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eYossi Azar� Avrim Blumy Yishay Mansour zMay 28, 2003Abstra
tResour
e allo
ation and admission 
ontrol are 
riti
al tasks in a 
ommuni
ation network, thatoften must be performed online. Algorithms for these types of problems have been 
onsideredboth under bene�t models (e.g., with a goal of approximately maximizing the number of 
allsa

epted) and under 
ost models (e.g., with a goal of approximately minimizing the number of
alls reje
ted). Unfortunately, algorithms designed for these two measures 
an often be quitedi�erent, even polar opposites (e.g., [1, 8℄). In this work we 
onsider the problem of 
ombiningalgorithms designed for ea
h of these obje
tives in a way that simultaneously is good under bothmeasures. More formally, we are given an algorithm A whi
h is 
A 
ompetitive w.r.t. the numberof a

epted 
alls and an algorithm R whi
h is 
R 
ompetitive w.r.t. the number of reje
ted 
alls.We derive a 
ombined algorithm whose 
ompetitive ratio is O(
R
A) for reje
tion and O(
2A) fora

eptan
e. We also show building on known te
hniques that given a 
olle
tion of k algorithms,we 
an 
onstru
t one master algorithm whi
h performs similar to the best algorithm among thek for the a

eptan
e problem and another master algorithm whi
h performs similar to the bestalgorithm among the k for the reje
tion problem. Using our main result we 
an 
ombine thetwo master algorithms to a single algorithm whi
h guarantees both reje
tion and a

eptan
e
ompetitiveness.1 Introdu
tionResour
e allo
ation is one of the most 
riti
al tasks in 
ommuni
ation networks. Many resour
esare in 
onstant \short supply": this in
ludes the bandwidth (of the various links), queuing delays(or rather the la
k of queuing delays in the swit
hes), uneven s
heduling (or rather bounded jitter)and many more. If one would like to guarantee Quality of Servi
e (QoS), one needs to allo
ateresour
es to the requesting 
alls, and sin
e those resour
es are bounded, it implies that in 
ertain
ases requests may have to be reje
ted due to the la
k of resour
es. A simple obvious example isbandwidth allo
ation. Suppose we have a 
ertain link with a given 
apa
ity, and di�erent 
alls haverequests for bandwidth on that link. Sin
e the system 
annot allo
ate more then the link 
apa
ity,it may be for
ed to reje
t some of the requests.The resour
e allo
ation (or admission 
ontrol) de
ision must typi
ally be done online. That is,the algorithm will have to de
ide for ea
h request whether or not to a

ept (and grant the requestthe resour
es) while having minimal (or no) knowledge of future requests. This leads very naturally�S
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to the setting of online algorithms and using 
ompetitive analysis to evaluate performan
e. In fa
t,a wide range of resour
e allo
ation problems have been 
onsidered in this setting, in
luding, 
all
ontrol, admission 
ontrol, a
tive queue management, and swit
h throughput.When one applies 
ompetitive analysis, one needs to de
ide what 
omplexity measure to fo
uson. One 
an try either to minimize the number of reje
ted requests or alternatively to maximizethe number of a

epted requests. Even though the optimal solution both maximizes the number ofa

epted requests and minimizes the number of reje
ted requests, it is a well known phenomena inapproximation and online algorithms that approximation ratios are not preserved when 
onsideringtwo 
omplementary problems. There might be one algorithm A that a
hieves a good ratio formaximizing bene�t but has a lousy ratio in terms of 
ost, and a totally di�erent algorithm R thathas a good ratio for minimizing 
ost but a lousy ratio in terms of bene�t.In the o�ine setting, the fa
t that we have two di�erent algorithms is not really a problem:given any problem instan
e, we 
an always run both algorithms and take the best solution found,whi
h, by assumption, will simultaneously be good under both measures. However, in the onlinesetting, it is not so 
lear how to a
hieve simultaneous guarantees, be
ause we need to make oura

ept/reje
t de
isions as we go.Main result: Our main result is to design an on-line algorithm that 
an fruitfully 
ombinealgorithms with guarantees in ea
h of these measures to produ
e a single algorithm that simulta-neously has a good guarantee for both. Spe
i�
ally, given an algorithm A that has a 
ompetitiveratio of 
A for the number of a

epted requests, and an algorithm R that has a 
ompetitive ratioof 
R for the number reje
ted requests, we derive a 
ombined algorithm whose 
ompetitive ratiois O(
R
A) for reje
tion, and O(
2A) for a

eptan
e. We should note that the 
ombined algorithmuses preemption, i.e., the ability to preempt a request that has been a

epted (preempted requestsare regarded as though they have been reje
ted). We also note that our algorithm is deterministi
if both A and R are deterministi
. If A or R are randomized then obviously our algorithm is alsorandomized. To demonstrate the strength of our result, if both 
A and 
R are 
onstant 
ompetitivethen the 
ombined algorithm is 
onstant 
ompetitive.Our 
ombining algorithm follows a simple intuitive notion. If only a small fra
tion of therequests need to be reje
ted (small 
ompared to 1=
R), we should use R. Sin
e R is 
R-
ompetitivefor reje
tions, it will be a

epting a large fra
tion of requests and thus be 
ompetitive in terms ofa

epts as well. On the other hand, if the optimal number of reje
tions be
omes large, then weno longer need to worry about our reje
tion ratio (even reje
ting all requests would be �ne), sowe should swit
h to algorithm A. The deli
ate part of our algorithm is in analyzing the swit
hingbetween the two algorithms, and 
onsidering the 
ost of swit
hing from one algorithm to the otherin the overall analysis.Appli
ations of main result: Our main result 
an be applied to several problems. Oneis admission 
ontrol and 
all 
ontrol on the line. In parti
ular, there exist 
onstant 
ompetitivealgorithms for the problem where the goal is to maximize the number of a

epted requests [1℄ aswell as 
onstant 
ompetitive algorithms for same problem where the measure is the number ofthe reje
ted requests [8℄. We 
on
lude that there is a 
ombined algorithm that simultaneously is
onstant 
ompetitive algorithm for both 
omplementary measures. What is interesting here is thatthe algorithms of [1℄ and [8℄ are almost polar opposites. For example, if the 
apa
ity is 2 and thereis a 
ollision of 3 intervals, the algorithm of [8℄ reje
ts the two \outside" requests (the one thatextends farthest to the left and the one that extends farthest to the right) but the algorithm of[1℄ reje
ts the one in the middle. Next, we 
onsider 
all 
ontrol (disjoint paths) on a tree. Thepapers [4, 5℄ show O(log d) 
ompetitive randomized (non-preemptive) algorithms for maximizingthe number of a

epted requests (d is the diameter of the tree). The paper [8℄ shows a 
onstant2




ompetitive algorithm for the number of reje
ted requests. We 
on
lude that there is one algorithmwhi
h is O(log2 d)-
ompetitive for the number of a

epted requests and O(log d)-
ompetitive forthe number of reje
ted requests. Another appli
ation is the admission 
ontrol problem on generalgraphs where ea
h edge is of logarithmi
 
apa
ity and ea
h requests is for a unit demand on a �xedpath. The paper [3℄ provides an O(log n) 
ompetitive (non-preemptive) algorithm for the number ofa

epted requests. The paper [8℄ provides an O(log n) 
ompetitive (preemptive) algorithm for thenumber of reje
ted requests. We 
on
lude there is an O(log2 n)-
ompetitive algorithm for both. (Weshould remark that for many natural online problems it is impossible to a
hieve 
ompetitivenessin the reje
tion measure and hen
e in both measures. For example, if the online algorithm 
an befor
ed to reje
t a request while the o�ine might have not reje
ted any requests, then we have anunbounded 
ompetitive ratio.)Additional results: We also 
onsider the 
ase that there are several (say k) online (possiblypreemptive) algorithms for the admission 
ontrol problem. Our goal is to provide an algorithm thatperforms similar to the best algorithm on any given input sequen
e. We 
onsider the problem bothfor the measure of the number of reje
ted requests and for the measure of the number a

eptedrequests. We observe that using known te
hniques [7, 9, 6℄ we 
an 
onstru
t a 
ombined randomizedpreemptive algorithm whi
h is at most O(log k) worse with respe
t to the number of reje
tedrequests of the best algorithm among the k. Using known results [2℄ we 
an also 
onstru
t a
ombined randomized preemptive algorithm whi
h is at most O(log k) worse with respe
t to thenumber of a

epted requests of the best algorithm among the k. These two 
ombined algorithms
an be 
ombined to one master algorithm using our main result to guarantee both reje
tion anda

eptan
e 
ompetitiveness.2 ModelWe assume an abstra
t model where at every time unit a request is re
eived. Either the request isserved (with bene�t one and 
ost zero), or the request is reje
ted (with bene�t zero and 
ost 1). Arequest 
an also be preempted, in whi
h 
ase its bene�t is set to zero and its 
ost is set to one. Inthis abstra
t model, the only assumption we make about the resour
e 
onstraints (whi
h are whatprevent us from a

epting every request) is monotoni
ity: if F is a feasible set of requests, thenany subset of F is feasible too. Given a sequen
e �, let VB(�) be the number of requests servedand VC(�) the number of requests reje
ted. By de�nition, the sum of bene�t and 
ost is alwaysthe number of time steps, i.e. VB(�) + VC(�) = j�j.An optimal algorithm OPT 
an either maximize the bene�t, V OPTB (�) or minimize the 
ostgetting V OPTC (�). Note that for any input sequen
e the optimal s
hedule is identi
al for bothmaximizing the bene�t and minimizing the 
ost.We are given two algorithms. The �rst is a possibly randomized preemptive algorithm A thathas a guarantee of 
A � 1 
ompetitive ratio for the bene�t, namely, for any sequen
e �E(V AB (�)) � 1
AV OPTB (�):In addition we are given a possibly randomized preemptive algorithm R that has a guaranteeof 
R � 1 for the 
ost, namely, for any sequen
e �E(V RC (�)) � 
RV OPTC (�):Notation: Given an input sequen
e �, denote by �(T+1;T+t) the sequen
e of requests from timeT + 1 until time T + t. We also write �t for �(1;t). As a 
onvention, the �rst request is number3



1. Given a subset F of requests from � we denote by �F the sub-sequen
e that in
ludes only therequests of F . Given two sub-sequen
es �1 and �2 we denote by �1�2 the 
ombined sequen
e ofrequests, whi
h �rst has the requests of �1 followed by the requests of �2.3 Our AlgorithmWe assume we are given a deterministi
, possibly preemptive, algorithm A whi
h is 
A 
ompetitivefor the bene�t, and a deterministi
, possibly preemptive, algorithm R whi
h is 
R 
ompetitive forthe 
ost. Our algorithm SWITCH re
eives the two algorithms as input. At ea
h time step, we
ompute the average optimal bene�t so far and denote ot = V OPTB (�t)=t and �ot = 1 � ot. Ourdeterministi
 algorithm SWITCH has two thresholds, u and l, where u = 1 � �u and l = 1 � 2�u.We 
hoose �u = 1=(8
A
R). Note that u > l.Algorithm SWITCH swit
hes between an R phase and an A phase. During an R phase,SWITCH runs the R algorithm and in an A phase it runs the A algorithm. When SWITCH isin an R phase and ot drops below l it swit
hes to an A phase. When SWITCH is in an A phaseand ot is higher than u it swit
hes to an R phase. What remains is to des
ribe how to initialize thealgorithms when we start a phase. This will be done as follows. Let F be the set of 
alls served sofar by SWITCH at the time of the swit
h. We initialize the new algorithm (A or R) by feeding itthe sequen
e �F whi
h is the sequen
e F in the original order of �t. The algorithm R will a

eptall the requests (sin
e OPT 
an serve all of them). On the other hand the algorithm A mightreje
t or even preempt some of them, in su
h a 
ase we preempt those requests. (This is where ourassumption on preemption is essential.)Theorem 1 The deterministi
 preemptive algorithm SWITCH is simultaneously O(
R
A) 
om-petitive for 
ost and O(
2A) 
ompetitive for bene�t, given a deterministi
 possibly preemptive algo-rithm A whi
h is 
A 
ompetitive for bene�t, and a deterministi
 possibly preemptive algorithm Rwhi
h is 
R 
ompetitive for 
ost.We 
an also 
onstru
t a 
ombined algorithm if A and R are randomized. The randomizedalgorithm SWITCH is 
onstru
ted in the same way. Note that the de
isions to swit
h between Rphases and A phases are done a

ording to the optimal value and hen
e are deterministi
. Whenwe start a phase, we start the algorithm (A or R) with new random bits, whi
h are independent ofany previous 
hosen random bits, and feed it with the a
tual F (Note that F is a random variable).Theorem 2 The randomized preemptive algorithm SWITCH is simultaneously O(
R
A) 
om-petitive for 
ost and O(
2A) 
ompetitive for bene�t, given a possibly randomized preemptive algorithmA whi
h is 
A 
ompetitive for bene�t, and a possibly randomized preemptive algorithm R whi
h is
R 
ompetitive for 
ost.In the analysis below we assume that A and R are deterministi
 and hen
e SWITCH isdeterministi
. The analysis for the randomized 
ase is very similar but omitted. We just needto repla
e a variable by its expe
tation in the analysis and use the fa
t that the expe
tation of aprodu
t of independent random variables is the produ
t of their expe
tations.4 Analysis of Reje
tionsThis is the simpler 
ase. Assume that at time t our algorithm is in an A phase. This impliesthat the optimal s
hedule a

epts at most ut, and therefore reje
ts at least �ut. Even if the onlinealgorithm reje
ts all the requests it will still be 1=�u = 8
A
R reje
tion 
ompetitive.4



Assume that at time T + 1 we started an R phase, and 
onsider a time T + t, in whi
h we arein the same R phase. Until time T the optimal algorithm reje
ted at least T �u. Assume that on thesequen
e of �F�(T+1;T+t) the optimal s
hedule for that sequen
e reje
ts 
t requests. Sin
e algorithmR is 
R 
ompetitive we know that it will reje
t at most (
t)
R requests. Hen
e, for the entiresequen
e �(T+t) our algorithm reje
ted at most T + 
t
R requests. Clearly the optimal algorithmreje
ted more requests for the entire sequen
e �(T+t) than on the sub-sequen
e �F�(T+1;T+t). Hen
ethe reje
tion 
ompetitive ratio is at mostT + 
t
RmaxfT �u; 
tg � 1=�u+ 
R = 8
A
R + 
R = O(
A
R)5 Analysis of A

eptan
eThis is a somewhat tri
ky 
ase. Not only will we analyze separately the two phases, but duringan A phase we will separate the 
ompetitive ratio at the beginning and at the end of the phase.The last point turns out to be 
ru
ial to get any bound on the 
ompetitive ratio. Spe
i�
ally, inaddition to our main 
laim that the a

eptan
e 
ompetitive ratio is O(
2A) we also assume (andprove) the following two stronger invariants. The �rst is that during an R phase the a

eptan
e
ompetitive ratio is at most ar = 8
A. The se
ond is that at the end of an A phase the 
ompetitiveratio is at most ae = 2
A. The proof below of the two invariants and the main 
laim is done byindu
tion.5.1 Swit
hing from R to AAssume that at time T +1 we swit
h to an A phase. We know that on the entire past the optimals
hedule has a bene�t of lT . Due to our assumption (�rst invariant) we know that SWITCH hasbene�t of at least lT=ar. SWITCH now initializes algorithm A on this sequen
e �F , whi
h maynow reje
t additional requests but 
learly must a

ept at least (lT=ar)=
A. Therefore, immediatelyafter the swit
h (before handling request T + 1) the 
ompetitive ratio is at most ar
A = O(
2A).Next we 
onsider a time T + t in the same A phase. Clearly OPT for the sequen
e �F hasbene�t exa
tly jF j sin
e it 
an a

ept all requests (as the online algorithm has them). Assumethat OPT on the sequen
e �F�(T+1;T+t) a

epts jF j + �t requests for some � > 0. Clearly, onthat sequen
e SWITCH has a value of at least (jF j + �t)=
A. Moreover, by monotoni
ity andsub-additivity of OPT we haveV OPTB (�(T+t)) � V OPTB (�T ) + V OPTB (�(T+1;T+t))� V OPTB (�T ) + V OPTB (�F�(T+1;T+t)) :This implies that at time T + t the a

eptan
e 
ompetitive ratio is at mostlT + (jF j+ �t)(jF j+ �t)=
A = 
A lTjF j+ �t + 
A� 
A lTjF j + 
A� 
A lTlT=ar + 
A= 
Aar + 
A = O(
2A)as needed for our main 
laim. 5



We 
laim (se
ond invariant) that at the end of the phase, at time T + t, the a

eptan
e 
om-petitive ratio is at most ae . Even if we assume that in the time interval [T + 1; T + t℄ the optimalalgorithm re
eives all the requests, then for t < T we have lT + t < u(t + T ), for our 
hoi
e of uand l. Therefore, the duration of an A phase whi
h starts at time T is at least T ,i.e. t � T . AlsoV OPTB (�F�(T+1;T+t)) � V OPTB (�(T+1;T+t))� V OPTB (�(T+t))� V OPTB (�T )= u(t+ T )� lT> ut :Hen
e the value of SWITCH at time T + t is at least uT=
A and therefore the 
ompetitiveratio is at most u(T + t)ut=
A = 
AT + tt � 2
A = aeas needed for the se
ond invariant.5.2 Swit
hing from A to RAssume that at time T + 1 we swit
h from an A phase to an R phase. This implies that on theinput �T the bene�t of the optimal o�ine, OPT , is uT . From our assumptions (se
ond invariant)we have that SWITCH has bene�t at least uT=ae = uT=(2
A). At the time of the swit
h we arere-inputting the requests in the online memory to the algorithm R. Sin
e OPT 
an a

ept all therequest we know that R will a

ept all of them. Hen
e the 
ompetitive ratio remains ae (beforehandling request T + 1).Consider the time T + t in the same R phase. By de�nition OPT a

epted on the sequen
e�(T+t) exa
tly (T + t)o(T+t) requests and reje
ted (T + t)�o(T+t) requests. Hen
e OPT reje
ted atmost that number on the sequen
e �F�(T+1;T+t) sin
e it is a sub-sequen
e. Therefore R reje
tedat most 
R(T + t)�o(T+t) requests on that sequen
e. Hen
e the number of a

epted requests at timeT + t is at least jF j + t� 
R(T + t)�o(T+t)� uT=(2
A) + t� 
RT �o(T+t) � 
Rt�o(T+t)= T (u=(2
A)� 
R�o(T+t)) + t(1� 
R�o(T+t))� T (u=(2
A)� 1=(4
A)) + t(1� 1=(4
A))� T=(8
A) + t=2where the se
ond inequality follows from the fa
t that �o(T+t) � �l = 1=(4
A
R) sin
e we are in anR phase. The last inequality follows from the fa
ts that u � 7=8 and 
A � 1. (We 
hoose \ni
e"
onstant rather than the tightest 
onstants.)Hen
e the 
ompetitive ratio at time T + t is at mostT + tT=(8
A) + t=2 � maxf8
A; 2g = 8
A = aras needed for the �rst invariant.
6



6 Combining Admission Control AlgorithmsIn this se
tion we brie
y des
ribe how to 
ombine a 
olle
tion of online algorithms into one masteralgorithm with a good a

eptan
e 
ompetitive ratio and into another master algorithm with a goodreje
tion 
ompetitive ratio. Results of this form already exist in the literature [2, 6, 7, 9℄ but ourmain point here is that (a) these known te
hniques 
an be applied in our abstra
t model, and (b)using our main result we 
an 
ombine the two master algorithms that result into one 
ombinedalgorithm whi
h guarantees both reje
tion and a

eptan
e 
ompetitiveness.The main ingredient of the 
ombining algorithms is swit
hing between algorithms. Swit
hingalgorithms might means that we need to preempt some or all requests that we 
urrently serve.The 
ombining algorithms have a very di�erent stru
ture, depending on whether they are min-imizing the number of reje
ted requests or maximizing the number of a

epted requests. The
ombining algorithms 
an be either randomized or deterministi
.6.1 Combining algorithms to minimize reje
tionGiven k (possibly preemptive) on-line algorithms, denoted by R1; R2; : : : ; Rk, we would like to
onstru
t an algorithm, whi
h for any input sequen
e, 
ompetes with the best algorithm, amongthe k, for the given sequen
e. Spe
i�
ally, for a sequen
e of requests � let R�(�) = miniRi(�).We 
onstru
t a deterministi
 preemptive online 
ombining algorithm REJdet su
h that for any�, we have REJdet(�) = O(kR�(�)). We also provide a randomized preemptive online algorithmREJrand whi
h guarantees that REJrand(�) = O(R�(�) log k) :The deterministi
 algorithm REJdet uses a simple greedy strategy. At time t, let min(t) =minfRi(�t)g. The algorithm REJdet at time t uses one of the algorithms that a
hieve the minimumreje
tion, i.e. min(t), and preempts all the requests the sele
ted algorithm reje
ted or preempted.In the worse 
ase REJdet might reje
t k �min(t) requests up to time t, establishing the followingtheorem.Theorem 3 The deterministi
 algorithm REJdet reje
ts at most kR�(�) for any sequen
e � ofrequests.The randomized algorithm REJrand uses simple doubling strategy. Initially, it a

epts allrequests as long as possible with no reje
tion and then set � = 1. When the 
ondition is violatedit sets �  2�, 
hoose a random i su
h that Ri(�) � � and sti
k with it until the inequality isviolated. (If su
h i does not exits then the 
ondition is immediately violated and we double thevalue of �.)Sin
e this problem 
an be viewed as a variant of the layered graph traversal [7, 9, 6℄ one 
anshow the following:Theorem 4 The randomized algorithm REJrand reje
ts at most O(log k) times more requests thanR�(�) for any sequen
e � of requests.Clearly, we 
an apply the above theorems to a 
ase where we have k algorithms and for ea
hinput sequen
e � there exists i su
h that Ri(�) � 
Ropt(�).Corollary 5 The deterministi
 algorithm REJdet is O(
Rk) 
ompetitive and the randomizedalgorithm REJrand is O(
R log k) 
ompetitive. 7



6.2 Combining algorithms to maximize a

eptan
eIn this subse
tion we have the same s
enario as in the previous se
tion but the goal is to maximizethe number of a

epted requests. Given k algorithms A1; A2; : : : ; Ak we would like to 
onstru
t analgorithm whi
h is as well as the best algorithm among the k for the given sequen
e. Spe
i�
ally,for a sequen
e of requests � let A�(�) = maxiAi(�). We will 
onstru
t one randomized preemptiveonline algorithm ACC su
h that for any � we haveACC(�) � A�(�)= log k :As before, we will 
ombine the algorithms by swit
hing between them. When swit
hing to a
ertain algorithm we might need to preempt all requests we 
urrently have, and in the worse 
ase weleft with a single a

epted 
all. This suggests that there is no deterministi
 
ompetitive 
ombiningalgorithm For this reason we use randomization in our 
ombining algorithm.The basi
 idea is that our generi
 model is a variant of the problem of pi
king a winner [2℄. In theproblem of pi
king a winner we have k options (algorithms, in our setting). At any time some optionsyield a bene�t of 1, while the others have a bene�t of zero. The de
ision maker (our 
ombiningalgorithm) swit
hes between options. When swit
hing, the de
ision maker loses all its 
urrentbene�t and gets, from that time on, the bene�t yield by the 
urrent option. Swit
hing betweenoption 
orresponds in our setting to swit
hing between algorithms while possibly preempting all
urrently a

epted requests. It is shown in [2℄ that using polylogarithmi
 number of swit
hes, thede
ision maker, with high probability, has bene�t whi
h is at least O(log k) fra
tion of the bene�tyield by the best 
hoi
e. Therefore,Theorem 6 The randomized algorithm ACC a

epts at least O(log k) fra
tion of requests 
omparedwith A�(�) for any sequen
e � of requests.As before we 
an apply the above theorems to a 
ase where we have k algorithms and for ea
hinput sequen
e � there exists i su
h that Ai(�) � opt(�)=
A.Corollary 7 The algorithm ACC is O(
A log k) 
ompetitive.7 Con
lusions and open problemsWe have des
ribed a pro
edure that given an algorithm A with 
ompetitive ratio 
A for bene�t, andan algorithm R with 
ompetitive ratio 
R for 
ost, produ
es an online algorithm that simultaneouslya
hieves 
ompetitive ratio O(
2A) for bene�t and O(
A
R) for 
ost. We do not know if it is possiblein general to do better. In parti
ular, an ideal result in this dire
tion would a
hieve O(
A) forbene�t and O(
R) for 
ost simultaneously.Referen
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