Admission Control to Minimize Rejectionsand Online Set Cover
with Repetitions

Noga Alorr Yossi Azaf Shai Gutnef

Abstract

We study the admission control problem in general netwoBsmmunication requests arrive over
time, and the online algorithm accepts or rejects each stquigile maintaining the capacity limitations
of the network. The admission control problem has been lysaélyzed as a benefit problem, where the
goal is to devise an online algorithm that accepts the maximumber of requests possible. The problem
with this objective function is that even algorithms withtiopal competitive ratios may reject almost all
of the requests, when it would have been possible to rejdgtafew. This could be inappropriate for
settings in which rejections are intended to be rare events.

In this paper, we consider preemptive online algorithms sehgoal is to minimize the number of
rejected requests. Each request arrives together with dtte ip should be routed on. We show an
O(log® (mc))-competitive randomized algorithm for the weighted caseer@m is the number of edges
in the graph and is the maximum edge capacity. For the unweighted case, veeagi® (log m log ¢)-
competitive randomized algorithm. This settles an operstjue of Blum, Kalai and Kleinberg raised in
[10]. We note that allowing preemption and handling requesth given paths are essential for avoiding
trivial lower bounds.

The admission control problem is a generalization of thénenset cover with repetitions problem,
whose input is a family ofn subsets of a ground set nfelements. Elements of the ground set are given
to the online algorithm one by one, possibly requesting eément a multiple number of times. (If each
element arrives at most once, this corresponds to the osdineover problem.) The algorithm must cover
each element by different subsets, according to the nuniliienes it has been requested.

We give anO(log m log n)-competitive randomized algorithm for the the online setezownith rep-
etitions problem. This matches a recent lower boun@@bg m logn) given by Feige and Korman for
the competitive ratio of any randomizedlynomial time algorithm, under thé& PP # N P assumption.
Given any constard > 0, we show arO(log m log n)-competitive deterministic bicriteria algorithm that
covers each element by at leést- €)k sets, wheré is the number of times the element is covered by the
optimal solution.

*Schools of Mathematics and Computer Science, Raymond avetiBe&sackler Faculty of Exact Sciences, Tel Aviv Univeysit
Tel Aviv, Israel. Email: noga@math.tau.ac.il.

fSchool of Computer Science, Raymond and Beverly Sacklenlfyaof Exact Sciences, Tel Aviv University, Tel Aviv, Isriae
Email: azar@tau.ac.il.

#School of Computer Science, Raymond and Beverly Sacklenlfyaof Exact Sciences, Tel Aviv University, Tel Aviv, Isiae
Email: gutner@tau.ac.il.

1 Introduction

We study the admission control problem in general graphb edlge capacities. An online algorithm can
receive a sequence of communications requests on a viradla) fhat may be accepted or rejected, while
staying within the capacity limitations.

This problem has typically been studied as a benefit problris means that the online algorithm has to
be competitive with respect to the number of accepted régjudgproblem with this objective function is that
in some cases an online algorithm with a good competitiie raty reject the vast majority of the requests,
whereas the optimal solution rejects only a small fractibthem.

In this paper we consider the goal of minimizing the numbeegcted requests, which was first studied
in [10]. This approach is suitable for applications in whigjections are intended to be rare events. A
situation in which a significant fraction of the requestsejgected even by the optimal solution means that the
network needs to be upgraded.

We consider preemptive online algorithms for the admissiontrol problem. Allowing preemption is
necessary for achieving reasonable bounds for competitja@ithms. Each request arrives together with the
path it should be routed on. The admission control algoritletides whether to accept or reject it. It is easy
to see that an online algorithm for both admission contrdl r@uting admits a trivial lower bound [10].

The admission control to minimize reg ections problem. We now formally define the admission control
problem. The input consist of the following:

e Adirected graphG = (V, E), where|E| = m. Each edge has an integer capacity > 0. We denote
C = MATecECe-

e A sequence of requests, o, ..., each of which is a simple path in the graph. Every requebias
costp; > 0 associated with it.

A feasible solution for the problem must assure that foreeelgee, the number of accepted requests
whose paths contain is at most its capacity.. The goal is to find a feasible solution of minimum cost of
the rejected requests. The online algorithm is given regueee at a time, and must decide whether to accept
or reject each request. It is also allowed to preempt a réguesto reject it after already accepting it, but it
cannot accept a request after rejecting it.

Let OPT be a feasible solution having minimum c@&b pr. We say that an algorithm j8-competitive
if the total cost of the requests rejected by this algoriteratimost3Co pr.

Previous results for admission control. Tight bounds were achieved for the admission control prable
where the goal is to maximize the number of accepted requastsrbuch, Azar and Plotkin [6] provide an
O(log n)-competitive algorithm for general graphs. For the adroissiontrol problem on a tre€(log d)-
competitive randomized algorithms appear in [7, 8], whéiie the diameter of the tree. Adler and Azar
presented a constant-competitive preemptive algorithmadmission control on the line [1].

The admission control to minimize rejections problem waslistd by Blum, Kalai and Kleinberg in [10],
where two deterministic algorithms with competitive rataf O (,/m) andc+ 1 are given {n is the number of
edges in the graph ands the maximum capacity). They raised the question of whietheonline algorithm
with polylogarithmic competitive ratio can be obtained.

We also note that one can combine an algorithm for maximitingughput of accepted requests and an
algorithm for minimizing rejections and get one algorithrhigh achieves both simultaneously with slightly
degrading the competitive ratio [9, 11].

In this paper we show that the admission control to minimégeations problem is a generalization of the
online set cover with repetitions problem described below:

The online set cover with repetitions problem. The online set cover problem is defined as follows:
Let X be a ground set of elements, and le§ be a family of subsets ok, |S| = m. EachS € S has a
non-negative cost associated with it. An adversary givesiehts to the algorithm fron¥ one by one. Each
element ofX can be given an arbitrary number of times, not necessariigaxutively. An element should be
covered by a number of sets which is equal to the number oftitragrived. We assume that the elements of
X and the members ¢ are known in advance to the algorithm, however, the elenggws by the adversary
are not known in advance. The objective is to minimize the¢ cbthe sets chosen by the algorithm.

Previous results for online set cover. The offline version of the set cover problem is a classic NP-
hard problem that was studied extensively, and the besbzippation factor achievable for it in polynomial
time (assuming® # N P) is ©(logn) [12, 13]. The basic online set cover problem, where repettiare not
allowed, was studied in [2, 14]. A different variant of th@plem, dealing with maximum benefit, is presented
in [5]. An O(log mlog n)-competitive deterministic algorithm for the online sevepproblem was given by
[2] wheren is the number of elements amd is the number of sets. A lower bound ﬁ(%)
was also shown for any deterministic online algorithm. Aergaesult of Feige and Korman [14] establishes
a lower bound of2(log m logn) for the competitive ratio of any randomizg@dlynomial time algorithm for
the online set cover problem, under tBé° P # N P assumption. They also prove the same lower bound for

any deterministigolynomial time algorithm, under thé £ N P assumption.

Our results. Our main result is arD(log?(mc))-competitive randomized algorithm for the admission
control to minimize rejections problem. This settles themuestion raised by Blum et al. [10]. For the
unweighted case, where all costs are equal to 1, we slighttydve this bound and give an(log m log c)-
competitive randomized algorithm,

We present a simple reduction between online set cover wfibtitions and the admission control prob-
lem. This implies ar© (log? (mn))-competitive randomized algorithm for the online set cavith repetitions
problem. For the unweighted case (all costs are equg| tee get arO (log m log n)-competitive randomized
algorithm. This matches the lower bound@flog m log n) given by Feige and Korman. Their results also
imply a lower bound of2(log m log ¢) for the competitive ratio of any randomizedlynomial time algorithm
for the admission control to minimize rejections problerss(@ningBPP # N P).

The derandomization techniques used in [2] for the onlinegeer problem do not seem to apply here.
This is why we also consider the bicriteria version of tharmnket cover with repetition problem. For a given
constank > 0, the online algorithm is required to cover each element bgetibn of1 — e times the number
of its appearances. Specifically, at any point of time, if ment has been requestedimes so far, then the
optimal solution covers it by different sets, whereas the online algorithm covers ity €)% different sets.
We give anO(log m log n)-competitive deterministic bicriteria algorithm for thpsoblem.

Techniques. The techniques we use follow that of [2, 3] together with soree ideas. We start with an
online fractional solution which is monotone increasingiiy the algorithm. Then, the fractional solution
is converted into a randomized algorithm. Interestingbygeét a deterministic algorithm we use a different
fractional algorithm than the one used for the randomizgdrahm.

2 A fractional algorithm for admission control

In this section we describe a fractional algorithm for theljem. A fractional algorithm is allowed to reject
a fraction of a request;. We use a weighf; for this fraction. Specifically, ih < f; < 1, we reject with
percentage of precisely;. If f; > 1, then the request is completely rejected. At any stage ofrtutional
algorithm we will use the following notation:

e REQ. will denote the set of requests that arrived so far whosespaihtain the edge.
e REQ will denotel .. REQ..

e ALIV E. will denote the requests frolREQ. that have not been fully rejected (requestfor which
fi <1).

e 1. will denote the excess of edgecaused by the requests LIV E,.

ne = |ALIVE,| — ¢

The requirement from a fractional algorithm is that for gvedgee,

Z fizne

1€ALIVE,

The cost of a fractional algorithm is defined to & o min{ f;, 1}p;.

We will now describe arO(log(mc))-competitive algorithm for the problem, even versus a fometl
optimum. The cost of the optimal fractional soluti@ry, p is denoted byx.

We may assume, by doubling, that the valuexdé known up to a factor o2. To determine the initial
value ofa we look for the first time in which we must reject a request framedge:=. We can start guessing
a = minicreqQ.Pi, and then run the algorithm with this bound on the optimalsoh. If it turns out that the
value of the optimal solution is larger than out current gues it, (that is, the cost excee® « log(mc))),
then we "forget” about all the request fractions rejectedasp update the value af by doubling it, and
continue on. We note that the cost of the request fractioaswie have "forgotten” about can increase the
cost of our solution by at most a factor &fsince the value aft was doubled in each step.

We thus assume that is known. Denote byR,;, the requests with cost exceedifig. The optimal
fractional solution can reject a total fraction of at mdg2 out of the requests ak,,;,. Hence, when an edge
is requested more than its capacity, the fractional optimumt reject a total fraction of a lealst2 out of the
requests not i,;, whose paths contain the edge. By doubling the fraction efctijn for all the requests
not in Ry, (keeping fractions to be at mos} and completely accepting all the requestgip,, we get a
feasible fractional solution whose cost is at most twicedpmum. Hence, the online algorithm can always
completely accept requests of cost exceedindgand adjust the edge capacitiesaccordingly).

Denote byR,,..; the requests with cost at masy (mc). We claim that we can completely reject all
the requests fronR,,,..;. For each edge, the optimal solution can accept a total fraction of at mostt
of the requests whose paths contain the edgend therefore it can accept a total fraction of at mast
requests. The fractions of requests accepted out.gf,; have total cost at mostic - a/(mc) = a. |t
follows that the optimal solution pays at leastst(R, ,q;) — « for the fractions of requests out &{;,,,.;
that it rejected. Therefore, the online algorithm can regdiche requests itRs,,,q;; and paycost(Rsman)- If
cost(Rsmanr) < 2a, then this adds onlg@(«) to the cost of the online algorithm. d¢bst(Rgnan) > 2¢, then

4

cost(Rsmanr) < 2(cost(Rsmau) —), SO the online algorithm i8-competitive with respect to the requests in
Rsmall-

By the above arguments, all the requests of cost smaller dliémc) or greater tharka are rejected
immediately or accepted permanently (edge capacitiesemedsed in this case), correspondingly. An al-
gorithm needs to handle only requests of cost betwe&m.c) and2«. We normalize the costs so that the
minimum cost isl and the maximum cost is < 2mc, and fixa appropriately.

The algorithm maintains a weiglft for each request;. The weights can only increase during the run of
the algorithm. Initially f; = 0 for all the requests. Assume now that the algorithm receivesjuest-; for a
path of cosp;. For each edge, we updateREQ., ALIV E. andn, according to the definitions given above.
The following is performed for all the edgef the path ofr;, is an arbitrary order.

108> carrve, fi = ne, then do nothing.

2. Else, while} ;v g, fi < ne, perform aweight augmentation:

(a) Foreach € ALIVE,,if f; =0, then setf; = 1/(gc).
(b) Foreach ¢ ALIVE,, f; — f;(1+ n:pi).
(c) UpdateALIV E,. andn..

Note that the fractional algorithm starts with all weightgial to zero. This is necessary, since the online
algorithm must rejecd requests in case the optimal solution reje€teequests. Hence, the algorithm is
competitive fora. = 0, and from now on we assume without loss of generality ¢that 0. In the following
we analyze the performance of the algorithm.

Lemmal The total number of weight augmentations steps performed during the algorithms is at most
O(alog(ge)).

Proof: Consider the following potential function:

&= [[maz{fi1/(ge)}""

1€EREQ

where f;" is the weight of the request in the optimal fractional solution. We now show three projgsrof
d:

e The initial value of the potential function i$yc) .
e The potential function never exceezis.

e In each weight augmentation step, the potential functionudiplied by at leasg.

The first two properties follow directly from the initial v and from the fact that no request gets a weight
of more thanl + 1/p; < 2. Consider an iteration in which the adversary gives a reqyegith costp;. Now
suppose that a weight augmentation is performed for an edge must have ., 1y . fi > ne since the
optimal solution must satisfy the capacity constraint. §,libie potential function is multiplied by at least:

I1 <1+ 1>ﬁpiz 1T <1+i>ﬁz2

n i n
i€ALIVE, ePi i€ALIVE, €

The first inequality follows since for alt > 1 andz > 0, (1 + z/z)* > 1 + z and the last inequality follows
since) ;c arrvp, fi = ne- Itfollows that the total number of weight augmentatiorepstis at most:

log,(2g¢)* = O(alog gc)
0

Theorem 2 For the weighted case, the fractional algorithmis O(log(mc))-competitive. In case all the costs
areequal to 1, thealgorithm is O(log ¢)-competitive.

Proof: The cost the on-line algorithm is°, oo min{ f;, 1}p;, which we will denote byCo . Consider a
weight augmentation step performed for an edgi step 2a of the algorithm, the weights of at mest 1
requests change fromto 1/(gc). This is because before the current request arrived, tloeld bave been at
mostc requests containing the edgend havingf; = 0 (the maximum capacity ig). Since the maximum
cost isg, the total increase afpy in step 2a of the algorithm is at mogt+ l)g—lcg = 1+1/c. If follows that

in step 2a, the quantity ;. ,; ;5. fi canincrease by at mostt 1/c. A weight augmentation is performed
aslong a9 4r v, fi < ne. Before step 2b we have thal, 4, ;v fi < ne + 1+ 1/c. Thus, the total
increase of”py in step 2b of the algorithm does not exceed

I Ji
Z fz‘pz'm— Z n—e<2+1/c

1€ALIVE, p 1€ALIVE,

It follows that the total increase @fox in a weight augmentation step is at mast 2/c. Using lemma 1
which bounds the number of augmentation steps, we conchadefte algorithm i (log(gc))-competitive.

For the weighted case, we saw that the input can be transfosmé¢haty < 2mc, which implies that
the algorithm isO(log(mc))-competitive. In case all the costs are equal t@ is also equal td and the
algorithm isO(log c)-competitive.

3 A randomized algorithm for admission control

We describe in this section @(log?(mc))-competitive randomized algorithm for the weighted case @m
O(log mlog c¢)-competitive randomized algorithm for the unweighted case

The algorithm maintains a weiglft for each request;, exactly like the fractional algorithm. Assume
now that the algorithm receives a requestvith costp;. The following is performed in this case.

Perform all the weight augmentations according to thetitsaal algorithm.
For every request if its weight f increased by, then reject the requestvith probability 126 log(mc).

Reject all the requests whose weight is at "?9%%(7@-

A W b P

If the current request cannot be accepted (some edge would be over capacity),dfes the request.
Else, accept the request

We can assume thaRE(Q).|, the total number of requests whose paths contain a spedgieeg is less
than4mc?®. To see this, note that the fractional algorithm normalikescosts so that the minimum cost is

1 and the maximum cost is at mdgtuc. If [REQ.| > 4mc?, then since the optimal solution can accept at
mostc requests fronREQ., it must pay a cost of at least- 2mc? for requests rejected out &fEQ,, where

t is the total cost of these requests. The online algorithnrejat all the requests iIREQ., payt and it will

still be 2-competitive with respect to the requestsiEQ.., sincet > 4mc?.

Theorem 3 For the weighted case, the randomized algorithm is O (log?(mc))-competitive.

Proof: Denote byC',,. the cost of the fractional algorithm. The expected cost qliests rejected in step
2 of the algorithm is at most2C',. log(mc). The cost of requests rejected in step 3 has the same upper
bound.

We now calculate the probability for a requedb be rejected in step 4. This can happen only if the path
of requestr contains an edge for which 3, ,; ;v fi > ne but the randomized algorithm rejected less

thann. requests whose paths contain the edggll the requests with weight at Ieam are rejected
for certain, so we can assume thai< m foralli e ALIVE..

Suppose that € ALIV E, and that during all runs of step 2 of the algorithm the requegstas been
rejected with probabilities,, . . ., g,, whered "}, gx = 12f;log(mc). The probability that; will be rejected
is at least

n
1- H(l —qp) 21— e =k =] — g7 12filogme > G100 me
k=1
The last inequality follows since forall < z < 1,1 —e " > z/2.

The number of requests ii. IV E, which were rejected by the algorithm is a random variablekipthe
sum of mutually independerD, 1}-valued random variables and its expectation is at lgast6n, log mc.
By Chernoff bound (c.f., e.g., [4]), the probability for stiandom variable to get a value less tlian- a)u is
at moste—*#/2 for everya > 0. Therefore, the probability to be less thanis at most

_(1_m)2(6ne logme)/2 3
— m3c3

e

The request costs were normalized, so that the maximumsastiosme. Each edge is contained in the
paths of at mostmc? requests. Therefore, the expected cost of requests whealejacted in step 4 because
of this edge is at mogtimc?)(2me)3/(m3c®) = 24/m. Thus, the total expected cost of requests rejected in
step 4 is24. The result now follows from Theorem 2.

g
For the unweighted case we slightly change the algorithrolemifs. In step 2 of the algorithm we reject a
request with probabilitytd log m, and in step 3 we reject all the requests whose weight is stt1¢al log m).
Theorem 4 For the unweighted case, the randomized algorithm is O (log m log ¢)-competitive.
Proof: Following the proof of Theorem 3, we get that the probabildyan edge to cause a specific request
to be rejected in step 4 of the randomized algorithm is at most

3

m

67(17$)2(2n6 logm)/2 <

Denote by@ the quantitymaz.cgp(|REQ.| — c.). Hence,Q is the maximum excess capacity in the
network. The total expected cost of requests rejected m4te at most)(3/m)m = 3Q. It is obvious that
the optimal solution must reject at le@gtrequests. The result now follows from Theorem 2.

4 A reduction from online set cover to admission control

We now describe the reduction between online set cover amisamn control. Suppose we are given the
following input to the online set cover with repetitions plem: X is a ground set of. elements and is a
family of m subsets ofX, with positive costcs associated with each € S. The instance of the admission
control to minimize rejections problem is constructed d®¥es: The graphG = (V, E) has an edge; for
each elemenf € X. The capacity of the edgsg is defined to be the number of sets that contain the element
j. The maximum capacity is therefore at most

The requests are given to the admission control algorithtwdésphases. In the first phase, before any
element is given to the online set cover algorithm, we gdaerarequests to the admission control online
algorithm. For everys' € S, the request consists of all the edgessuch thatj € .S. The online algorithm
can accept all the requests and this will cause the edgeadh tkeir full capacity.

In the second phase, each time the adversary gives an elgn@rihe online set cover algorithm, we
generate a request which consists of the one eggad give it to the admission control algorithm. In case
the request caused the edgeto be over capacity, the algorithm will have to reject oneuesy in order to
keep the capacity constraint.

In case there is a feasible cover for the input given to thmerset cover problem, there is no reason for the
admission control algorithm to reject requests that werergin the second phase. This is because requests in
the second phase consist of only one edge. Thus, we can afisainttee admission control algorithm rejects
only requests given in the first phase, which correspondtieets ofX .

It is easy to see that the requests rejected by the admissitrot algorithm correspond to a legal set
cover. We reduced an online set cover problem wittlements ane» sets to an admission control problem
with n edges and maximum capacity at most The fact that the requests we generated are not simple paths
in the graph can be easily fixed by adding extra edges.

5 A deterministic bicriteria algorithm for online set cover with repetitions

In this section we describe, given any constant 0, anO(log m log n)-competitive deterministic bicriteria
algorithm that covers each element by at lgast- ¢)k sets, wheré; is the number of times the element has
been requested, whereas the optimum covetdiines. We assume for simplicity that all the sets have cost
equal to 1. The result can be easily generalized for the weigtase using techniques from [2].

The algorithm maintains a weights > 0 for eachS € S. Initially wg = 1/(2m) for eachS € S.
The weight of each elemerite X is defined asv; = > g5 ws, whereS; denotes the collection of sets
containing elemeni. Initially, the algorithm starts with the empty covér= (). For eachj € X, we define
cover; = |S; () C|, which is the number of times elemeiis covered so far. The following potential function
is used throughout the algorithm:

O = Z nQ(wj—coverj)
JEX
We give a high level description of a single iteration of thgoathm in which the adversary gives an

elementj and the algorithm chooses sets that cover it. We denofethg number of times that the element
j has been requested so far.

1. If cover; > (1 — €)k, then do nothing.
2. Else, whilecover; < (1 — €)k, perform aweight augmentation:

(@) Foreacts € S; — C, wg «— ws(1 +).
(b) Add toC all the subsets for whiclvg > 1.

(c) Choose fromS; at most2log n sets toC so that the value of the potential functidndoes not
exceed its value before the weight augmentation.

In the following we analyze the performance of the algoritiana explain which sets to add to the cover
C in step 2c of the algorithm. The cost of the optimal solutigyyr is denoted byy.

Lemma5 The total number of weight augmentations steps performed during the algorithms is at most
O(alogm).

Proof: Consider the following potential function:
U = H wg
SeCopr

We now show three properties &f

e The initial value of the potential function i$2m)~.
e The potential function never exceetl§®.

e In each weight augmentation step, the potential functionugtiplied by at leasg</2.

The first two properties follow directly from the initial wa¢ and from the fact that no request gets a weight of
more thanl.5. Consider an iteration in which the adversary gives an etérhr the kth time. Now suppose
that a weight augmentation is performed for elementVe must have thatover; < (1 — €)k, which means
that the online algorithm has covered elemgfgss than(1 — ¢)k times. The optimal solutio® PT' covers
element; at leastk times, which means that there are at leg&ssubsets ofD PT' containingj which were
not chosen yet. Thus, in step 2a of the algorithm the potfentiation is multiplied by at least:

1
14 — ek>2e/2
(+2k:) -

It follows that the total number of weight augmentationgstis at most:

log(3m)©

log 202 = O(alogm)

0

Lemma 6 Consider an iteration in which a weight augmentation is performed. Let , and ¢, be the values
of the potential function ® before and after the iteration, respectively. Then, there exist at most 21log n sets
that can be added to C during the iteration such that &, < &,. Furthermore, the value of the potential
function never exceeds n?.

Proof: The proof is by induction on the iterations of the algorithrmitially, the value of the potential
function ® is less tham - n = n?. Suppose that in the iteration the adversary gives elefntemtthe kth time.
For each sef € §;, letws andwg + dg denote the weight of before and after the iteration, respectively.
Defined; = > ges, ds- By the induction hypothesis, we know thtw; — cover;) < 2, because otherwise
@, would have been greater thad. Thus,w; < cover; +1 < [(1 — €)k] + 1 < k. This means that
0; <k-1/(2k) =1/2.

We now explain which sets froi; are added t@.

Repea® log n times: choose at most one set fréinsuch that each s&t € S; is chosen with probability
2dg. (This can be implemented by choosing a number uniformlaadom in [0,1], sinc&); < 1.)

Consider an element € X. Let the weight ofj’ before the iteration be;; and let the weight after the
iteration bew;, + d;,. Elementj’ contributes before the iteration to the potential functibe valuen*s.
In each random choice, the probability that we do not chooset @ontaining element is 1 — 26;.. The
probability that this happens in all tldog n random choices is therefofé — 25j/)21°g” < n %y,

Note thaté;; < 1/2. In case we choose a set containing elemynthen cover;: will increase by at
least1 and the contribution of elemerit to the potential function will be at most2(s* 0 —1) < p2wy =1,
Therefore, the expected contribution of elemgrtb the potential function after the iteration is at most

o -/)) o -/ L) o -/ . o))
n 46_] n2(w]/+éj/) + (1 —-n 46_])n2w]/ 1 — nQU)J/ (n 26_] + n 1 —n 45] 1) S nQU)J/

where to justify the last inequality, we prove thitr) = n® + n=! — n?*~! < 1 for everyz < 0. To show
this we note thayf (0) = 1 and f’(x) = n®logn(1 — 2n*~1!). This implies thatf’(x) > 0 for everyz < 0.
We can conclude that(x) < 1 for everyz < 0, as needed.

By linearity of expectation it follows thaExp[®.] < ®,. Hence, there exists a choice of at md&ig n
sets such thab, < ®,. The choices of the various seigo be added t@ can be done deterministically and
efficiently, by the method of conditional probabilitiest. ce.qg., [4], chapter 15. After each weight augmenta-
tion, we can greedily add sets@oone by one, making sure that the potential function will dase as much
as possible after each such choice. O

Theorem 7 The deterministic algorithmis O(log m log n)-competitive.

Proof: It follows from Lemma 5 that the number of iterations is at m@$a log m). By Lemma 6, in each
iteration we choose at mo8tog n sets toC in step 2c of the algorithm. The sets chosen is step 2b of the
algorithm are those which have weight at leastThe weight sum of all of the sets is initially/2 and it
increases by at mogt/2 in each weight augmentation. This means that at the end ddltweithm, there
can be onlyO(alog m) sets whose weight is at leakt Therefore, the total number of sets chosen by the
algorithm is as claimed. O

6 Concluding Remarks

e Aninteresting open problem is to check if the algorithm preed here for the admission control prob-
lem can be derandomized.

e Feige and Korman established a lower bounf2@bg m log n) for the competitive ratio of any random-
ized polynomial time algorithm for the online set cover gesh, under theBPP # N P assumption.
It is interesting to check whether this lower bound appl@sstiperpolynomial time algorithms as well.

10

e The algorithms we gave for the admission control problemmtitiuse the fact that the requests are
simple paths in the graph. All the algorithms treated a rsgjag an arbitrary subset of edges.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

R. Adler and Y. Azar. Beating the logarithmic lower bounndndomized preemptive disjoint paths and
call control algorithms.Journal of Scheduling, 6:113-129, 2003.

N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Nadrhe online set cover problem. Proc.
35th ACM Symp. on Theory of Computing, pages 100-105, 2003.

N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naok general approach to online network
optimization problems. I®roc. 15rd ACM-SAM Symp. on Discrete Algorithms, pages 577-586, 2004.

N. Alon and J. SpenceiThe probabilistic method. Wiley, New York, second edition, 2000.

B. Awerbuch, Y. Azar, A. Fiat, and T. Leighton. Making comtments in the face of uncertainty: how
to pick a winner almost every time. Proc. 28th ACM Symp. on Theory of Computing, pages 519-530,
1996.

B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-comifret on-line routing. InProc. 34th IEEE
Symp. on Found. of Comp. Science, pages 32—-40, 1993.

B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén. Compettinon-preemptive call control. IRroc. 5th
ACM-SAM Symp. on Discrete Algorithms, pages 312—320, 1994.

B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani. Qnd admission control and circuit routing
for high performance computation and communicationPdoc. 35th IEEE Symp. on Found. of Comp.
Science, pages 412-423, 1994.

Y. Azar, A. Blum, and Y. Mansour. Combining online algiwins for rejection and acceptance. In
Proceedings of the 15th Annual ACM Symposium on Parallelismin Algorithms and Architectures, pages
159-163, 2003.

[10] A.Blum, A. Kalai, and J. Kleinberg. Admission control ininimize rejections. liProceedings of WADS

[11]

[12]

[13]

[14]

2001; LNCS 2125, pages 155-164, 2001.

D. Bunde and Y. Mansour. Improved combination of onlagorithms for acceptance and rejection. In
Proceedings of the 16th Annual ACM Symposium on Parallelismin Algorithms and Architectures, pages
265-266, 2004.

V. Chvatal. A greedy heuristic for the set-coveringlplem. Methematics of Operations Research,
4(3):233-235, 1979.

U. Feige. A threshold of Im for approximating set coverJournal of the ACM, 45(4):634—652, July
1998.

U. Feige and S. Korman. Personal communication.

11

