
tion of therequests need to be reje
ted (small
ompared to 1=
R), we should use R. Sin
e R is
R-
ompetitivefor reje
tions, it will be a

epting a large fra
tion of requests and thus be
ompetitive in terms ofa

epts as well. On the other hand, if the optimal number of reje
tions be
omes large, then weno longer need to worry about our reje
tion ratio (even reje
ting all requests would be �ne), sowe should swit
h to algorithm A. The deli
ate part of our algorithm is in analyzing the swit
hingbetween the two algorithms, and
onsidering the
ost of swit
hing from one algorithm to the otherin the overall analysis.Appli
ations of main result: Our main result
an be applied to several problems. Oneis admission
ontrol and
all
ontrol on the line. In parti
ular, there exist
onstant
ompetitivealgorithms for the problem where the goal is to maximize the number of a

epted requests [1℄ aswell as
onstant
ompetitive algorithms for same problem where the measure is the number ofthe reje
ted requests [8℄. We
on
lude that there is a
ombined algorithm that simultaneously is
onstant
ompetitive algorithm for both
omplementary measures. What is interesting here is thatthe algorithms of [1℄ and [8℄ are almost polar opposites. For example, if the
apa
ity is 2 and thereis a
ollision of 3 intervals, the algorithm of [8℄ reje
ts the two \outside" requests (the one thatextends farthest to the left and the one that extends farthest to the right) but the algorithm of[1℄ reje
ts the one in the middle. Next, we
onsider
all
ontrol (disjoint paths) on a tree. Thepapers [4, 5℄ show O(log d)
ompetitive randomized (non-preemptive) algorithms for maximizingthe number of a

epted requests (d is the diameter of the tree). The paper [8℄ shows a
onstant2

ompetitive algorithm for the number of reje
ted requests. We
on
lude that there is one algorithmwhi
h is O(log2 d)-
ompetitive for the number of a

epted requests and O(log d)-
ompetitive forthe number of reje
ted requests. Another appli
ation is the admission
ontrol problem on generalgraphs where ea
h edge is of logarithmi

apa
ity and ea
h requests is for a unit demand on a �xedpath. The paper [3℄ provides an O(log n)
ompetitive (non-preemptive) algorithm for the number ofa

epted requests. The paper [8℄ provides an O(log n)
ompetitive (preemptive) algorithm for thenumber of reje
ted requests. We
on
lude there is an O(log2 n)-
ompetitive algorithm for both. (Weshould remark that for many natural online problems it is impossible to a
hieve
ompetitivenessin the reje
tion measure and hen
e in both measures. For example, if the online algorithm
an befor
ed to reje
t a request while the o�ine might have not reje
ted any requests, then we have anunbounded
ompetitive ratio.)Additional results: We also
onsider the
ase that there are several (say k) online (possiblypreemptive) algorithms for the admission
ontrol problem. Our goal is to provide an algorithm thatperforms similar to the best algorithm on any given input sequen
e. We
onsider the problem bothfor the measure of the number of reje
ted requests and for the measure of the number a

eptedrequests. We observe that using known te
hniques [7, 9, 6℄ we
an
onstru
t a
ombined randomizedpreemptive algorithm whi
h is at most O(log k) worse with respe
t to the number of reje
tedrequests of the best algorithm among the k. Using known results [2℄ we
an also
onstru
t a
ombined randomized preemptive algorithm whi
h is at most O(log k) worse with respe
t to thenumber of a

epted requests of the best algorithm among the k. These two
ombined algorithms
an be
ombined to one master algorithm using our main result to guarantee both reje
tion anda

eptan
e
ompetitiveness.2 ModelWe assume an abstra
t model where at every time unit a request is re
eived. Either the request isserved (with bene�t one and
ost zero), or the request is reje
ted (with bene�t zero and
ost 1). Arequest
an also be preempted, in whi
h
ase its bene�t is set to zero and its
ost is set to one. Inthis abstra
t model, the only assumption we make about the resour
e
onstraints (whi
h are whatprevent us from a

epting every request) is monotoni
ity: if F is a feasible set of requests, thenany subset of F is feasible too. Given a sequen
e �, let VB(�) be the number of requests servedand VC(�) the number of requests reje
ted. By de�nition, the sum of bene�t and
ost is alwaysthe number of time steps, i.e. VB(�) + VC(�) = j�j.An optimal algorithm OPT
an either maximize the bene�t, V OPTB (�) or minimize the
ostgetting V OPTC (�). Note that for any input sequen
e the optimal s
hedule is identi
al for bothmaximizing the bene�t and minimizing the
ost.We are given two algorithms. The �rst is a possibly randomized preemptive algorithm A thathas a guarantee of
A � 1
ompetitive ratio for the bene�t, namely, for any sequen
e �E(V AB (�)) � 1
AV OPTB (�):In addition we are given a possibly randomized preemptive algorithm R that has a guaranteeof
R � 1 for the
ost, namely, for any sequen
e �E(V RC (�)) �
RV OPTC (�):Notation: Given an input sequen
e �, denote by �(T+1;T+t) the sequen
e of requests from timeT + 1 until time T + t. We also write �t for �(1;t). As a
onvention, the �rst request is number3

1. Given a subset F of requests from � we denote by �F the sub-sequen
e that in
ludes only therequests of F . Given two sub-sequen
es �1 and �2 we denote by �1�2 the
ombined sequen
e ofrequests, whi
h �rst has the requests of �1 followed by the requests of �2.3 Our AlgorithmWe assume we are given a deterministi
, possibly preemptive, algorithm A whi
h is
A
ompetitivefor the bene�t, and a deterministi
, possibly preemptive, algorithm R whi
h is
R
ompetitive forthe
ost. Our algorithm SWITCH re
eives the two algorithms as input. At ea
h time step, we
ompute the average optimal bene�t so far and denote ot = V OPTB (�t)=t and �ot = 1 � ot. Ourdeterministi
 algorithm SWITCH has two thresholds, u and l, where u = 1 � �u and l = 1 � 2�u.We
hoose �u = 1=(8
A
R). Note that u > l.Algorithm SWITCH swit
hes between an R phase and an A phase. During an R phase,SWITCH runs the R algorithm and in an A phase it runs the A algorithm. When SWITCH isin an R phase and ot drops below l it swit
hes to an A phase. When SWITCH is in an A phaseand ot is higher than u it swit
hes to an R phase. What remains is to des
ribe how to initialize thealgorithms when we start a phase. This will be done as follows. Let F be the set of
alls served sofar by SWITCH at the time of the swit
h. We initialize the new algorithm (A or R) by feeding itthe sequen
e �F whi
h is the sequen
e F in the original order of �t. The algorithm R will a

eptall the requests (sin
e OPT
an serve all of them). On the other hand the algorithm A mightreje
t or even preempt some of them, in su
h a
ase we preempt those requests. (This is where ourassumption on preemption is essential.)Theorem 1 The deterministi
 preemptive algorithm SWITCH is simultaneously O(
R
A)
om-petitive for
ost and O(
2A)
ompetitive for bene�t, given a deterministi
 possibly preemptive algo-rithm A whi
h is
A
ompetitive for bene�t, and a deterministi
 possibly preemptive algorithm Rwhi
h is
R
ompetitive for
ost.We
an also
onstru
t a
ombined algorithm if A and R are randomized. The randomizedalgorithm SWITCH is
onstru
ted in the same way. Note that the de
isions to swit
h between Rphases and A phases are done a

ording to the optimal value and hen
e are deterministi
. Whenwe start a phase, we start the algorithm (A or R) with new random bits, whi
h are independent ofany previous
hosen random bits, and feed it with the a
tual F (Note that F is a random variable).Theorem 2 The randomized preemptive algorithm SWITCH is simultaneously O(
R
A)
om-petitive for
ost and O(
2A)
ompetitive for bene�t, given a possibly randomized preemptive algorithmA whi
h is
A
ompetitive for bene�t, and a possibly randomized preemptive algorithm R whi
h is
R
ompetitive for
ost.In the analysis below we assume that A and R are deterministi
 and hen
e SWITCH isdeterministi
. The analysis for the randomized
ase is very similar but omitted. We just needto repla
e a variable by its expe
tation in the analysis and use the fa
t that the expe
tation of aprodu
t of independent random variables is the produ
t of their expe
tations.4 Analysis of Reje
tionsThis is the simpler
ase. Assume that at time t our algorithm is in an A phase. This impliesthat the optimal s
hedule a

epts at most ut, and therefore reje
ts at least �ut. Even if the onlinealgorithm reje
ts all the requests it will still be 1=�u = 8
A
R reje
tion
ompetitive.4

Assume that at time T + 1 we started an R phase, and
onsider a time T + t, in whi
h we arein the same R phase. Until time T the optimal algorithm reje
ted at least T �u. Assume that on thesequen
e of �F�(T+1;T+t) the optimal s
hedule for that sequen
e reje
ts
t requests. Sin
e algorithmR is
R
ompetitive we know that it will reje
t at most (
t)
R requests. Hen
e, for the entiresequen
e �(T+t) our algorithm reje
ted at most T +
t
R requests. Clearly the optimal algorithmreje
ted more requests for the entire sequen
e �(T+t) than on the sub-sequen
e �F�(T+1;T+t). Hen
ethe reje
tion
ompetitive ratio is at mostT +
t
RmaxfT �u;
tg � 1=�u+
R = 8
A
R +
R = O(
A
R)5 Analysis of A

eptan
eThis is a somewhat tri
ky
ase. Not only will we analyze separately the two phases, but duringan A phase we will separate the
ompetitive ratio at the beginning and at the end of the phase.The last point turns out to be
ru
ial to get any bound on the
ompetitive ratio. Spe
i�
ally, inaddition to our main
laim that the a

eptan
e
ompetitive ratio is O(
2A) we also assume (andprove) the following two stronger invariants. The �rst is that during an R phase the a

eptan
e
ompetitive ratio is at most ar = 8
A. The se
ond is that at the end of an A phase the
ompetitiveratio is at most ae = 2
A. The proof below of the two invariants and the main
laim is done byindu
tion.5.1 Swit
hing from R to AAssume that at time T +1 we swit
h to an A phase. We know that on the entire past the optimals
hedule has a bene�t of lT . Due to our assumption (�rst invariant) we know that SWITCH hasbene�t of at least lT=ar. SWITCH now initializes algorithm A on this sequen
e �F , whi
h maynow reje
t additional requests but
learly must a

ept at least (lT=ar)=
A. Therefore, immediatelyafter the swit
h (before handling request T + 1) the
ompetitive ratio is at most ar
A = O(
2A).Next we
onsider a time T + t in the same A phase. Clearly OPT for the sequen
e �F hasbene�t exa
tly jF j sin
e it
an a

ept all requests (as the online algorithm has them). Assumethat OPT on the sequen
e �F�(T+1;T+t) a

epts jF j + �t requests for some � > 0. Clearly, onthat sequen
e SWITCH has a value of at least (jF j + �t)=
A. Moreover, by monotoni
ity andsub-additivity of OPT we haveV OPTB (�(T+t)) � V OPTB (�T) + V OPTB (�(T+1;T+t))� V OPTB (�T) + V OPTB (�F�(T+1;T+t)) :This implies that at time T + t the a

eptan
e
ompetitive ratio is at mostlT + (jF j+ �t)(jF j+ �t)=
A =
A lTjF j+ �t +
A�
A lTjF j +
A�
A lTlT=ar +
A=
Aar +
A = O(
2A)as needed for our main
laim. 5

We
laim (se
ond invariant) that at the end of the phase, at time T + t, the a

eptan
e
om-petitive ratio is at most ae . Even if we assume that in the time interval [T + 1; T + t℄ the optimalalgorithm re
eives all the requests, then for t < T we have lT + t < u(t + T), for our
hoi
e of uand l. Therefore, the duration of an A phase whi
h starts at time T is at least T ,i.e. t � T . AlsoV OPTB (�F�(T+1;T+t)) � V OPTB (�(T+1;T+t))� V OPTB (�(T+t))� V OPTB (�T)= u(t+ T)� lT> ut :Hen
e the value of SWITCH at time T + t is at least uT=
A and therefore the
ompetitiveratio is at most u(T + t)ut=
A =
AT + tt � 2
A = aeas needed for the se
ond invariant.5.2 Swit
hing from A to RAssume that at time T + 1 we swit
h from an A phase to an R phase. This implies that on theinput �T the bene�t of the optimal o�ine, OPT , is uT . From our assumptions (se
ond invariant)we have that SWITCH has bene�t at least uT=ae = uT=(2
A). At the time of the swit
h we arere-inputting the requests in the online memory to the algorithm R. Sin
e OPT
an a

ept all therequest we know that R will a

ept all of them. Hen
e the
ompetitive ratio remains ae (beforehandling request T + 1).Consider the time T + t in the same R phase. By de�nition OPT a

epted on the sequen
e�(T+t) exa
tly (T + t)o(T+t) requests and reje
ted (T + t)�o(T+t) requests. Hen
e OPT reje
ted atmost that number on the sequen
e �F�(T+1;T+t) sin
e it is a sub-sequen
e. Therefore R reje
tedat most
R(T + t)�o(T+t) requests on that sequen
e. Hen
e the number of a

epted requests at timeT + t is at least jF j + t�
R(T + t)�o(T+t)� uT=(2
A) + t�
RT �o(T+t) �
Rt�o(T+t)= T (u=(2
A)�
R�o(T+t)) + t(1�
R�o(T+t))� T (u=(2
A)� 1=(4
A)) + t(1� 1=(4
A))� T=(8
A) + t=2where the se
ond inequality follows from the fa
t that �o(T+t) � �l = 1=(4
A
R) sin
e we are in anR phase. The last inequality follows from the fa
ts that u � 7=8 and
A � 1. (We
hoose \ni
e"
onstant rather than the tightest
onstants.)Hen
e the
ompetitive ratio at time T + t is at mostT + tT=(8
A) + t=2 � maxf8
A; 2g = 8
A = aras needed for the �rst invariant.
6

6 Combining Admission Control AlgorithmsIn this se
tion we brie
y des
ribe how to
ombine a
olle
tion of online algorithms into one masteralgorithm with a good a

eptan
e
ompetitive ratio and into another master algorithm with a goodreje
tion
ompetitive ratio. Results of this form already exist in the literature [2, 6, 7, 9℄ but ourmain point here is that (a) these known te
hniques
an be applied in our abstra
t model, and (b)using our main result we
an
ombine the two master algorithms that result into one
ombinedalgorithm whi
h guarantees both reje
tion and a

eptan
e
ompetitiveness.The main ingredient of the
ombining algorithms is swit
hing between algorithms. Swit
hingalgorithms might means that we need to preempt some or all requests that we
urrently serve.The
ombining algorithms have a very di�erent stru
ture, depending on whether they are min-imizing the number of reje
ted requests or maximizing the number of a

epted requests. The
ombining algorithms
an be either randomized or deterministi
.6.1 Combining algorithms to minimize reje
tionGiven k (possibly preemptive) on-line algorithms, denoted by R1; R2; : : : ; Rk, we would like to
onstru
t an algorithm, whi
h for any input sequen
e,
ompetes with the best algorithm, amongthe k, for the given sequen
e. Spe
i�
ally, for a sequen
e of requests � let R�(�) = miniRi(�).We
onstru
t a deterministi
 preemptive online
ombining algorithm REJdet su
h that for any�, we have REJdet(�) = O(kR�(�)). We also provide a randomized preemptive online algorithmREJrand whi
h guarantees that REJrand(�) = O(R�(�) log k) :The deterministi
 algorithm REJdet uses a simple greedy strategy. At time t, let min(t) =minfRi(�t)g. The algorithm REJdet at time t uses one of the algorithms that a
hieve the minimumreje
tion, i.e. min(t), and preempts all the requests the sele
ted algorithm reje
ted or preempted.In the worse
ase REJdet might reje
t k �min(t) requests up to time t, establishing the followingtheorem.Theorem 3 The deterministi
 algorithm REJdet reje
ts at most kR�(�) for any sequen
e � ofrequests.The randomized algorithm REJrand uses simple doubling strategy. Initially, it a

epts allrequests as long as possible with no reje
tion and then set � = 1. When the
ondition is violatedit sets � 2�,
hoose a random i su
h that Ri(�) � � and sti
k with it until the inequality isviolated. (If su
h i does not exits then the
ondition is immediately violated and we double thevalue of �.)Sin
e this problem
an be viewed as a variant of the layered graph traversal [7, 9, 6℄ one
anshow the following:Theorem 4 The randomized algorithm REJrand reje
ts at most O(log k) times more requests thanR�(�) for any sequen
e � of requests.Clearly, we
an apply the above theorems to a
ase where we have k algorithms and for ea
hinput sequen
e � there exists i su
h that Ri(�) �
Ropt(�).Corollary 5 The deterministi
 algorithm REJdet is O(
Rk)
ompetitive and the randomizedalgorithm REJrand is O(
R log k)
ompetitive. 7

6.2 Combining algorithms to maximize a

eptan
eIn this subse
tion we have the same s
enario as in the previous se
tion but the goal is to maximizethe number of a

epted requests. Given k algorithms A1; A2; : : : ; Ak we would like to
onstru
t analgorithm whi
h is as well as the best algorithm among the k for the given sequen
e. Spe
i�
ally,for a sequen
e of requests � let A�(�) = maxiAi(�). We will
onstru
t one randomized preemptiveonline algorithm ACC su
h that for any � we haveACC(�) � A�(�)= log k :As before, we will
ombine the algorithms by swit
hing between them. When swit
hing to a
ertain algorithm we might need to preempt all requests we
urrently have, and in the worse
ase weleft with a single a

epted
all. This suggests that there is no deterministi

ompetitive
ombiningalgorithm For this reason we use randomization in our
ombining algorithm.The basi
 idea is that our generi
 model is a variant of the problem of pi
king a winner [2℄. In theproblem of pi
king a winner we have k options (algorithms, in our setting). At any time some optionsyield a bene�t of 1, while the others have a bene�t of zero. The de
ision maker (our
ombiningalgorithm) swit
hes between options. When swit
hing, the de
ision maker loses all its
urrentbene�t and gets, from that time on, the bene�t yield by the
urrent option. Swit
hing betweenoption
orresponds in our setting to swit
hing between algorithms while possibly preempting all
urrently a

epted requests. It is shown in [2℄ that using polylogarithmi
 number of swit
hes, thede
ision maker, with high probability, has bene�t whi
h is at least O(log k) fra
tion of the bene�tyield by the best
hoi
e. Therefore,Theorem 6 The randomized algorithm ACC a

epts at least O(log k) fra
tion of requests
omparedwith A�(�) for any sequen
e � of requests.As before we
an apply the above theorems to a
ase where we have k algorithms and for ea
hinput sequen
e � there exists i su
h that Ai(�) � opt(�)=
A.Corollary 7 The algorithm ACC is O(
A log k)
ompetitive.7 Con
lusions and open problemsWe have des
ribed a pro
edure that given an algorithm A with
ompetitive ratio
A for bene�t, andan algorithm R with
ompetitive ratio
R for
ost, produ
es an online algorithm that simultaneouslya
hieves
ompetitive ratio O(
2A) for bene�t and O(
A
R) for
ost. We do not know if it is possiblein general to do better. In parti
ular, an ideal result in this dire
tion would a
hieve O(
A) forbene�t and O(
R) for
ost simultaneously.Referen
es[1℄ R. Adler and Y. Azar. Beating the logarithmi
 lower bound: randomized preemptive disjointpaths and
all
ontrol algorithms. In Pro
. 10th ACM-SIAM Symp. on Dis
rete Algorithms,pages 1{10, 1999.[2℄ B. Awerbu
h, Y. Azar, A. Fiat, and T. Leighton. Making
ommitments in the fa
e of un-
ertainty: How to pi
k a winner almost every time. In Pro
eedings of the 28th Annual ACMSymposium on Theory of Computing, pages 519{530, 1996.8

[3℄ B. Awerbu
h, Y. Azar, and S. Plotkin. Throughput-
ompetitive online routing. In 34th IEEESymposium on Foundations of Computer S
ien
e, pages 32{40, 1993.[4℄ B. Awerbu
h, Y. Bartal, A. Fiat, and A. Ros�en. Competitive non-preemptive
all
ontrol. InPro
. of 5th ACM-SIAM Symposium on Dis
rete Algorithms, pages 312{320, 1994.[5℄ B. Awerbu
h, R. Gawli
k, T. Leighton, and Y. Rabani. On-line admission
ontrol and
ir
uitrouting for high performan
e
omputation and
ommuni
ation. In Pro
. 35th IEEE Symp. onFound. of Comp. S
ien
e, pages 412{423, 1994.[6℄ Y. Azar, A. Broder, and M. Manasse. On-line
hoi
e of on-line algorithms. In Pro
. 4th ACM-SIAM Symposium on Dis
rete Algorithms, pages 432{440, 1993.[7℄ R. Baeza-Yates, J. Culberson, and G. Rawlins. Sear
hing in the plane. Information and Com-putation, 106(2):234{252, 1993. Preliminary version in Pro
. 1st S
andinavian Workshop onAlgorithm Theory, Le
ture Notes in Computer S
ien
e 318, Springer-Verlag, Berlin, 1988, 176{189. of Computer S
ien
e, O
tober, 1987.[8℄ A. Blum, A. Kalai, and J. Kleinberg. Admission
ontrol to minimize reje
tions. In Pro
eedingsof WADS 2001; LNCS 2125, pages 155{164, 2001.[9℄ A. Fiat, D. Foster, H. Karlo�, Y. Rabani, Y. Ravid, and S. Vishwanathan. Competitive algo-rithms for layered graph traversal. In Pro
. 32nd IEEE Symposium on Foundations of ComputerS
ien
e, pages 288{297, 1991.

9

