
Admission Control to Minimize Rejections and Online Set Cover
with Repetitions

Noga Alon∗ Yossi Azar† Shai Gutner‡

Abstract

We study the admission control problem in general networks.Communication requests arrive over
time, and the online algorithm accepts or rejects each request while maintaining the capacity limitations
of the network. The admission control problem has been usually analyzed as a benefit problem, where the
goal is to devise an online algorithm that accepts the maximum number of requests possible. The problem
with this objective function is that even algorithms with optimal competitive ratios may reject almost all
of the requests, when it would have been possible to reject only a few. This could be inappropriate for
settings in which rejections are intended to be rare events.

In this paper, we consider preemptive online algorithms whose goal is to minimize the number of
rejected requests. Each request arrives together with the path it should be routed on. We show an
O(log2(mc))-competitive randomized algorithm for the weighted case, wherem is the number of edges
in the graph andc is the maximum edge capacity. For the unweighted case, we give anO(log m log c)-
competitive randomized algorithm. This settles an open question of Blum, Kalai and Kleinberg raised in
[10]. We note that allowing preemption and handling requests with given paths are essential for avoiding
trivial lower bounds.

The admission control problem is a generalization of the online set cover with repetitions problem,
whose input is a family ofm subsets of a ground set ofn elements. Elements of the ground set are given
to the online algorithm one by one, possibly requesting eachelement a multiple number of times. (If each
element arrives at most once, this corresponds to the onlineset cover problem.) The algorithm must cover
each element by different subsets, according to the number of times it has been requested.

We give anO(log m logn)-competitive randomized algorithm for the the online set cover with rep-
etitions problem. This matches a recent lower bound ofΩ(log m log n) given by Feige and Korman for
the competitive ratio of any randomizedpolynomial time algorithm, under theBPP 6= NP assumption.
Given any constantǫ > 0, we show anO(log m log n)-competitive deterministic bicriteria algorithm that
covers each element by at least(1− ǫ)k sets, wherek is the number of times the element is covered by the
optimal solution.

∗Schools of Mathematics and Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University,
Tel Aviv, Israel. Email: noga@math.tau.ac.il.

†School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
Email: azar@tau.ac.il.

‡School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
Email: gutner@tau.ac.il.

1

1 Introduction

We study the admission control problem in general graphs with edge capacities. An online algorithm can
receive a sequence of communications requests on a virtual path, that may be accepted or rejected, while
staying within the capacity limitations.

This problem has typically been studied as a benefit problem.This means that the online algorithm has to
be competitive with respect to the number of accepted requests. A problem with this objective function is that
in some cases an online algorithm with a good competitive ratio may reject the vast majority of the requests,
whereas the optimal solution rejects only a small fraction of them.

In this paper we consider the goal of minimizing the number ofrejected requests, which was first studied
in [10]. This approach is suitable for applications in whichrejections are intended to be rare events. A
situation in which a significant fraction of the requests is rejected even by the optimal solution means that the
network needs to be upgraded.

We consider preemptive online algorithms for the admissioncontrol problem. Allowing preemption is
necessary for achieving reasonable bounds for competitivealgorithms. Each request arrives together with the
path it should be routed on. The admission control algorithmdecides whether to accept or reject it. It is easy
to see that an online algorithm for both admission control and routing admits a trivial lower bound [10].

The admission control to minimize rejections problem. We now formally define the admission control
problem. The input consist of the following:

• A directed graphG = (V,E), where|E| = m. Each edgee has an integer capacityce > 0. We denote
c = maxe∈Ece.

• A sequence of requestsr1, r2, . . . , each of which is a simple path in the graph. Every requestri has
costpi > 0 associated with it.

A feasible solution for the problem must assure that for every edgee, the number of accepted requests
whose paths containe is at most its capacityce. The goal is to find a feasible solution of minimum cost of
the rejected requests. The online algorithm is given requests one at a time, and must decide whether to accept
or reject each request. It is also allowed to preempt a request, i.e. to reject it after already accepting it, but it
cannot accept a request after rejecting it.

Let OPT be a feasible solution having minimum costCOPT . We say that an algorithm isβ-competitive
if the total cost of the requests rejected by this algorithm is at mostβCOPT .

Previous results for admission control. Tight bounds were achieved for the admission control problem,
where the goal is to maximize the number of accepted requests. Awerbuch, Azar and Plotkin [6] provide an
O(log n)-competitive algorithm for general graphs. For the admission control problem on a tree,O(log d)-
competitive randomized algorithms appear in [7, 8], whered is the diameter of the tree. Adler and Azar
presented a constant-competitive preemptive algorithm for admission control on the line [1].

The admission control to minimize rejections problem was studied by Blum, Kalai and Kleinberg in [10],
where two deterministic algorithms with competitive ratios ofO(

√
m) andc+1 are given (m is the number of

edges in the graph andc is the maximum capacity). They raised the question of whether an online algorithm
with polylogarithmic competitive ratio can be obtained.

We also note that one can combine an algorithm for maximizingthroughput of accepted requests and an
algorithm for minimizing rejections and get one algorithm which achieves both simultaneously with slightly
degrading the competitive ratio [9, 11].

2

In this paper we show that the admission control to minimize rejections problem is a generalization of the
online set cover with repetitions problem described below:

The online set cover with repetitions problem. The online set cover problem is defined as follows:
Let X be a ground set ofn elements, and letS be a family of subsets ofX, |S| = m. EachS ∈ S has a
non-negative cost associated with it. An adversary gives elements to the algorithm fromX one by one. Each
element ofX can be given an arbitrary number of times, not necessarily consecutively. An element should be
covered by a number of sets which is equal to the number of times it arrived. We assume that the elements of
X and the members ofS are known in advance to the algorithm, however, the elementsgiven by the adversary
are not known in advance. The objective is to minimize the cost of the sets chosen by the algorithm.

Previous results for online set cover. The offline version of the set cover problem is a classic NP-
hard problem that was studied extensively, and the best approximation factor achievable for it in polynomial
time (assumingP 6= NP) is Θ(log n) [12, 13]. The basic online set cover problem, where repetitions are not
allowed, was studied in [2, 14]. A different variant of the problem, dealing with maximum benefit, is presented
in [5]. An O(log m log n)-competitive deterministic algorithm for the online set cover problem was given by
[2] wheren is the number of elements andm is the number of sets. A lower bound ofΩ(log m log n

log log m+log log n)
was also shown for any deterministic online algorithm. A recent result of Feige and Korman [14] establishes
a lower bound ofΩ(log m log n) for the competitive ratio of any randomizedpolynomial time algorithm for
the online set cover problem, under theBPP 6= NP assumption. They also prove the same lower bound for
any deterministicpolynomial time algorithm, under theP 6= NP assumption.

Our results. Our main result is anO(log2(mc))-competitive randomized algorithm for the admission
control to minimize rejections problem. This settles the open question raised by Blum et al. [10]. For the
unweighted case, where all costs are equal to 1, we slightly improve this bound and give anO(log m log c)-
competitive randomized algorithm,

We present a simple reduction between online set cover with repetitions and the admission control prob-
lem. This implies anO(log2(mn))-competitive randomized algorithm for the online set coverwith repetitions
problem. For the unweighted case (all costs are equal to1), we get anO(log m log n)-competitive randomized
algorithm. This matches the lower bound ofΩ(log m log n) given by Feige and Korman. Their results also
imply a lower bound ofΩ(log m log c) for the competitive ratio of any randomizedpolynomial time algorithm
for the admission control to minimize rejections problem (assumingBPP 6= NP).

The derandomization techniques used in [2] for the online set cover problem do not seem to apply here.
This is why we also consider the bicriteria version of the online set cover with repetition problem. For a given
constantǫ > 0, the online algorithm is required to cover each element by a fraction of1− ǫ times the number
of its appearances. Specifically, at any point of time, if an element has been requestedk times so far, then the
optimal solution covers it byk different sets, whereas the online algorithm covers it by(1− ǫ)k different sets.
We give anO(log m log n)-competitive deterministic bicriteria algorithm for thisproblem.

Techniques. The techniques we use follow that of [2, 3] together with somenew ideas. We start with an
online fractional solution which is monotone increasing during the algorithm. Then, the fractional solution
is converted into a randomized algorithm. Interestingly, to get a deterministic algorithm we use a different
fractional algorithm than the one used for the randomized algorithm.

3

2 A fractional algorithm for admission control

In this section we describe a fractional algorithm for the problem. A fractional algorithm is allowed to reject
a fraction of a requestri. We use a weightfi for this fraction. Specifically, if0 ≤ fi < 1, we reject with
percentage of preciselyfi. If fi ≥ 1, then the request is completely rejected. At any stage of thefractional
algorithm we will use the following notation:

• REQe will denote the set of requests that arrived so far whose paths contain the edgee.

• REQ will denote
⋃

e∈E REQe.

• ALIV Ee will denote the requests fromREQe that have not been fully rejected (requestsri for which
fi < 1).

• ne will denote the excess of edgee caused by the requests inALIV Ee.

ne = |ALIV Ee| − ce

The requirement from a fractional algorithm is that for every edgee,
∑

i∈ALIV Ee

fi ≥ ne

The cost of a fractional algorithm is defined to be
∑

i∈REQ min{fi, 1}pi.

We will now describe anO(log(mc))-competitive algorithm for the problem, even versus a fractional
optimum. The cost of the optimal fractional solution,COPT is denoted byα.

We may assume, by doubling, that the value ofα is known up to a factor of2. To determine the initial
value ofα we look for the first time in which we must reject a request froman edgee. We can start guessing
α = mini∈REQepi, and then run the algorithm with this bound on the optimal solution. If it turns out that the
value of the optimal solution is larger than out current guess for it, (that is, the cost exceedsΘ(α log(mc))),
then we ”forget” about all the request fractions rejected sofar, update the value ofα by doubling it, and
continue on. We note that the cost of the request fractions that we have ”forgotten” about can increase the
cost of our solution by at most a factor of2, since the value ofα was doubled in each step.

We thus assume thatα is known. Denote byRbig the requests with cost exceeding2α. The optimal
fractional solution can reject a total fraction of at most1/2 out of the requests ofRbig. Hence, when an edge
is requested more than its capacity, the fractional optimummust reject a total fraction of a least1/2 out of the
requests not inRbig whose paths contain the edge. By doubling the fraction of rejection for all the requests
not in Rbig (keeping fractions to be at most1) and completely accepting all the requests inRbig, we get a
feasible fractional solution whose cost is at most twice theoptimum. Hence, the online algorithm can always
completely accept requests of cost exceeding2α (and adjust the edge capacitiesce accordingly).

Denote byRsmall the requests with cost at mostα/(mc). We claim that we can completely reject all
the requests fromRsmall. For each edgee, the optimal solution can accept a total fraction of at mostc out
of the requests whose paths contain the edgee, and therefore it can accept a total fraction of at mostmc
requests. The fractions of requests accepted out ofRsmall have total cost at mostmc · α/(mc) = α. It
follows that the optimal solution pays at leastcost(Rsmall) − α for the fractions of requests out ofRsmall

that it rejected. Therefore, the online algorithm can reject all the requests inRsmall and paycost(Rsmall). If
cost(Rsmall) < 2α, then this adds onlyO(α) to the cost of the online algorithm. Ifcost(Rsmall) ≥ 2α, then

4

cost(Rsmall) ≤ 2(cost(Rsmall)− α), so the online algorithm is2-competitive with respect to the requests in
Rsmall.

By the above arguments, all the requests of cost smaller thanα/(mc) or greater than2α are rejected
immediately or accepted permanently (edge capacities are decreased in this case), correspondingly. An al-
gorithm needs to handle only requests of cost betweenα/(mc) and2α. We normalize the costs so that the
minimum cost is1 and the maximum cost isg ≤ 2mc, and fixα appropriately.

The algorithm maintains a weightfi for each requestri. The weights can only increase during the run of
the algorithm. Initiallyfi = 0 for all the requests. Assume now that the algorithm receivesa requestri for a
path of costpi. For each edgee, we updateREQe, ALIV Ee andne according to the definitions given above.
The following is performed for all the edgese of the path ofri, is an arbitrary order.

1. If
∑

i∈ALIV Ee
fi ≥ ne, then do nothing.

2. Else, while
∑

i∈ALIV Ee
fi < ne, perform aweight augmentation:

(a) For eachi ∈ ALIV Ee, if fi = 0, then setfi = 1/(gc).

(b) For eachi ∈ ALIV Ee, fi ← fi(1 + 1
nepi

).

(c) UpdateALIV Ee andne.

Note that the fractional algorithm starts with all weights equal to zero. This is necessary, since the online
algorithm must reject0 requests in case the optimal solution rejects0 requests. Hence, the algorithm is
competitive forα = 0, and from now on we assume without loss of generality thatα > 0. In the following
we analyze the performance of the algorithm.

Lemma 1 The total number of weight augmentations steps performed during the algorithms is at most
O(α log(gc)).

Proof: Consider the following potential function:

Φ =
∏

i∈REQ

max{fi, 1/(gc)}f∗
i pi

wheref∗
i is the weight of the requestri in the optimal fractional solution. We now show three properties of

Φ:

• The initial value of the potential function is:(gc)−α.

• The potential function never exceeds2α.

• In each weight augmentation step, the potential function ismultiplied by at least2.

The first two properties follow directly from the initial value and from the fact that no request gets a weight
of more than1 + 1/pi ≤ 2. Consider an iteration in which the adversary gives a request ri with costpi. Now
suppose that a weight augmentation is performed for an edgee. We must have

∑

i∈ALIV Ee
f∗

i ≥ ne since the
optimal solution must satisfy the capacity constraint. Thus, the potential function is multiplied by at least:

∏

i∈ALIV Ee

(

1 +
1

nepi

)f∗
i pi

≥
∏

i∈ALIV Ee

(

1 +
1

ne

)f∗
i

≥ 2

5

The first inequality follows since for allx ≥ 1 andz ≥ 0, (1 + z/x)x ≥ 1 + z and the last inequality follows
since

∑

i∈ALIV Ee
f∗

i ≥ ne. It follows that the total number of weight augmentations steps is at most:

log2(2gc)α = O(α log gc)

Theorem 2 For the weighted case, the fractional algorithm is O(log(mc))-competitive. In case all the costs
are equal to 1, the algorithm is O(log c)-competitive.

Proof: The cost the on-line algorithm is
∑

i∈REQ min{fi, 1}pi, which we will denote byCON . Consider a
weight augmentation step performed for an edgee. In step 2a of the algorithm, the weights of at mostc + 1
requests change from0 to 1/(gc). This is because before the current request arrived, there could have been at
mostc requests containing the edgee and havingfi = 0 (the maximum capacity isc). Since the maximum
cost isg, the total increase ofCON in step 2a of the algorithm is at most(c+1) 1

gcg = 1+1/c. If follows that
in step 2a, the quantity

∑

i∈ALIV Ee
fi can increase by at most1 + 1/c. A weight augmentation is performed

as long as
∑

i∈ALIV Ee
fi < ne. Before step 2b we have that

∑

i∈ALIV Ee
fi < ne + 1 + 1/c. Thus, the total

increase ofCON in step 2b of the algorithm does not exceed

∑

i∈ALIV Ee

fipi
1

nepi
=

∑

i∈ALIV Ee

fi

ne
< 2 + 1/c

It follows that the total increase ofCON in a weight augmentation step is at most3 + 2/c. Using lemma 1
which bounds the number of augmentation steps, we conclude that the algorithm isO(log(gc))-competitive.

For the weighted case, we saw that the input can be transformed so thatg ≤ 2mc, which implies that
the algorithm isO(log(mc))-competitive. In case all the costs are equal to1, g is also equal to1 and the
algorithm isO(log c)-competitive.

3 A randomized algorithm for admission control

We describe in this section anO(log2(mc))-competitive randomized algorithm for the weighted case and an
O(log m log c)-competitive randomized algorithm for the unweighted case.

The algorithm maintains a weightfi for each requestri, exactly like the fractional algorithm. Assume
now that the algorithm receives a requestri with costpi. The following is performed in this case.

1. Perform all the weight augmentations according to the fractional algorithm.

2. For every requestr, if its weightf increased byδ, then reject the requestr with probability12δ log(mc).

3. Reject all the requests whose weight is at least112 log(mc) .

4. If the current requestri cannot be accepted (some edge would be over capacity), then reject the request.
Else, accept the requestri.

We can assume that|REQe|, the total number of requests whose paths contain a specific edgee, is less
than4mc2. To see this, note that the fractional algorithm normalizesthe costs so that the minimum cost is

6

1 and the maximum cost is at most2mc. If |REQe| ≥ 4mc2, then since the optimal solution can accept at
mostc requests fromREQe, it must pay a cost of at leastt− 2mc2 for requests rejected out ofREQe, where
t is the total cost of these requests. The online algorithm canreject all the requests inREQe, payt and it will
still be2-competitive with respect to the requests inREQe, sincet ≥ 4mc2.

Theorem 3 For the weighted case, the randomized algorithm is O(log2(mc))-competitive.

Proof: Denote byCfrac the cost of the fractional algorithm. The expected cost of requests rejected in step
2 of the algorithm is at most12Cfrac log(mc). The cost of requests rejected in step 3 has the same upper
bound.

We now calculate the probability for a requestr to be rejected in step 4. This can happen only if the path
of requestr contains an edgee for which

∑

i∈ALIV Ee
fi ≥ ne but the randomized algorithm rejected less

thanne requests whose paths contain the edgee. All the requests with weight at least 1
12 log(mc) are rejected

for certain, so we can assume thatfi < 1
12 log(mc) for all i ∈ ALIV Ee.

Suppose thati ∈ ALIV Ee and that during all runs of step 2 of the algorithm the requestri has been
rejected with probabilitiesq1, . . . , qn, where

∑n
k=1 qk = 12fi log(mc). The probability thatri will be rejected

is at least

1−
n

∏

k=1

(1− qk) ≥ 1− e−
Pn

i=k qk = 1− e−12fi log mc ≥ 6fi log mc

The last inequality follows since for all0 ≤ x ≤ 1, 1− e−x ≥ x/2.

The number of requests inALIV Ee which were rejected by the algorithm is a random variable equal to the
sum of mutually independent{0, 1}-valued random variables and its expectation is at leastµ = 6ne log mc.
By Chernoff bound (c.f., e.g., [4]), the probability for this random variable to get a value less than(1− a)µ is
at moste−a2µ/2 for everya > 0. Therefore, the probability to be less thanne is at most

e−(1− 1
6 log mc

)2(6ne log mc)/2 ≤ 3

m3c3

The request costs were normalized, so that the maximum cost is at most2mc. Each edge is contained in the
paths of at most4mc2 requests. Therefore, the expected cost of requests which are rejected in step 4 because
of this edge is at most(4mc2)(2mc)3/(m3c3) = 24/m. Thus, the total expected cost of requests rejected in
step 4 is24. The result now follows from Theorem 2.

For the unweighted case we slightly change the algorithm as follows. In step 2 of the algorithm we reject a
request with probability4δ log m, and in step 3 we reject all the requests whose weight is at least1/(4 log m).

Theorem 4 For the unweighted case, the randomized algorithm is O(log m log c)-competitive.

Proof: Following the proof of Theorem 3, we get that the probabilityfor an edge to cause a specific request
to be rejected in step 4 of the randomized algorithm is at most

e
−(1− 1

2 log m
)2(2ne log m)/2 ≤ 3

m

Denote byQ the quantitymaxe∈E(|REQe| − ce). Hence,Q is the maximum excess capacity in the
network. The total expected cost of requests rejected in step 4 is at mostQ(3/m)m = 3Q. It is obvious that
the optimal solution must reject at leastQ requests. The result now follows from Theorem 2.

7

4 A reduction from online set cover to admission control

We now describe the reduction between online set cover and admission control. Suppose we are given the
following input to the online set cover with repetitions problem: X is a ground set ofn elements andS is a
family of m subsets ofX, with positive costcS associated with eachS ∈ S. The instance of the admission
control to minimize rejections problem is constructed as follows: The graphG = (V,E) has an edgeej for
each elementj ∈ X. The capacity of the edgeej is defined to be the number of sets that contain the element
j. The maximum capacity is therefore at mostm.

The requests are given to the admission control algorithm istwo phases. In the first phase, before any
element is given to the online set cover algorithm, we generate m requests to the admission control online
algorithm. For everyS ∈ S, the request consists of all the edgesej such thatj ∈ S. The online algorithm
can accept all the requests and this will cause the edges to reach their full capacity.

In the second phase, each time the adversary gives an elementj to the online set cover algorithm, we
generate a request which consists of the one edgeej and give it to the admission control algorithm. In case
the request caused the edgeej to be over capacity, the algorithm will have to reject one request in order to
keep the capacity constraint.

In case there is a feasible cover for the input given to the online set cover problem, there is no reason for the
admission control algorithm to reject requests that were given in the second phase. This is because requests in
the second phase consist of only one edge. Thus, we can assumethat the admission control algorithm rejects
only requests given in the first phase, which correspond to subsets ofX.

It is easy to see that the requests rejected by the admission control algorithm correspond to a legal set
cover. We reduced an online set cover problem withn elements andm sets to an admission control problem
with n edges and maximum capacity at mostm. The fact that the requests we generated are not simple paths
in the graph can be easily fixed by adding extra edges.

5 A deterministic bicriteria algorithm for online set cover with repetitions

In this section we describe, given any constantǫ > 0, anO(log m log n)-competitive deterministic bicriteria
algorithm that covers each element by at least(1 − ǫ)k sets, wherek is the number of times the element has
been requested, whereas the optimum covers itk times. We assume for simplicity that all the sets have cost
equal to 1. The result can be easily generalized for the weighted case using techniques from [2].

The algorithm maintains a weightwS > 0 for eachS ∈ S. Initially wS = 1/(2m) for eachS ∈ S.
The weight of each elementj ∈ X is defined aswj =

∑

S∈Sj
wS , whereSj denotes the collection of sets

containing elementj. Initially, the algorithm starts with the empty coverC = ∅. For eachj ∈ X, we define
coverj = |Sj

⋂ C|, which is the number of times elementj is covered so far. The following potential function
is used throughout the algorithm:

Φ =
∑

j∈X

n2(wj−coverj)

We give a high level description of a single iteration of the algorithm in which the adversary gives an
elementj and the algorithm chooses sets that cover it. We denote byk the number of times that the element
j has been requested so far.

8

1. If coverj ≥ (1− ǫ)k, then do nothing.

2. Else, whilecoverj < (1− ǫ)k, perform aweight augmentation:

(a) For eachS ∈ Sj − C, wS ← wS(1 + 1
2k).

(b) Add toC all the subsets for whichwS ≥ 1.

(c) Choose fromSj at most2 log n sets toC so that the value of the potential functionΦ does not
exceed its value before the weight augmentation.

In the following we analyze the performance of the algorithmand explain which sets to add to the cover
C in step 2c of the algorithm. The cost of the optimal solutionCOPT is denoted byα.

Lemma 5 The total number of weight augmentations steps performed during the algorithms is at most
O(α log m).

Proof: Consider the following potential function:

Ψ =
∏

S∈COPT

wS

We now show three properties ofΨ:

• The initial value of the potential function is:(2m)−α.

• The potential function never exceeds1.5α.

• In each weight augmentation step, the potential function ismultiplied by at least2ǫ/2.

The first two properties follow directly from the initial value and from the fact that no request gets a weight of
more than1.5. Consider an iteration in which the adversary gives an element j for thekth time. Now suppose
that a weight augmentation is performed for elementj. We must have thatcoverj < (1 − ǫ)k, which means
that the online algorithm has covered elementj less than(1 − ǫ)k times. The optimal solutionOPT covers
elementj at leastk times, which means that there are at leastǫk subsets ofOPT containingj which were
not chosen yet. Thus, in step 2a of the algorithm the potential function is multiplied by at least:

(1 +
1

2k
)ǫk ≥ 2ǫ/2

It follows that the total number of weight augmentations steps is at most:

log(3m)α

log 2ǫ/2
= O(α log m)

Lemma 6 Consider an iteration in which a weight augmentation is performed. Let Φs and Φe be the values
of the potential function Φ before and after the iteration, respectively. Then, there exist at most 2 log n sets
that can be added to C during the iteration such that Φe ≤ Φs. Furthermore, the value of the potential
function never exceeds n2.

9

Proof: The proof is by induction on the iterations of the algorithm.Initially, the value of the potential
functionΦ is less thann ·n = n2. Suppose that in the iteration the adversary gives elementj for thekth time.
For each setS ∈ Sj , let wS andwS + δS denote the weight ofS before and after the iteration, respectively.
Defineδj =

∑

S∈Sj
δS . By the induction hypothesis, we know that2(wj − coverj) < 2, because otherwise

Φs would have been greater thann2. Thus,wj < coverj + 1 ≤ ⌊(1 − ǫ)k⌋ + 1 ≤ k. This means that
δj ≤ k · 1/(2k) = 1/2.

We now explain which sets fromSj are added toC.
Repeat2 log n times: choose at most one set fromSj such that each setS ∈ Sj is chosen with probability

2δS . (This can be implemented by choosing a number uniformly at random in [0,1], since2δj ≤ 1.)

Consider an elementj′ ∈ X. Let the weight ofj′ before the iteration bewj′ and let the weight after the
iteration bewj′ + δj′ . Elementj′ contributes before the iteration to the potential functionthe valuen2wj′ .
In each random choice, the probability that we do not choose aset containing elementj′ is 1 − 2δj′ . The
probability that this happens in all the2 log n random choices is therefore(1− 2δj′)

2 log n ≤ n−4δj′ .

Note thatδj′ ≤ 1/2. In case we choose a set containing elementj′, thencoverj′ will increase by at
least1 and the contribution of elementj′ to the potential function will be at mostn2(wj′+δj′−1) ≤ n2wj′−1.
Therefore, the expected contribution of elementj′ to the potential function after the iteration is at most

n−4δj′n2(wj′+δj′) + (1− n−4δj′)n2wj′−1 = n2wj′ (n−2δj′ + n−1 − n−4δj′−1) ≤ n2wj′

where to justify the last inequality, we prove thatf(x) = nx + n−1 − n2x−1 ≤ 1 for everyx ≤ 0. To show
this we note thatf(0) = 1 andf ′(x) = nx log n(1 − 2nx−1). This implies thatf ′(x) ≥ 0 for everyx ≤ 0.
We can conclude thatf(x) ≤ 1 for everyx ≤ 0, as needed.

By linearity of expectation it follows thatExp[Φe] ≤ Φs. Hence, there exists a choice of at most2 log n
sets such thatΦe ≤ Φs. The choices of the various setsS to be added toC can be done deterministically and
efficiently, by the method of conditional probabilities, c.f., e.g., [4], chapter 15. After each weight augmenta-
tion, we can greedily add sets toC one by one, making sure that the potential function will decrease as much
as possible after each such choice.

Theorem 7 The deterministic algorithm is O(log m log n)-competitive.

Proof: It follows from Lemma 5 that the number of iterations is at most O(α log m). By Lemma 6, in each
iteration we choose at most2 log n sets toC in step 2c of the algorithm. The sets chosen is step 2b of the
algorithm are those which have weight at least1. The weight sum of all of the sets is initially1/2 and it
increases by at most1/2 in each weight augmentation. This means that at the end of thealgorithm, there
can be onlyO(α log m) sets whose weight is at least1. Therefore, the total number of sets chosen by the
algorithm is as claimed.

6 Concluding Remarks

• An interesting open problem is to check if the algorithm presented here for the admission control prob-
lem can be derandomized.

• Feige and Korman established a lower bound ofΩ(log m log n) for the competitive ratio of any random-
ized polynomial time algorithm for the online set cover problem, under theBPP 6= NP assumption.
It is interesting to check whether this lower bound applies for superpolynomial time algorithms as well.

10

• The algorithms we gave for the admission control problem didnot use the fact that the requests are
simple paths in the graph. All the algorithms treated a request as an arbitrary subset of edges.

References

[1] R. Adler and Y. Azar. Beating the logarithmic lower bound: randomized preemptive disjoint paths and
call control algorithms.Journal of Scheduling, 6:113–129, 2003.

[2] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor.The online set cover problem. InProc.
35th ACM Symp. on Theory of Computing, pages 100–105, 2003.

[3] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor.A general approach to online network
optimization problems. InProc. 15rd ACM-SIAM Symp. on Discrete Algorithms, pages 577–586, 2004.

[4] N. Alon and J. Spencer.The probabilistic method. Wiley, New York, second edition, 2000.

[5] B. Awerbuch, Y. Azar, A. Fiat, and T. Leighton. Making commitments in the face of uncertainty: how
to pick a winner almost every time. InProc. 28th ACM Symp. on Theory of Computing, pages 519–530,
1996.

[6] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive on-line routing. InProc. 34th IEEE
Symp. on Found. of Comp. Science, pages 32–40, 1993.

[7] B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén. Competitive non-preemptive call control. InProc. 5th
ACM-SIAM Symp. on Discrete Algorithms, pages 312–320, 1994.

[8] B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani. On-line admission control and circuit routing
for high performance computation and communication. InProc. 35th IEEE Symp. on Found. of Comp.
Science, pages 412–423, 1994.

[9] Y. Azar, A. Blum, and Y. Mansour. Combining online algorithms for rejection and acceptance. In
Proceedings of the 15th Annual ACM Symposium on Parallelism in Algorithms and Architectures, pages
159–163, 2003.

[10] A. Blum, A. Kalai, and J. Kleinberg. Admission control to minimize rejections. InProceedings of WADS
2001; LNCS 2125, pages 155–164, 2001.

[11] D. Bunde and Y. Mansour. Improved combination of onlinealgorithms for acceptance and rejection. In
Proceedings of the 16th Annual ACM Symposium on Parallelism in Algorithms and Architectures, pages
265–266, 2004.

[12] V. Chvátal. A greedy heuristic for the set-covering problem. Methematics of Operations Research,
4(3):233–235, 1979.

[13] U. Feige. A threshold of lnn for approximating set cover.Journal of the ACM, 45(4):634–652, July
1998.

[14] U. Feige and S. Korman. Personal communication.

11

