
Combining Online Algorithms for Rejetion and AeptaneYossi Azar� Avrim Blumy Yishay Mansour zMay 28, 2003AbstratResoure alloation and admission ontrol are ritial tasks in a ommuniation network, thatoften must be performed online. Algorithms for these types of problems have been onsideredboth under bene�t models (e.g., with a goal of approximately maximizing the number of allsaepted) and under ost models (e.g., with a goal of approximately minimizing the number ofalls rejeted). Unfortunately, algorithms designed for these two measures an often be quitedi�erent, even polar opposites (e.g., [1, 8℄). In this work we onsider the problem of ombiningalgorithms designed for eah of these objetives in a way that simultaneously is good under bothmeasures. More formally, we are given an algorithm A whih is A ompetitive w.r.t. the numberof aepted alls and an algorithm R whih is R ompetitive w.r.t. the number of rejeted alls.We derive a ombined algorithm whose ompetitive ratio is O(RA) for rejetion and O(2A) foraeptane. We also show building on known tehniques that given a olletion of k algorithms,we an onstrut one master algorithm whih performs similar to the best algorithm among thek for the aeptane problem and another master algorithm whih performs similar to the bestalgorithm among the k for the rejetion problem. Using our main result we an ombine thetwo master algorithms to a single algorithm whih guarantees both rejetion and aeptaneompetitiveness.1 IntrodutionResoure alloation is one of the most ritial tasks in ommuniation networks. Many resouresare in onstant \short supply": this inludes the bandwidth (of the various links), queuing delays(or rather the lak of queuing delays in the swithes), uneven sheduling (or rather bounded jitter)and many more. If one would like to guarantee Quality of Servie (QoS), one needs to alloateresoures to the requesting alls, and sine those resoures are bounded, it implies that in ertainases requests may have to be rejeted due to the lak of resoures. A simple obvious example isbandwidth alloation. Suppose we have a ertain link with a given apaity, and di�erent alls haverequests for bandwidth on that link. Sine the system annot alloate more then the link apaity,it may be fored to rejet some of the requests.The resoure alloation (or admission ontrol) deision must typially be done online. That is,the algorithm will have to deide for eah request whether or not to aept (and grant the requestthe resoures) while having minimal (or no) knowledge of future requests. This leads very naturally�Shool of Computer Siene, Tel-Aviv University, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail:azar�tau.a.il . Researh supported in part by the Israel Siene Foundation and by the IST Program of the EU.yShool of Computer Siene, Carnegie Mellon University, Pittsburgh PA 15213-3891. E-Mail:avrim�s.mu.edu _Researh supported in part by NSF grants CCR-0105488, ITR CCR-0122581, and ITR IIS-0121678.zShool of Computer Siene, Tel-Aviv University , Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail: man-sour�tau.a.il . Researh supported in part by the Israel Siene Foundation1

to the setting of online algorithms and using ompetitive analysis to evaluate performane. In fat,a wide range of resoure alloation problems have been onsidered in this setting, inluding, allontrol, admission ontrol, ative queue management, and swith throughput.When one applies ompetitive analysis, one needs to deide what omplexity measure to fouson. One an try either to minimize the number of rejeted requests or alternatively to maximizethe number of aepted requests. Even though the optimal solution both maximizes the number ofaepted requests and minimizes the number of rejeted requests, it is a well known phenomena inapproximation and online algorithms that approximation ratios are not preserved when onsideringtwo omplementary problems. There might be one algorithm A that ahieves a good ratio formaximizing bene�t but has a lousy ratio in terms of ost, and a totally di�erent algorithm R thathas a good ratio for minimizing ost but a lousy ratio in terms of bene�t.In the o�ine setting, the fat that we have two di�erent algorithms is not really a problem:given any problem instane, we an always run both algorithms and take the best solution found,whih, by assumption, will simultaneously be good under both measures. However, in the onlinesetting, it is not so lear how to ahieve simultaneous guarantees, beause we need to make ouraept/rejet deisions as we go.Main result: Our main result is to design an on-line algorithm that an fruitfully ombinealgorithms with guarantees in eah of these measures to produe a single algorithm that simulta-neously has a good guarantee for both. Spei�ally, given an algorithm A that has a ompetitiveratio of A for the number of aepted requests, and an algorithm R that has a ompetitive ratioof R for the number rejeted requests, we derive a ombined algorithm whose ompetitive ratiois O(RA) for rejetion, and O(2A) for aeptane. We should note that the ombined algorithmuses preemption, i.e., the ability to preempt a request that has been aepted (preempted requestsare regarded as though they have been rejeted). We also note that our algorithm is deterministiif both A and R are deterministi. If A or R are randomized then obviously our algorithm is alsorandomized. To demonstrate the strength of our result, if both A and R are onstant ompetitivethen the ombined algorithm is onstant ompetitive.Our ombining algorithm follows a simple intuitive notion. If only a small fration of therequests need to be rejeted (small ompared to 1=R), we should use R. Sine R is R-ompetitivefor rejetions, it will be aepting a large fration of requests and thus be ompetitive in terms ofaepts as well. On the other hand, if the optimal number of rejetions beomes large, then weno longer need to worry about our rejetion ratio (even rejeting all requests would be �ne), sowe should swith to algorithm A. The deliate part of our algorithm is in analyzing the swithingbetween the two algorithms, and onsidering the ost of swithing from one algorithm to the otherin the overall analysis.Appliations of main result: Our main result an be applied to several problems. Oneis admission ontrol and all ontrol on the line. In partiular, there exist onstant ompetitivealgorithms for the problem where the goal is to maximize the number of aepted requests [1℄ aswell as onstant ompetitive algorithms for same problem where the measure is the number ofthe rejeted requests [8℄. We onlude that there is a ombined algorithm that simultaneously isonstant ompetitive algorithm for both omplementary measures. What is interesting here is thatthe algorithms of [1℄ and [8℄ are almost polar opposites. For example, if the apaity is 2 and thereis a ollision of 3 intervals, the algorithm of [8℄ rejets the two \outside" requests (the one thatextends farthest to the left and the one that extends farthest to the right) but the algorithm of[1℄ rejets the one in the middle. Next, we onsider all ontrol (disjoint paths) on a tree. Thepapers [4, 5℄ show O(log d) ompetitive randomized (non-preemptive) algorithms for maximizingthe number of aepted requests (d is the diameter of the tree). The paper [8℄ shows a onstant2

ompetitive algorithm for the number of rejeted requests. We onlude that there is one algorithmwhih is O(log2 d)-ompetitive for the number of aepted requests and O(log d)-ompetitive forthe number of rejeted requests. Another appliation is the admission ontrol problem on generalgraphs where eah edge is of logarithmi apaity and eah requests is for a unit demand on a �xedpath. The paper [3℄ provides an O(log n) ompetitive (non-preemptive) algorithm for the number ofaepted requests. The paper [8℄ provides an O(log n) ompetitive (preemptive) algorithm for thenumber of rejeted requests. We onlude there is an O(log2 n)-ompetitive algorithm for both. (Weshould remark that for many natural online problems it is impossible to ahieve ompetitivenessin the rejetion measure and hene in both measures. For example, if the online algorithm an befored to rejet a request while the o�ine might have not rejeted any requests, then we have anunbounded ompetitive ratio.)Additional results: We also onsider the ase that there are several (say k) online (possiblypreemptive) algorithms for the admission ontrol problem. Our goal is to provide an algorithm thatperforms similar to the best algorithm on any given input sequene. We onsider the problem bothfor the measure of the number of rejeted requests and for the measure of the number aeptedrequests. We observe that using known tehniques [7, 9, 6℄ we an onstrut a ombined randomizedpreemptive algorithm whih is at most O(log k) worse with respet to the number of rejetedrequests of the best algorithm among the k. Using known results [2℄ we an also onstrut aombined randomized preemptive algorithm whih is at most O(log k) worse with respet to thenumber of aepted requests of the best algorithm among the k. These two ombined algorithmsan be ombined to one master algorithm using our main result to guarantee both rejetion andaeptane ompetitiveness.2 ModelWe assume an abstrat model where at every time unit a request is reeived. Either the request isserved (with bene�t one and ost zero), or the request is rejeted (with bene�t zero and ost 1). Arequest an also be preempted, in whih ase its bene�t is set to zero and its ost is set to one. Inthis abstrat model, the only assumption we make about the resoure onstraints (whih are whatprevent us from aepting every request) is monotoniity: if F is a feasible set of requests, thenany subset of F is feasible too. Given a sequene �, let VB(�) be the number of requests servedand VC(�) the number of requests rejeted. By de�nition, the sum of bene�t and ost is alwaysthe number of time steps, i.e. VB(�) + VC(�) = j�j.An optimal algorithm OPT an either maximize the bene�t, V OPTB (�) or minimize the ostgetting V OPTC (�). Note that for any input sequene the optimal shedule is idential for bothmaximizing the bene�t and minimizing the ost.We are given two algorithms. The �rst is a possibly randomized preemptive algorithm A thathas a guarantee of A � 1 ompetitive ratio for the bene�t, namely, for any sequene �E(V AB (�)) � 1AV OPTB (�):In addition we are given a possibly randomized preemptive algorithm R that has a guaranteeof R � 1 for the ost, namely, for any sequene �E(V RC (�)) � RV OPTC (�):Notation: Given an input sequene �, denote by �(T+1;T+t) the sequene of requests from timeT + 1 until time T + t. We also write �t for �(1;t). As a onvention, the �rst request is number3

1. Given a subset F of requests from � we denote by �F the sub-sequene that inludes only therequests of F . Given two sub-sequenes �1 and �2 we denote by �1�2 the ombined sequene ofrequests, whih �rst has the requests of �1 followed by the requests of �2.3 Our AlgorithmWe assume we are given a deterministi, possibly preemptive, algorithm A whih is A ompetitivefor the bene�t, and a deterministi, possibly preemptive, algorithm R whih is R ompetitive forthe ost. Our algorithm SWITCH reeives the two algorithms as input. At eah time step, weompute the average optimal bene�t so far and denote ot = V OPTB (�t)=t and �ot = 1 � ot. Ourdeterministi algorithm SWITCH has two thresholds, u and l, where u = 1 � �u and l = 1 � 2�u.We hoose �u = 1=(8AR). Note that u > l.Algorithm SWITCH swithes between an R phase and an A phase. During an R phase,SWITCH runs the R algorithm and in an A phase it runs the A algorithm. When SWITCH isin an R phase and ot drops below l it swithes to an A phase. When SWITCH is in an A phaseand ot is higher than u it swithes to an R phase. What remains is to desribe how to initialize thealgorithms when we start a phase. This will be done as follows. Let F be the set of alls served sofar by SWITCH at the time of the swith. We initialize the new algorithm (A or R) by feeding itthe sequene �F whih is the sequene F in the original order of �t. The algorithm R will aeptall the requests (sine OPT an serve all of them). On the other hand the algorithm A mightrejet or even preempt some of them, in suh a ase we preempt those requests. (This is where ourassumption on preemption is essential.)Theorem 1 The deterministi preemptive algorithm SWITCH is simultaneously O(RA) om-petitive for ost and O(2A) ompetitive for bene�t, given a deterministi possibly preemptive algo-rithm A whih is A ompetitive for bene�t, and a deterministi possibly preemptive algorithm Rwhih is R ompetitive for ost.We an also onstrut a ombined algorithm if A and R are randomized. The randomizedalgorithm SWITCH is onstruted in the same way. Note that the deisions to swith between Rphases and A phases are done aording to the optimal value and hene are deterministi. Whenwe start a phase, we start the algorithm (A or R) with new random bits, whih are independent ofany previous hosen random bits, and feed it with the atual F (Note that F is a random variable).Theorem 2 The randomized preemptive algorithm SWITCH is simultaneously O(RA) om-petitive for ost and O(2A) ompetitive for bene�t, given a possibly randomized preemptive algorithmA whih is A ompetitive for bene�t, and a possibly randomized preemptive algorithm R whih isR ompetitive for ost.In the analysis below we assume that A and R are deterministi and hene SWITCH isdeterministi. The analysis for the randomized ase is very similar but omitted. We just needto replae a variable by its expetation in the analysis and use the fat that the expetation of aprodut of independent random variables is the produt of their expetations.4 Analysis of RejetionsThis is the simpler ase. Assume that at time t our algorithm is in an A phase. This impliesthat the optimal shedule aepts at most ut, and therefore rejets at least �ut. Even if the onlinealgorithm rejets all the requests it will still be 1=�u = 8AR rejetion ompetitive.4

Assume that at time T + 1 we started an R phase, and onsider a time T + t, in whih we arein the same R phase. Until time T the optimal algorithm rejeted at least T �u. Assume that on thesequene of �F�(T+1;T+t) the optimal shedule for that sequene rejets t requests. Sine algorithmR is R ompetitive we know that it will rejet at most (t)R requests. Hene, for the entiresequene �(T+t) our algorithm rejeted at most T + tR requests. Clearly the optimal algorithmrejeted more requests for the entire sequene �(T+t) than on the sub-sequene �F�(T+1;T+t). Henethe rejetion ompetitive ratio is at mostT + tRmaxfT �u; tg � 1=�u+ R = 8AR + R = O(AR)5 Analysis of AeptaneThis is a somewhat triky ase. Not only will we analyze separately the two phases, but duringan A phase we will separate the ompetitive ratio at the beginning and at the end of the phase.The last point turns out to be ruial to get any bound on the ompetitive ratio. Spei�ally, inaddition to our main laim that the aeptane ompetitive ratio is O(2A) we also assume (andprove) the following two stronger invariants. The �rst is that during an R phase the aeptaneompetitive ratio is at most ar = 8A. The seond is that at the end of an A phase the ompetitiveratio is at most ae = 2A. The proof below of the two invariants and the main laim is done byindution.5.1 Swithing from R to AAssume that at time T +1 we swith to an A phase. We know that on the entire past the optimalshedule has a bene�t of lT . Due to our assumption (�rst invariant) we know that SWITCH hasbene�t of at least lT=ar. SWITCH now initializes algorithm A on this sequene �F , whih maynow rejet additional requests but learly must aept at least (lT=ar)=A. Therefore, immediatelyafter the swith (before handling request T + 1) the ompetitive ratio is at most arA = O(2A).Next we onsider a time T + t in the same A phase. Clearly OPT for the sequene �F hasbene�t exatly jF j sine it an aept all requests (as the online algorithm has them). Assumethat OPT on the sequene �F�(T+1;T+t) aepts jF j + �t requests for some � > 0. Clearly, onthat sequene SWITCH has a value of at least (jF j + �t)=A. Moreover, by monotoniity andsub-additivity of OPT we haveV OPTB (�(T+t)) � V OPTB (�T) + V OPTB (�(T+1;T+t))� V OPTB (�T) + V OPTB (�F�(T+1;T+t)) :This implies that at time T + t the aeptane ompetitive ratio is at mostlT + (jF j+ �t)(jF j+ �t)=A = A lTjF j+ �t + A� A lTjF j + A� A lTlT=ar + A= Aar + A = O(2A)as needed for our main laim. 5

We laim (seond invariant) that at the end of the phase, at time T + t, the aeptane om-petitive ratio is at most ae . Even if we assume that in the time interval [T + 1; T + t℄ the optimalalgorithm reeives all the requests, then for t < T we have lT + t < u(t + T), for our hoie of uand l. Therefore, the duration of an A phase whih starts at time T is at least T ,i.e. t � T . AlsoV OPTB (�F�(T+1;T+t)) � V OPTB (�(T+1;T+t))� V OPTB (�(T+t))� V OPTB (�T)= u(t+ T)� lT> ut :Hene the value of SWITCH at time T + t is at least uT=A and therefore the ompetitiveratio is at most u(T + t)ut=A = AT + tt � 2A = aeas needed for the seond invariant.5.2 Swithing from A to RAssume that at time T + 1 we swith from an A phase to an R phase. This implies that on theinput �T the bene�t of the optimal o�ine, OPT , is uT . From our assumptions (seond invariant)we have that SWITCH has bene�t at least uT=ae = uT=(2A). At the time of the swith we arere-inputting the requests in the online memory to the algorithm R. Sine OPT an aept all therequest we know that R will aept all of them. Hene the ompetitive ratio remains ae (beforehandling request T + 1).Consider the time T + t in the same R phase. By de�nition OPT aepted on the sequene�(T+t) exatly (T + t)o(T+t) requests and rejeted (T + t)�o(T+t) requests. Hene OPT rejeted atmost that number on the sequene �F�(T+1;T+t) sine it is a sub-sequene. Therefore R rejetedat most R(T + t)�o(T+t) requests on that sequene. Hene the number of aepted requests at timeT + t is at least jF j + t� R(T + t)�o(T+t)� uT=(2A) + t� RT �o(T+t) � Rt�o(T+t)= T (u=(2A)� R�o(T+t)) + t(1� R�o(T+t))� T (u=(2A)� 1=(4A)) + t(1� 1=(4A))� T=(8A) + t=2where the seond inequality follows from the fat that �o(T+t) � �l = 1=(4AR) sine we are in anR phase. The last inequality follows from the fats that u � 7=8 and A � 1. (We hoose \nie"onstant rather than the tightest onstants.)Hene the ompetitive ratio at time T + t is at mostT + tT=(8A) + t=2 � maxf8A; 2g = 8A = aras needed for the �rst invariant.
6

6 Combining Admission Control AlgorithmsIn this setion we briey desribe how to ombine a olletion of online algorithms into one masteralgorithm with a good aeptane ompetitive ratio and into another master algorithm with a goodrejetion ompetitive ratio. Results of this form already exist in the literature [2, 6, 7, 9℄ but ourmain point here is that (a) these known tehniques an be applied in our abstrat model, and (b)using our main result we an ombine the two master algorithms that result into one ombinedalgorithm whih guarantees both rejetion and aeptane ompetitiveness.The main ingredient of the ombining algorithms is swithing between algorithms. Swithingalgorithms might means that we need to preempt some or all requests that we urrently serve.The ombining algorithms have a very di�erent struture, depending on whether they are min-imizing the number of rejeted requests or maximizing the number of aepted requests. Theombining algorithms an be either randomized or deterministi.6.1 Combining algorithms to minimize rejetionGiven k (possibly preemptive) on-line algorithms, denoted by R1; R2; : : : ; Rk, we would like toonstrut an algorithm, whih for any input sequene, ompetes with the best algorithm, amongthe k, for the given sequene. Spei�ally, for a sequene of requests � let R�(�) = miniRi(�).We onstrut a deterministi preemptive online ombining algorithm REJdet suh that for any�, we have REJdet(�) = O(kR�(�)). We also provide a randomized preemptive online algorithmREJrand whih guarantees that REJrand(�) = O(R�(�) log k) :The deterministi algorithm REJdet uses a simple greedy strategy. At time t, let min(t) =minfRi(�t)g. The algorithm REJdet at time t uses one of the algorithms that ahieve the minimumrejetion, i.e. min(t), and preempts all the requests the seleted algorithm rejeted or preempted.In the worse ase REJdet might rejet k �min(t) requests up to time t, establishing the followingtheorem.Theorem 3 The deterministi algorithm REJdet rejets at most kR�(�) for any sequene � ofrequests.The randomized algorithm REJrand uses simple doubling strategy. Initially, it aepts allrequests as long as possible with no rejetion and then set � = 1. When the ondition is violatedit sets � 2�, hoose a random i suh that Ri(�) � � and stik with it until the inequality isviolated. (If suh i does not exits then the ondition is immediately violated and we double thevalue of �.)Sine this problem an be viewed as a variant of the layered graph traversal [7, 9, 6℄ one anshow the following:Theorem 4 The randomized algorithm REJrand rejets at most O(log k) times more requests thanR�(�) for any sequene � of requests.Clearly, we an apply the above theorems to a ase where we have k algorithms and for eahinput sequene � there exists i suh that Ri(�) � Ropt(�).Corollary 5 The deterministi algorithm REJdet is O(Rk) ompetitive and the randomizedalgorithm REJrand is O(R log k) ompetitive. 7

6.2 Combining algorithms to maximize aeptaneIn this subsetion we have the same senario as in the previous setion but the goal is to maximizethe number of aepted requests. Given k algorithms A1; A2; : : : ; Ak we would like to onstrut analgorithm whih is as well as the best algorithm among the k for the given sequene. Spei�ally,for a sequene of requests � let A�(�) = maxiAi(�). We will onstrut one randomized preemptiveonline algorithm ACC suh that for any � we haveACC(�) � A�(�)= log k :As before, we will ombine the algorithms by swithing between them. When swithing to aertain algorithm we might need to preempt all requests we urrently have, and in the worse ase weleft with a single aepted all. This suggests that there is no deterministi ompetitive ombiningalgorithm For this reason we use randomization in our ombining algorithm.The basi idea is that our generi model is a variant of the problem of piking a winner [2℄. In theproblem of piking a winner we have k options (algorithms, in our setting). At any time some optionsyield a bene�t of 1, while the others have a bene�t of zero. The deision maker (our ombiningalgorithm) swithes between options. When swithing, the deision maker loses all its urrentbene�t and gets, from that time on, the bene�t yield by the urrent option. Swithing betweenoption orresponds in our setting to swithing between algorithms while possibly preempting allurrently aepted requests. It is shown in [2℄ that using polylogarithmi number of swithes, thedeision maker, with high probability, has bene�t whih is at least O(log k) fration of the bene�tyield by the best hoie. Therefore,Theorem 6 The randomized algorithm ACC aepts at least O(log k) fration of requests omparedwith A�(�) for any sequene � of requests.As before we an apply the above theorems to a ase where we have k algorithms and for eahinput sequene � there exists i suh that Ai(�) � opt(�)=A.Corollary 7 The algorithm ACC is O(A log k) ompetitive.7 Conlusions and open problemsWe have desribed a proedure that given an algorithm A with ompetitive ratio A for bene�t, andan algorithm R with ompetitive ratio R for ost, produes an online algorithm that simultaneouslyahieves ompetitive ratio O(2A) for bene�t and O(AR) for ost. We do not know if it is possiblein general to do better. In partiular, an ideal result in this diretion would ahieve O(A) forbene�t and O(R) for ost simultaneously.Referenes[1℄ R. Adler and Y. Azar. Beating the logarithmi lower bound: randomized preemptive disjointpaths and all ontrol algorithms. In Pro. 10th ACM-SIAM Symp. on Disrete Algorithms,pages 1{10, 1999.[2℄ B. Awerbuh, Y. Azar, A. Fiat, and T. Leighton. Making ommitments in the fae of un-ertainty: How to pik a winner almost every time. In Proeedings of the 28th Annual ACMSymposium on Theory of Computing, pages 519{530, 1996.8

[3℄ B. Awerbuh, Y. Azar, and S. Plotkin. Throughput-ompetitive online routing. In 34th IEEESymposium on Foundations of Computer Siene, pages 32{40, 1993.[4℄ B. Awerbuh, Y. Bartal, A. Fiat, and A. Ros�en. Competitive non-preemptive all ontrol. InPro. of 5th ACM-SIAM Symposium on Disrete Algorithms, pages 312{320, 1994.[5℄ B. Awerbuh, R. Gawlik, T. Leighton, and Y. Rabani. On-line admission ontrol and iruitrouting for high performane omputation and ommuniation. In Pro. 35th IEEE Symp. onFound. of Comp. Siene, pages 412{423, 1994.[6℄ Y. Azar, A. Broder, and M. Manasse. On-line hoie of on-line algorithms. In Pro. 4th ACM-SIAM Symposium on Disrete Algorithms, pages 432{440, 1993.[7℄ R. Baeza-Yates, J. Culberson, and G. Rawlins. Searhing in the plane. Information and Com-putation, 106(2):234{252, 1993. Preliminary version in Pro. 1st Sandinavian Workshop onAlgorithm Theory, Leture Notes in Computer Siene 318, Springer-Verlag, Berlin, 1988, 176{189. of Computer Siene, Otober, 1987.[8℄ A. Blum, A. Kalai, and J. Kleinberg. Admission ontrol to minimize rejetions. In Proeedingsof WADS 2001; LNCS 2125, pages 155{164, 2001.[9℄ A. Fiat, D. Foster, H. Karlo�, Y. Rabani, Y. Ravid, and S. Vishwanathan. Competitive algo-rithms for layered graph traversal. In Pro. 32nd IEEE Symposium on Foundations of ComputerSiene, pages 288{297, 1991.

9

