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Abstract

Resource allocation and admission control are critical tasks in a communication network, that
often must be performed online. Algorithms for these types of problems have been considered
both under benefit models (e.g., with a goal of approximately maximizing the number of calls
accepted) and under cost models (e.g., with a goal of approximately minimizing the number of
calls rejected). Unfortunately, algorithms designed for these two measures can often be quite
different, even polar opposites (e.g., [1, 8]). In this work we consider the problem of combining
algorithms designed for each of these objectives in a way that simultaneously is good under both
measures. More formally, we are given an algorithm A which is ¢4 competitive w.r.t. the number
of accepted calls and an algorithm R which is ¢g competitive w.r.t. the number of rejected calls.
We derive a combined algorithm whose competitive ratio is O(cgca) for rejection and O(c?) for
acceptance. We also show building on known techniques that given a collection of & algorithms,
we can construct one master algorithm which performs similar to the best algorithm among the
k for the acceptance problem and another master algorithm which performs similar to the best
algorithm among the k for the rejection problem. Using our main result we can combine the
two master algorithms to a single algorithm which guarantees both rejection and acceptance
competitiveness.

1 Introduction

Resource allocation is one of the most critical tasks in communication networks. Many resources
are in constant “short supply”: this includes the bandwidth (of the various links), queuing delays
(or rather the lack of queuing delays in the switches), uneven scheduling (or rather bounded jitter)
and many more. If one would like to guarantee Quality of Service (QoS), one needs to allocate
resources to the requesting calls, and since those resources are bounded, it implies that in certain
cases requests may have to be rejected due to the lack of resources. A simple obvious example is
bandwidth allocation. Suppose we have a certain link with a given capacity, and different calls have
requests for bandwidth on that link. Since the system cannot allocate more then the link capacity,
it may be forced to reject some of the requests.

The resource allocation (or admission control) decision must typically be done online. That is,
the algorithm will have to decide for each request whether or not to accept (and grant the request
the resources) while having minimal (or no) knowledge of future requests. This leads very naturally
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to the setting of online algorithms and using competitive analysis to evaluate performance. In fact,
a wide range of resource allocation problems have been considered in this setting, including, call
control, admission control, active queue management, and switch throughput.

When one applies competitive analysis, one needs to decide what complexity measure to focus
on. One can try either to minimize the number of rejected requests or alternatively to maximize
the number of accepted requests. Even though the optimal solution both maximizes the number of
accepted requests and minimizes the number of rejected requests, it is a well known phenomena in
approximation and online algorithms that approximation ratios are not preserved when considering
two complementary problems. There might be one algorithm A that achieves a good ratio for
maximizing benefit but has a lousy ratio in terms of cost, and a totally different algorithm R that
has a good ratio for minimizing cost but a lousy ratio in terms of benefit.

In the offline setting, the fact that we have two different algorithms is not really a problem:
given any problem instance, we can always run both algorithms and take the best solution found,
which, by assumption, will simultaneously be good under both measures. However, in the online
setting, it is not so clear how to achieve simultaneous guarantees, because we need to make our
accept/reject decisions as we go.

Main result: Our main result is to design an on-line algorithm that can fruitfully combine
algorithms with guarantees in each of these measures to produce a single algorithm that simulta-
neously has a good guarantee for both. Specifically, given an algorithm A that has a competitive
ratio of ¢4 for the number of accepted requests, and an algorithm R that has a competitive ratio
of cp for the number rejected requests, we derive a combined algorithm whose competitive ratio
is O(cgea) for rejection, and O(c%) for acceptance. We should note that the combined algorithm
uses preemption, i.e., the ability to preempt a request that has been accepted (preempted requests
are regarded as though they have been rejected). We also note that our algorithm is deterministic
if both A and R are deterministic. If A or R are randomized then obviously our algorithm is also
randomized. To demonstrate the strength of our result, if both ¢4 and cg are constant competitive
then the combined algorithm is constant competitive.

Our combining algorithm follows a simple intuitive notion. If only a small fraction of the
requests need to be rejected (small compared to 1/cg), we should use R. Since R is cg-competitive
for rejections, it will be accepting a large fraction of requests and thus be competitive in terms of
accepts as well. On the other hand, if the optimal number of rejections becomes large, then we
no longer need to worry about our rejection ratio (even rejecting all requests would be fine), so
we should switch to algorithm A. The delicate part of our algorithm is in analyzing the switching
between the two algorithms, and considering the cost of switching from one algorithm to the other
in the overall analysis.

Applications of main result: Our main result can be applied to several problems. One
is admission control and call control on the line. In particular, there exist constant competitive
algorithms for the problem where the goal is to maximize the number of accepted requests [1] as
well as constant competitive algorithms for same problem where the measure is the number of
the rejected requests [8]. We conclude that there is a combined algorithm that simultaneously is
constant competitive algorithm for both complementary measures. What is interesting here is that
the algorithms of [1] and [8] are almost polar opposites. For example, if the capacity is 2 and there
is a collision of 3 intervals, the algorithm of [8] rejects the two “outside” requests (the one that
extends farthest to the left and the one that extends farthest to the right) but the algorithm of
[1] rejects the one in the middle. Next, we consider call control (disjoint paths) on a tree. The
papers [4, 5] show O(logd) competitive randomized (non-preemptive) algorithms for maximizing
the number of accepted requests (d is the diameter of the tree). The paper [8] shows a constant



competitive algorithm for the number of rejected requests. We conclude that there is one algorithm
which is O(log? d)-competitive for the number of accepted requests and O(log d)-competitive for
the number of rejected requests. Another application is the admission control problem on general
graphs where each edge is of logarithmic capacity and each requests is for a unit demand on a fixed
path. The paper [3] provides an O(log n) competitive (non-preemptive) algorithm for the number of
accepted requests. The paper [8] provides an O(logn) competitive (preemptive) algorithm for the
number of rejected requests. We conclude there is an O(log? n)-competitive algorithm for both. (We
should remark that for many natural online problems it is impossible to achieve competitiveness
in the rejection measure and hence in both measures. For example, if the online algorithm can be
forced to reject a request while the offline might have not rejected any requests, then we have an
unbounded competitive ratio.)

Additional results: We also consider the case that there are several (say k) online (possibly
preemptive) algorithms for the admission control problem. Our goal is to provide an algorithm that
performs similar to the best algorithm on any given input sequence. We consider the problem both
for the measure of the number of rejected requests and for the measure of the number accepted
requests. We observe that using known techniques [7, 9, 6] we can construct a combined randomized
preemptive algorithm which is at most O(logk) worse with respect to the number of rejected
requests of the best algorithm among the k. Using known results [2] we can also construct a
combined randomized preemptive algorithm which is at most O(logk) worse with respect to the
number of accepted requests of the best algorithm among the k. These two combined algorithms
can be combined to one master algorithm using our main result to guarantee both rejection and
acceptance competitiveness.

2 Model

We assume an abstract model where at every time unit a request is received. Either the request is
served (with benefit one and cost zero), or the request is rejected (with benefit zero and cost 1). A
request can also be preempted, in which case its benefit is set to zero and its cost is set to one. In
this abstract model, the only assumption we make about the resource constraints (which are what
prevent us from accepting every request) is monotonicity: if F' is a feasible set of requests, then
any subset of F is feasible too. Given a sequence o, let V(o) be the number of requests served
and V(o) the number of requests rejected. By definition, the sum of benefit and cost is always
the number of time steps, i.e. Vg(o) 4+ V(o) = |o|.

An optimal algorithm OPT can either maximize the benefit, VST () or minimize the cost
getting VCQP T(o). Note that for any input sequence the optimal schedule is identical for both
maximizing the benefit and minimizing the cost.

We are given two algorithms. The first is a possibly randomized preemptive algorithm A that
has a guarantee of c4 > 1 competitive ratio for the benefit, namely, for any sequence o

B(V#(0) > —-V§"" (o).

In addition we are given a possibly randomized preemptive algorithm R that has a guarantee
of cg > 1 for the cost, namely, for any sequence o

E(VE (0)) < erVETT (o).

Notation: Given an input sequence o, denote by o(r 1 s the sequence of requests from time
T + 1 until time T + . We also write oy for o(; ;). As a convention, the first request is number



1. Given a subset F' of requests from o we denote by o the sub-sequence that includes only the
requests of F. Given two sub-sequences o1 and o9 we denote by ojo9 the combined sequence of
requests, which first has the requests of o1 followed by the requests of 5.

3 Our Algorithm

We assume we are given a deterministic, possibly preemptive, algorithm A which is ¢4 competitive
for the benefit, and a deterministic, possibly preemptive, algorithm R which is cg competitive for
the cost. Our algorithm SWITCH receives the two algorithms as input. At each time step, we
compute the average optimal benefit so far and denote o; = VST (0y)/t and 6, = 1 — 0. Our
deterministic algorithm SWITCH has two thresholds, u and [, where u =1 —w and | = 1 — 2u.
We choose 4 = 1/(8cacr). Note that u > .

Algorithm SWITCH switches between an R phase and an A phase. During an R phase,
SWITCH runs the R algorithm and in an A phase it runs the A algorithm. When SWITCH is
in an R phase and o, drops below [ it switches to an A phase. When SWITCH is in an A phase
and oy is higher than u it switches to an R phase. What remains is to describe how to initialize the
algorithms when we start a phase. This will be done as follows. Let F' be the set of calls served so
far by SWITCH at the time of the switch. We initialize the new algorithm (A or R) by feeding it
the sequence o which is the sequence F' in the original order of ;. The algorithm R will accept
all the requests (since OPT can serve all of them). On the other hand the algorithm A might
reject or even preempt some of them, in such a case we preempt those requests. (This is where our
assumption on preemption is essential.)

Theorem 1 The deterministic preemptive algorithm SWITCH is simultaneously O(crca) com-
petitive for cost and O(c%) competitive for benefit, given a deterministic possibly preemptive algo-
rithm A which is co competitive for benefit, and a deterministic possibly preemptive algorithm R
which is cg competitive for cost.

We can also construct a combined algorithm if A and R are randomized. The randomized
algorithm SWITCH is constructed in the same way. Note that the decisions to switch between R
phases and A phases are done according to the optimal value and hence are deterministic. When
we start a phase, we start the algorithm (A or R) with new random bits, which are independent of
any previous chosen random bits, and feed it with the actual F' (Note that F'is a random variable).

Theorem 2 The randomized preemptive algorithm SWITCH is simultaneously O(cgrcq) com-
petitive for cost and O(c%) competitive for benefit, given a possibly randomized preemptive algorithm
A which is ca competitive for benefit, and a possibly randomized preemptive algorithm R which is
cr competitive for cost.

In the analysis below we assume that A and R are deterministic and hence SWITCH is
deterministic. The analysis for the randomized case is very similar but omitted. We just need
to replace a variable by its expectation in the analysis and use the fact that the expectation of a
product of independent random variables is the product of their expectations.

4 Analysis of Rejections

This is the simpler case. Assume that at time ¢ our algorithm is in an A phase. This implies
that the optimal schedule accepts at most ut, and therefore rejects at least wt. Even if the online
algorithm rejects all the requests it will still be 1/a@ = 8cacp rejection competitive.



Assume that at time T + 1 we started an R phase, and consider a time T + ¢, in which we are
in the same R phase. Until time T' the optimal algorithm rejected at least T'tu. Assume that on the
sequence of opo (1,744 the optimal schedule for that sequence rejects y¢ requests. Since algorithm
R is cgp competitive we know that it will reject at most (yt)cr requests. Hence, for the entire
sequence (744 our algorithm rejected at most T + ytcg requests. Clearly the optimal algorithm
rejected more requests for the entire sequence o714 than on the sub-sequence opo(r1,744). Hence
the rejection competitive ratio is at most

T-I-’)’tCR _
— " <1 =8 =0
max{Tﬂ,yt} < /U+CR CACR + CR (CACR)

5 Analysis of Acceptance

This is a somewhat tricky case. Not only will we analyze separately the two phases, but during
an A phase we will separate the competitive ratio at the beginning and at the end of the phase.
The last point turns out to be crucial to get any bound on the competitive ratio. Specifically, in
addition to our main claim that the acceptance competitive ratio is O(c%) we also assume (and
prove) the following two stronger invariants. The first is that during an R phase the acceptance
competitive ratio is at most a, = 8c4. The second is that at the end of an A phase the competitive
ratio is at most a., = 2c4. The proof below of the two invariants and the main claim is done by
induction.

5.1 Switching from R to A

Assume that at time T+ 1 we switch to an A phase. We know that on the entire past the optimal
schedule has a benefit of [T". Due to our assumption (first invariant) we know that SWITCH has
benefit of at least [T /a,. SWITCH now initializes algorithm A on this sequence o, which may
now reject additional requests but clearly must accept at least (I7'/a,)/ca. Therefore, immediately
after the switch (before handling request T'+ 1) the competitive ratio is at most a,ca = O(c%).
Next we consider a time T + ¢ in the same A phase. Clearly OPT for the sequence o has
benefit exactly |F| since it can accept all requests (as the online algorithm has them). Assume
that OPT on the sequence opo(71 744 accepts |F'| + Bt requests for some § > 0. Clearly, on
that sequence SWITCH has a value of at least (|F| + t)/ca. Moreover, by monotonicity and

sub-additivity of OPT we have
VETT (0(744) VET (or) + VET (0(r41.141))

< VE (o) + VE (oro(rii ) -

IA

This implies that at time T" 4 ¢ the acceptance competitive ratio is at most

IT + (|F| + Bt) . IT e
o e . AT 1 or A
(IF[ + Bt)/ca |F'| + Bt

< lT+

< capgtea

||
< IT N
< CAZT/ar CA

= caar +ca=0(ch)

as needed for our main claim.



We claim (second invariant) that at the end of the phase, at time T + ¢, the acceptance com-
petitive ratio is at most a. . Even if we assume that in the time interval [T + 1,7 + ¢] the optimal
algorithm receives all the requests, then for ¢ < T we have IT +t < u(t + T'), for our choice of u
and [. Therefore, the duration of an A phase which starts at time T is at least T,i.e. t > T. Also

v

Vg PT(U (T+1,T+t))

> V13OPT(U(T+t)) — Vg (or)
= wu(t+T)-IT

> ut .

VEPT (oro 1141

Hence the value of SWITCH at time T + t is at least uT/c4 and therefore the competitive

ratio is at most T T
u +)=CA + <2cp=ae
ut/ca t

as needed for the second invariant.

5.2 Switching from A to R

Assume that at time T' 4+ 1 we switch from an A phase to an R phase. This implies that on the
input o the benefit of the optimal offline, OPT, is uT. From our assumptions (second invariant)
we have that SWITCH has benefit at least uT'/a, = uT/(2c4). At the time of the switch we are
re-inputting the requests in the online memory to the algorithm R. Since OPT can accept all the
request we know that R will accept all of them. Hence the competitive ratio remains a. (before
handling request T + 1).

Consider the time T + t in the same R phase. By definition OPT accepted on the sequence
o(r41) exactly (T + t)oiriyy requests and rejected (T + ¢)o(7) requests. Hence OPT rejected at
most that number on the sequence opo(r 1 74y since it is a sub-sequence. Therefore R rejected
at most cp(T + t)6(T +1) requests on that sequence. Hence the number of accepted requests at time
T +tis at least

IF| + t—cr(T + )0y

> uT/(2ca) +1t — cRTO(T41) — CRIO(T 1)
T(u/(2ca) — crO(T41)) + (1 — cRO(T 1))
T(u/(2ca) —1/(4ca)) + (1 = 1/(4ca))
T/(8ca) +t/2

AVAREYS

where the second inequality follows from the fact that o(p ) < I = 1/(4ccr) since we are in an
R phase. The last inequality follows from the facts that v > 7/8 and ¢4 > 1. (We choose “nice”
constant rather than the tightest constants.)

Hence the competitive ratio at time 7"+ ¢ is at most

T+t
T < max{8ca,2) = 8ca =
TT(8en) 1173 = maxi8ea, 2} =8ea =ar

as needed for the first invariant.



6 Combining Admission Control Algorithms

In this section we briefly describe how to combine a collection of online algorithms into one master
algorithm with a good acceptance competitive ratio and into another master algorithm with a good
rejection competitive ratio. Results of this form already exist in the literature [2, 6, 7, 9] but our
main point here is that (a) these known techniques can be applied in our abstract model, and (b)
using our main result we can combine the two master algorithms that result into one combined
algorithm which guarantees both rejection and acceptance competitiveness.

The main ingredient of the combining algorithms is switching between algorithms. Switching
algorithms might means that we need to preempt some or all requests that we currently serve.

The combining algorithms have a very different structure, depending on whether they are min-
imizing the number of rejected requests or maximizing the number of accepted requests. The
combining algorithms can be either randomized or deterministic.

6.1 Combining algorithms to minimize rejection

Given k (possibly preemptive) on-line algorithms, denoted by Ri, Ra,..., Rk, we would like to
construct an algorithm, which for any input sequence, competes with the best algorithm, among
the k, for the given sequence. Specifically, for a sequence of requests o let R*(0) = min; R;(0).
We construct a deterministic preemptive online combining algorithm RFE.Jg; such that for any
o, we have RE Jjei(0) = O(kR*(0)). We also provide a randomized preemptive online algorithm
RE J,qnq which guarantees that

REJ,ana(0) = O(R*(0) log k) .

The deterministic algorithm RFE.Jz.; uses a simple greedy strategy. At time ¢, let min(t) =
min{R;(oy)}. The algorithm RE.J;.; at time ¢ uses one of the algorithms that achieve the minimum
rejection, i.e. min(t), and preempts all the requests the selected algorithm rejected or preempted.
In the worse case REJy; might reject k- min(t) requests up to time ¢, establishing the following
theorem.

Theorem 3 The deterministic algorithm REJge rejects at most kR*(o) for any sequence o of
requests.

The randomized algorithm RFE.J,,,q uses simple doubling strategy. Initially, it accepts all
requests as long as possible with no rejection and then set A = 1. When the condition is violated
it sets A < 2\, choose a random 7 such that R;(c) < A and stick with it until the inequality is
violated. (If such i does not exits then the condition is immediately violated and we double the
value of \.)

Since this problem can be viewed as a variant of the layered graph traversal [7, 9, 6] one can
show the following:

Theorem 4 The randomized algorithm RE J,qnq rejects at most O(log k) times more requests than
R*(o) for any sequence o of requests.

Clearly, we can apply the above theorems to a case where we have k algorithms and for each
input sequence o there exists 7 such that R;(0) < cropt(o).

Corollary 5 The deterministic algorithm REJge; is O(crk) competitive and the randomized
algorithm RE Jyqnq is O(crlogk) competitive.



6.2 Combining algorithms to maximize acceptance

In this subsection we have the same scenario as in the previous section but the goal is to maximize
the number of accepted requests. Given k algorithms Ay, Ao, ..., A we would like to construct an
algorithm which is as well as the best algorithm among the %k for the given sequence. Specifically,
for a sequence of requests o let A*(0) = max; A;(c). We will construct one randomized preemptive
online algorithm AC'C such that for any o we have

ACC(0) > A*(0)/logk .

As before, we will combine the algorithms by switching between them. When switching to a
certain algorithm we might need to preempt all requests we currently have, and in the worse case we
left with a single accepted call. This suggests that there is no deterministic competitive combining
algorithm For this reason we use randomization in our combining algorithm.

The basic idea is that our generic model is a variant of the problem of picking a winner [2]. In the
problem of picking a winner we have k options (algorithms, in our setting). At any time some options
yield a benefit of 1, while the others have a benefit of zero. The decision maker (our combining
algorithm) switches between options. When switching, the decision maker loses all its current
benefit and gets, from that time on, the benefit yield by the current option. Switching between
option corresponds in our setting to switching between algorithms while possibly preempting all
currently accepted requests. It is shown in [2] that using polylogarithmic number of switches, the
decision maker, with high probability, has benefit which is at least O(log k) fraction of the benefit
yield by the best choice. Therefore,

Theorem 6 The randomized algorithm ACC accepts at least O(log k) fraction of requests compared
with A*(o) for any sequence o of requests.

As before we can apply the above theorems to a case where we have k algorithms and for each
input sequence o there exists 7 such that A;(o) > opt(o)/ca.

Corollary 7 The algorithm ACC is O(calogk) competitive.

7 Conclusions and open problems

We have described a procedure that given an algorithm A with competitive ratio c4 for benefit, and
an algorithm R with competitive ratio cg for cost, produces an online algorithm that simultaneously
achieves competitive ratio O(c%) for benefit and O(cacg) for cost. We do not know if it is possible
in general to do better. In particular, an ideal result in this direction would achieve O(c4) for
benefit and O(cg) for cost simultaneously.
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