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Abstract

A major drawback in optimization problems and in particular in scheduling prob-
lems is that for every measure there may be a different optimal solution. In many cases
the various measures are different ℓp norms. We address this problem by introducing
the concept of an All-norm ρ-approximation algorithm, which supplies one solution that
guarantees ρ-approximation to all ℓp norms simultaneously. Specifically, we consider the
problem of scheduling in the restricted assignment model, where there are m machines
and n jobs, each is associated with a subset of the machines and should be assigned to
one of them. Previous work considered approximation algorithms for each norm sep-
arately. Lenstra et al. [11] showed a 2-approximation algorithm for the problem with
respect to the ℓ∞ norm. For any fixed ℓp norm the previously known approximation
algorithm has a performance of θ(p). We provide an all-norm 2-approximation poly-
nomial algorithm for the restricted assignment problem. On the other hand, we show
that for any given ℓp norm (p > 1) there is no PTAS unless P=NP by showing an APX-
hardness result. We also show for any given ℓp norm a FPTAS for any fixed number of
machines.

1 Introduction

1.1 Problem definition

A major drawback in optimization problems and in particular in scheduling problems is that
for every measure there may be a different optimal solution. Usually, different algorithms
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are used for diverse measures, each supplying its own solution. Therefore, one may ask
what is the ”correct” solution for a given scheduling problem. In many cases there is no
right answer to this question. We show that in some cases one can provide an appropriate
answer, especially when the measures are different ℓp norms. Specifically, we address the
optimization problem of scheduling in the restricted assignment model. We have m parallel
machines and n independent jobs, where job j is associated with a weight wj and a subset
M(j) ⊆ {1, . . . , m} of the m parallel machines and should be assigned to one of them. For
a given assignment, the load li on a machine i is the sum of weights of the jobs assigned to
it. We denote by ~l = (l1, . . . , lm) the machines load vector corresponding to an assignment,
and further denote by ~h the vector ~l sorted in non-increasing order. We may use the ℓp

norm (p ≥ 1) to measure the quality of an assignment, namely the cost of an assignment
is the ℓp norm of its corresponding load vector. The ℓp norm of a vector ~l, denoted ‖~l‖p, is

defined by: ‖~l‖p = (
∑m

i=1 lpi )
1/p.

Most research done so far in the various scheduling models considered the makespan
(ℓ∞) measure. In some applications other norms may be suitable such as the ℓ2 norm.
Consider for example a case where the weight of a job corresponds to its machine disk
access frequency. Then each job may see a delay that is proportional to the load on the
machine it is assigned to. Thus the average delay is proportional to the sum of squares of
the machines loads (namely the ℓ2 norm of the corresponding machine load vector) whereas
the maximum delay is proportional to the maximum load.

Simple examples illustrate that for the general restricted assignment problem, an optimal
solution for one norm is not necessarily optimal in another norm (and in fact may be very far
from being optimal). Given that, one may ask what is the ”correct” solution to a scheduling
problem. When a solution optimal in all norms exists we would naturally define it as the
correct solution and try to obtain it. For the special case of restricted assignment with unit
jobs only, Alon et al. [1] showed that a strongly-optimal assignment that is optimal in all
norms exists, and can be found in polynomial time. However, this is not the case in general.

1.2 Our results

All-norm approximation: In light of the above discussion, we introduce the concept of
an All-norm ρ-approximation algorithm, which supplies one solution guaranteeing simul-
taneously ρ-approximation with respect to the optimal solutions for all norms. Note that
an approximated solution with respect to one norm may not guarantee any constant ap-
proximation ratio for any other norm. This does not contradict the fact that there may
be a different solution approximating the two norms simultaneously. Simple examples il-
lustrate that we can not hope for an all-norm (1 + ε)-approximation for arbitrary ε for
this problem (the example in [1] illustrates that ε must be larger than 0.003 even for two
norms), hence the best we can hope for (independent of the computational power) is an
all-norm ρ-approximation, when ρ is constant. Moreover, from the computational point of
view, we can not expect to achieve an all-norm approximation polynomial algorithm with
ratio better than 3/2 since Lenstra et al. [11] proved a 3/2 lower bound on the approx-
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imation ratio of any polynomial algorithm for the makespan alone (assuming P 6= NP ).
Lenstra et al. [11] and Shmoys and Tardos [15] presented a 2-approximation algorithm for
the makespan, however their algorithm does not guarantee any constant approximation ra-
tio to optimal solutions for any other norms (it is easy to come up with a concrete example
to support that). Our main result is an all-norm 2-approximation polynomial algorithm
for the restricted assignment model. Our algorithm returns a feasible solution which is at
most 2 times the optimal solution for all ℓp norms (p ≥ 1) simultaneously. In contrast, note
that for the related machines model and hence for the more general model of unrelated
machines, in general there is no assignment obtaining constant approximation ratio for all
norms simultaneously (this can be shown by a simple example even when considering only
the ℓ1 and ℓ∞ norms).

Kleinberg et al. [10] and Goel et al. [5] considered the problem of fairest bandwidth
allocation, where the goal is to maximize the bandwidth allocated to users, in contrast
to minimizing the machines loads. In [5] α-balanced assignments are defined, which are
similar to our concept of all-norm approximation. However, the algorithm suggested there
works only for unit jobs and is O(log m)-competitive. In contrast, our algorithm works
for arbitrary size jobs and guarantees constant approximation. We note that the idea of
approximating more than one measure appears in [16, 2] where bicriteria approximation for
the makespan and the average completion time is provided.

Approximation for any given norm: Recall that for the ℓ∞ case Lenstra et al. [11]
presented a 2-approximation algorithm (presented for the more general model of unrelated
machines, where each job has an associated m-vector specifying its weight on each machine).
For any given ℓp norm the only previous approximation algorithm for restricted assignment,
presented by Awerbuch et al. [3], has a performance of θ(p) (this algorithm was presented
as an on-line algorithm for the unrelated machines model). Note that not only our all-norm
2-approximation algorithm provides 2-approximation to all norms simultaneously, it also
improves the previous best approximation algorithm for each fixed ℓp norm separately.

Non-approximability for any given norm: Clearly, one may hope to get for any
given ℓp norm a better approximation ratio (smaller than 2), or even a Polynomial Time
Approximation Scheme (PTAS). However, we show that for any given ℓp norm (p > 1) the
problem of scheduling in the restricted assignment model is APX-hard, thus there is no
PTAS for the problem unless P = NP . Note that for p = 1 any assignment is optimal.

Approximation scheme: For any given ℓp norm it is impossible to get a PTAS for an
arbitrary number of machines. Therefore, the only possible approximation scheme for a
given norm is for a fixed number of machines. We present for any given norm a Fully
Polynomial Time Approximation Scheme (FPTAS) for any fixed number of machines. Note
that for minimizing the makespan Horowitz and Sahni [8] presented a FPTAS for any fixed
number of machines. Lenstra et al. [11] suggested a PTAS for the same problem (i.e.
minimizing the makespan) with better space complexity.
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1.3 Techniques and related results

Other related results: Other scheduling models have also been studied. For the identical
machines model, where each job has an associated weight and can be assigned to any
machine, Hochbaum and Shmoys [7] presented a PTAS for the case of minimizing the
makespan. Later, Alon et al. [1] showed a PTAS for any ℓp norm in the identical machines
model. For the related machines model, in which each machine has a speed and the machine
load equals the sum of jobs weights assigned to it divided by its speed, Hochbaum and
Shmoys [6] presented a PTAS for the case of minimizing the makespan. Epstein and Sgall [4]
showed a PTAS for any ℓp norm in the same model.

Note that, previous work discussed above showed that PTAS can be achieved for the
identical and related machines models when considering the makespan for cost. In con-
trast, only constant approximation is possible for the restricted assignment and unrelated
machines models (see [11]). Our work establishes the same phenomenon for the ℓp norm,
by proving that only constant approximation can exist for restricted assignment.

Techniques: Our main result, the all-norm 2-approximation algorithm, consists of two
phases - finding a strongly-optimal fractional assignment and rounding in to an integral
assignment which guarantees 2-approximation to the optimal assignments in all norm si-
multaneously. The first phase depends on constructing linear programs with exponential
number of constraints solved using the ellipsoid algorithm with a supplied oracle. Our
algorithm works for the more general model of unrelated machines and finds the lexico-
graphically best (smallest) assignment. Hence, in this sense, it generalizes the algorithm
suggested by Megiddo [12, 13], which can be used for the restricted assignment model only.
Although the second phase can employ the rounding scheme of [15], our rounding technique,
based on eliminating cycles in a bipartite graph, is considerably simpler and more suitable
for our needs. Our hardness of approximation result is reduced (by a L-Reduction) from a
result by Petrank [14] concerning a variant of 3-Dimensional matching.

Paper structure: In Section 2 we present our approximation algorithm. In section 3 we
show the hardness of approximation result for the problem. In section 4 we show for any
given ℓp norm a FPTAS for any fixed number of machines.

2 All-norm approximation algorithm

We use the notion of a strongly-optimal assignment defined in [1] throughout this paper.
We repeat the definition in short :

Definition 2.1 Given an assignment H denote by Sk the total load on the k most loaded

machines. We say that an assignment is strongly-optimal if for any other assignment H ′ and

for all 1 ≤ k ≤ m we have Sk ≤ S′
k.
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A strongly-optimal assignment is optimal in any norm. In the case of unit jobs a strongly-
optimal integral assignment exists (and can be found in polynomial time), however this is
not the case in general (see [1]). It turns out there always exists a strongly-optimal fractional

assignment in the general case. Our algorithm works in two stages: in the first stage we find
a strongly-optimal fractional assignment and in the second stage we round this fractional
assignment to an integral assignment which guarantees 2-approximation with respect to the
optimal solutions for all ℓp norms.

2.1 Finding a strongly-optimal fractional assignment

The following lemma can be deduced indirectly from general results in [17]. We provide a
simple direct proof for it.

Lemma 2.1 For every instance in the restricted assignment model there exists a fractional

assignment that is strongly-optimal. In particular, every fractional assignment which induces

the lexicographically smallest load vector is a strongly-optimal fractional assignment.

Proof: We restrict ourselves only to rational weights. The lexicographically smallest load
vector induced by a fractional assignment (when considering the machines load vector sorted
in non-increasing order) is uniquely defined and consists of rational weights (since it is a
solution of a set of rational linear equations). Denote such an assignment by H. Assume
by contradiction that H is not strongly-optimal, thus there exist a fractional assignment H ′

and an integer k, 1 ≤ k ≤ m, such that Sk > S′
k (we may assume that H ′ also consists of

rational weights by means of limit). We may scale all the weights such that each assigned
fraction in H and H ′ is integral. We may then translate the scaled instance to a new
instance with unit jobs only, by viewing a job with associated weight wj as wj unit jobs.
Clearly, the lexicographically smallest assignment for the new instance is the scaled H and
it is also the strongly-optimal assignment (see [1]). However, the scaled H ′ contradicts this
fact.

Note that although [1] provides an algorithm to find the strongly-optimal assignment in
the unit jobs case which is polynomial in the number of jobs, we can not use it since it is not
clear how to choose the units appropriately. Even if such units could be found, translating
our original jobs to unit jobs would not necessarily result in a polynomial number of jobs
and therefore the algorithm would not be polynomial.

The first stage of our algorithm consists of finding this strongly-optimal assignment.
We present a more general algorithm. Our algorithm works for the more general model
of unrelated machines and finds the lexicographically smallest fractional assignment (when
considering the machines load vector ~h sorted in non-increasing order). In particular, ac-
cording to lemma 2.1, for the restricted assignment model the lexicographically smallest
fractional assignment is the strongly-optimal fractional assignment. In this sense, our algo-
rithm generalizes the algorithm suggested by Megiddo [12, 13], which can be used only for
the restricted assignment model.
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Theorem 2.1 In the unrelated machines model, the lexicographically smallest fractional assign-

ment can be found in polynomial time.

Proof: We define the following decision problem in the unrelated machines model : given n
jobs, where job j is associated with a weight vector ~wj , and k ≤ m limits: S1 ≤ S2 ≤ . . . ≤ Sk

is there an assignment H such that
∑r

i=1 li ≤ Sr (r = 1, . . . , k) where ~l is the vector of
machine loads introduced by H sorted in non-increasing order. We note that the lexico-
graphically smallest prefix vector ~S = (S1, . . . , Sm) induces the lexicographically smallest
assignment ~h by defining hi = Si − Si−1 (S0 = 0). Denote by M(j) (j = 1, . . . , n) the set
of machines to which job j can be assigned, i.e ∀i ∈ M(j) wij < ∞. For the case of k = 1
(i.e. deciding the makespan) the decision problem can be translated to the following linear
program:

m
∑

i=1

xij = 1 for j = 1, . . . , n

n
∑

j=1

xijwij ≤ S1 for i = 1, . . . , m

xij ≥ 0 for j = 1, . . . , n , i = 1, . . . , m
xij = 0 for j = 1, . . . , n , i 6∈ M(j) ,

where xij denotes the relative fraction of job j placed on machine i. Since we can not
identify the machines according to their loads order, the general case is represented by a
linear program with number of constraints exponential in m, as follows:

m
∑

i=1

xij = 1 for j = 1, . . . , n

n
∑

j=1

xi1jwi1j + . . . +
n

∑

j=1

xitjwitj ≤ St ∀1 ≤ t ≤ k ∀1 ≤ i1 < . . . < it ≤ m

xij ≥ 0 for j = 1, . . . , n , i = 1, . . . , m
xij = 0 for j = 1, . . . , n , i 6∈ M(j) .

We employ the ellipsoid algorithm to solve this linear program in polynomial time (see [9]
for details). In order to use the ellipsoid algorithm we should supply a separation oracle
running in polynomial time. We next describe the algorithm we use as the oracle for the
general linear program:

1. Given the assignment we construct the corresponding machines load vector.

2. We sort the load vector. Denote by ~h the sorted vector.

3. If there exists r, 1 ≤ r ≤ k such that
∑r

i=1 hi > Sr then the algorithm returns ’not
feasible’ together with the unsatisfied constraint - the one involving the r most loaded
machines (whose indices we have).

4. Otherwise the algorithm returns ’feasible’.
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Since the sorting operation (step 2) dominates the time complexity of the algorithm, its
running time is clearly polynomial. We prove its correctness:

Claim 2.1 The algorithm returns ’feasible’ ⇔ the given assignment is feasible.

Proof: ⇒ Suppose on the contrary that the given assignment is not feasible. Then there
is an unsatisfied constraint involving r ≤ k machines such that their total load is greater
than Sr. In particular the constraint involving the r most loaded machines introduced by
the given schedule is not satisfied. Since our algorithm checks all the constraints involving
the 1 ≤ r ≤ k most loaded machines, it will return ’not feasible’.

⇐ Suppose on the contrary that the algorithm returned ’not feasible’. Thus for some
1 ≤ r ≤ k the total load on the r most loaded machines exceeds Sr, and there is an
unsatisfied constraint. Hence the assignment is not feasible.

We use an incremental process to find the lexicographically smallest assignment. Our
algorithm has m steps where in step i we determine the total load on the i most loaded ma-
chines in the assignment, given the total loads on the k most loaded machines (1 ≤ k ≤ i − 1).
Each step is done by performing a binary search on the decision problems. Consider the
first step for example: we want to establish the load on the most loaded machine. Denote
for job j (j = 1, . . . , n) its smallest possible weight by wmin

j = mini wij . Let t =
∑n

j=1 wmin
j .

Clearly t is an upper bound on the load of the most loaded machine, and t/m a lower bound.
We can perform a binary search on the load of the most loaded machine while starting with
u = t (initial upper bound) and l = t/m (initial lower bound). Testing a bound S on the
most loaded machine is done by considering the decision problem with the n jobs and limit
S1 = S. We can stop the binary search when u− l < ε and set the load on the most loaded
machine to the load obtained from the feasible solution to the linear program. Later we show
how to choose ε such that the value produced by the feasible solution is the exact one since
there is at most one possible load value in the range [l, u]. Given this ε, the number of itera-
tions needed for the binary search to complete is O(log(t/ε)). In the ith step (i = 1, . . . , m)
we perform the binary search on the total load of the i most loaded machines given the
total loads on the k most loaded machines (k = 1, . . . , i − 1). Denote by L1, . . . , Li−1 the
prefix loads we found. We perform the binary search on the total load of the i most loaded
machines starting with u = Li−1 + t, l = Li−1. Testing a bound S is done by considering
the decision problem with the n jobs and limits S1 = L1, . . . , Si−1 = Li−1, Si = S. Again
we stop the binary search when u− l < ε and set Li to the total load on the i most loaded
machines produced by the feasible assignment we found for the linear program.

We now determine the value of ε. Each feasible solution to the linear problem {xij} can

be written as
{

dij

d

}

where d and {dij} are integers smaller than 2P (I) for some polynomial

P in the size of the input (see [9] for example). If we choose ε = 2−2P (I) then we are
guaranteed that there is only one possible load value in the range [l, u] when u− l < ε (see
[9]). Thus in each step i = 1, . . . , m the binary search involves O(P (I) + log

∑n
j=1 wmin

j )
iterations, polynomial in the size of the input. Hence in polynomial time we find the desired
lexicographically smallest assignment.
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2.2 Rounding the strongly-optimal fractional assignment

We now return to the restricted assignment model. As mentioned above, the algorithm
presented in theorem 2.1 finds the strongly-optimal fractional assignment in polynomial
time. The second stage of our algorithm consists of rounding the fractional assignment
{xij} to an integral assignment for the problem obtaining 2-approximation for every ℓp

norm measure. We note that although the rounding scheme presented in [15] can be used
for this purpose, our rounding technique is considerably simpler and more suitable for our
needs.

Theorem 2.2 A strongly-optimal fractional assignment can be rounded in polynomial time to

an integral assignment which is at most 2 times the optimal solution for all ℓp norms at the

same time.

Proof: Given the fractional assignment {xij} we will show how to construct the desired in-
tegral assignment {x̂ij} in polynomial time. We construct the bipartite graph G = (U, V, E)
having |U | = n vertices on one side (representing the jobs) and |V | = m vertices on the
other (representing the machines) while E = {(i, j)|xij > 0}. At first we would like to
eliminate all cycles in G while preserving the same load on all machines. We eliminate the
cycles in G in polynomial time by performing the following steps:

1. We define a weight function W : E → R+ on the edges of G such that W (i, j) = xijwj ,
i.e. the actual load of job j that is assigned to machine i.

2. As long as there are cycles in G, find a cycle, and determine the edge with the smallest
weight on the cycle (denote this edge by e and its weight by t).

3. Starting from e subtract t and add t from the weights on alternating edges on the
cycle, and remove from G the edges with weight 0. See Figure 1 for an example.

It is clear that this method eliminates the cycles one by one (by discarding the edge
with the smallest weight on each cycle) while preserving the original load on all machines.
Denote by G the new graph obtained after eliminating the cycles and by {xij} the new
strongly-optimal fractional assignment represented by G (which is a forest). In the first
rounding phase consider each integral assignment xij = 1, set x̂ij = 1 and discard the
corresponding edge from the graph. Denote again by G the resulting graph.

In the second rounding phase we assign all the remaining fractional jobs. For this end
we construct a matching in G that covers all job nodes by using the same method presented
in [11]. We consider each connected component in G, which is a tree, and root that tree in
one of the job nodes. Match each job node with any one of its children. Since every node
in the tree has at most one father we get a matching and since each job node is not a leaf
(each job node has a degree at least 2) the resulting matching covers all job nodes. For each
edge (i, j) in the matching set x̂ij = 1.
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Figure 1: Eliminating the cycle. Edge and job weights and machine loads are listed. Figure
A - before eliminating the cycle. Figure B - after eliminating the cycle.

We now prove that the schedule obtained from the assignment {x̂ij} guarantees a
2-approximation to the optimal solutions for all ℓp norms (for p ≥ 1). Fix p and de-
note by OPT the optimal solution for the problem using ℓp for cost. Denote by Hopt the
strongly-optimal fractional schedule obtained after eliminating the cycles and denote by H
the schedule returned by the algorithm. Further denote by H1 the schedule consisting of
the jobs assigned in the first rounding phase (right after eliminating the cycles) and by H2

the schedule consisting of the jobs assigned in the second rounding phase (those assigned
by the matching process). We have :

‖H1‖p ≤ ‖Hopt‖p ≤ ‖OPT‖p ,

where the first inequality follows from the fact that H1 is a sub-schedule of Hopt and
the second inequality results from Hopt being a strongly-optimal fractional schedule thus
optimal in any ℓp norm compared with any other fractional schedule, and certainly optimal
compared with OPT which is an integral schedule. We also know that:

‖H2‖p ≤ ‖OPT‖p ,

where the inequality results from the fact that H2 schedules only one job per machine thus
optimal integral assignment in any ℓp norm for the subset of jobs it assigns and certainly
has cost smaller than any integral assignment for the whole set of jobs. We can now show :

‖H‖p = ‖H1 + H2‖p ≤ ‖H1‖p + ‖H2‖p ≤ ‖OPT‖p + ‖OPT‖p = 2‖OPT‖p ,

which concludes the proof that the schedule H we constructed guarantees a 2-approximation
to optimal solutions for all ℓp norms and can be found in polynomial time.
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3 APX-hardness for an arbitrary number of machines

In this section we describe an L-reduction from the APX-hard Maximum Bounded 3-
Dimensional Matching problem (Max-3DM) to the minimization of sum of squared machine
loads for the restricted assignment problem. This clearly implies APX-hardness of ℓ2-norm
minimization for restricted assignment (since a PTAS for approximating

√
x yields a PTAS

for approximating x). The proof can be easily modified and extended to the other ℓp-norms
with p > 1. Our construction draws some ideas from Lenstra, Shmoys & Tardos [11]. The
problem Max-3DM is defined as follows.

Instance: Three sets A = {a1, . . . , aq}, B = {b1, . . . , bq}, and C = {c1, . . . , cq},
together with a subset T of A×B ×C. Any element in A, B, C occurs in one,
two, or three triples in T ; note that this implies q ≤ |T | ≤ 3q.

Goal: Find a subset T ′ of T of maximum cardinality such that no two triples
of T ′ agree in any coordinate.

Measure: The measure of a feasible solution T ′ is the cardinality of T ′.

Petrank [14] has shown that Max-3DM is APX-hard even if one only allows instances
where the optimal solution consists of q = |A| = |B| = |C| triples; in the following we will
only consider this additionally restricted version of Max-3DM.

For the L-reduction we specify a function R that maps instances I of Max-3DM into
scheduling instances R(I), and a function S that maps feasible solutions of R(I) back into
feasible solutions of I. Given any instance I of Max-3DM, the instance R(I) contains 3q
machines.

• For every triple Ti in T , there is a corresponding triple machine M(Ti).

• Moreover, there are 3q − |T | so-called dummy machines.

The instance R(I) contains 5q jobs.

• For every aj , bj , and cj (j = 1, . . . , q) there are corresponding element jobs J(aj),
J(bj), and J(cj). An element job cannot be assigned to dummy machines; an ele-
ment job can only be assigned to a triple machine M(Ti) if its underlying element is
contained in the triple Ti. Every element job has processing time 1.

• Moreover there are 2q so-called dummy jobs. Dummy jobs have processing time 3 on
all machines.

This completes the description of the scheduling instance R(I). Since we only consider
instances of Max-3DM where the optimal solution consists of q triples, we have Opt(I) = q.
Now consider the following schedule for instance R(I): For each triple Ti = (aj , bk, cl) in
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the optimal solution to I, we schedule the three element jobs J(aj), J(bk), and J(cl) on
machine M(Ti). The 2q dummy jobs are assigned to the remaining 2q empty machines
so that each machine receives exactly one dummy job. In the resulting schedule every
machine has load 3, and hence the objective value of this schedule is 27q. Therefore,
Opt(R(I)) ≤ 27q = 27Opt(I) and the first condition on L-reductions is satisfied with
α = 27.

Next we specify the function S. Let s be a feasible schedule for a scheduling instance
R(I). A machine M(Ti) in the schedule s is called good, if it processes three jobs of length 1.
Note that these three jobs can only be the jobs J(aj), J(bk), and J(cl) with Ti = (aj , bk, cl).
We define the feasible solution S(s) for the instance I of Max-3DM to consist of all triples
Ti for which the machine M(Ti) is good.

Consider a feasible schedule s for an instance R(I) of the scheduling problem. For
k = 0, 1, 2, 3 let mk denote the number of machines in schedule s that process exactly k
jobs of length 1. Then the total number of machines equals

m0 + m1 + m2 + m3 = 3q, (1)

and the total number of processed element jobs of length 1 equals

m1 + 2m2 + 3m3 = 3q. (2)

Note that by our definition of the function S, the objective value c(S(s)) of the feasible so-
lution S(s) equals m3. In Lemma 3.1 we will prove that c(s) ≥ 29q−2m3 holds. Altogether,
this then yields that

|c(S(s)) − Opt(I)| = q − m3 =
1

2
(29q − 2m3 − 27q) ≤ 1

2
|c(s) − Opt(R(I))|,

and that the second condition on L-reductions is satisfied with β = 1/2. Since the functions
R and S are computable in polynomial time, we have established all necessary properties
of an L-reduction. Hence, minimizing the sum of squared machine loads for the restricted
assignment problem indeed is an APX-hard problem.

Lemma 3.1 The objective value c(s) of the feasible solution s of the scheduling instance R(I)
satisfies c(s) ≥ 29q − 2m3.

Proof: Let us remove all dummy jobs from schedule s and then add them again in the
cheapest possible way, such that the resulting new schedule s′ has the smallest possible
objective value that can be reached by this procedure. Since c(s) ≥ c(s′), it will be sufficient
to establish the inequality c(s′) ≥ 29q − 2m3. What is the cheapest way of adding the 2q
dummy jobs of length 3 to m0 empty machines, to m1 machines with load 1, to m2 machines
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with load 2, and to m3 machines with load 3? Each machine should receive at most one
dummy job, and the dummy jobs should be added to the machines with the smallest loads.
The inequality (2) implies m3 ≤ q, and then (1) yields m0 + m1 + m2 ≥ 2q. Hence,
the m3 machines of load 3 will not receive any dummy job. The inequality (2) implies
m1 + m2 + m3 ≥ q, and then (1) yields m0 ≤ 2q. Hence, the m0 empty machines all will
receive a dummy job. For the rest of the argument we will distinguish two cases.

In the first case we assume that m0 + m1 ≥ 2q. In this case there is sufficient space
to accommodate all dummy jobs on the machines with load at most 1. Then schedule s′

will have m0 + m3 machines of load 3, m2 machines of load 2, m0 + m1 − 2q machines of
load 1, and 2q − m0 machines of load 4. From (1) and (2) we get that m0 = m2 + 2m3

and that m1 = 3q − 2m2 − 3m3. Moreover, our assumption m0 + m1 ≥ 2q is equivalent to
m2 + m3 − q ≤ 0. We conclude that

c(s′) ≥ 9(m2 + 3m3) + 4m2 + (q − m2 − m3) + 16(2q − m2 − 2m3)

= 33q − 4m2 − 6m3 ≥ 33q − 4m2 − 6m3 + 4(m2 + m3 − q) = 29q − 2m3.

In the second case we assume that m0 + m1 < 2q. In this case there is not sufficient space
to accommodate all dummy jobs on the machines with load at most 1, and some machines
with load 2 must be used. Then schedule s′ will have m0 + m3 machines of load 3, m1

machines of load 4, 2q − m0 − m1 machines of load 5, and m0 + m1 + m2 − 2q machines
of load 2. As in the first case we use m0 = m2 + 2m3 and m1 = 3q − 2m2 − 3m3. Our
assumption m0 + m1 < 2q is equivalent to q − m2 − m3 < 0. We conclude that

c(s′) ≥ 9(m2 + 3m3) + 16(3q − 2m2 − 3m3) + 25(m2 + m3 − q) + 4(q − m3)

= 27q + 2m2 > 27q + 2m2 + 2(q − m2 − m3) = 29q − 2m3.

This completes the proof of the lemma.

4 FPTAS for any fixed number of machines and a given ℓp

norm

For a given ℓp norm and any fixed number of machines we describe a FPTAS for the
restricted assignment problem, i.e. a (1+ε)-approximation algorithm for any ε > 0 running
in time polynomial in n and 1/ε. Recall that there is no approximation scheme supplying
the same solution for all ℓp norms since the optimal solutions for different norms can vary
significantly. By the hardness of approximation result we showed, there is no approximation
scheme (PTAS or FPTAS) for a given norm and any number of machines unless P=NP.
Hence the only possible approximation scheme is for a given norm and any fixed number of
machines. Our FPTAS is a modification of the method presented initially by Horowitz and
Sahni in [8]. Our algorithm works for all scheduling models: identical, related, restricted
assignment and unrelated machines, and is therefore presented in the most general model,
i.e unrelated machines. For any ε our algorithm Aε consists of the following steps:
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1. Given the jobs weights {wij}, we denote for each job its smallest possible weight by
w̄j = mini wij . Given that there is a feasible assignment placing each job on the
machine where its weight is minimal, we know that in any optimal assignment the
load on each machine is at most

∑n
j=1 w̄j . For this reason we can replace all weights

wij >
∑n

j=1 w̄j by ∞, since no optimal assignment will ever use them. Denote by lopt

the machines load vector corresponding to the optimal assignment. By the convexity
of the norm function we get that: ‖lopt‖p ≥ (

∑n
j=1 w̄j)/m·m1/p. Assume for simplicity

of notation that: (
∑n

j=1 w̄j)/m = 1, hence ‖lopt‖p ≥ m1/p and the maximum load on
any machine in any optimal assignment is at most m. We divide the interval [1, . . . , m]
into m/δ equal parts of size δ each (where δ is a function of ε chosen later) and round
each weight wij to w′

ij = kδ for the maximal k ≥ 0 such that w′
ij ≤ wij .

2. Using dynamic programming we would like to find all possible load vectors correspond-
ing to legal assignments. We define the following states for the jth layer (j = 1, . . . , n):

Tj(l1, . . . , lm) li = k · δ , k = 0, . . . , m/δ ,

where Tj(l1, . . . , lm) = 1 if and only if the load vector (l1, . . . , lm) corresponds to
any legal assignment of the first j jobs (Tj(l1, . . . , lm) = 0 otherwise). The dynamic
program computes each value in the following way:

Tj(l1, . . . , lm) =
m
∨

i=1

Tj−1(l1, . . . , li − w′
ij , . . . , lm) .

For each Tj(li1 , . . . , lim) = 1 we can store the assignment of the jth job, thus for any
legal load vector we can trace back the corresponding assignment (one of the possible
corresponding assignments, to be accurate).

3. After the completion of the dynamic program we choose among all possible load
vectors (all load vectors (li1 , . . . , lim) for which Tn(li1 , . . . , lim) = 1) the one obtaining
the minimal value for the given norm. We return the assignment corresponding to
this load vector. The real cost corresponding to the returned assignment is obtained
by considering the ℓp norm of the load vector when substituting the rounded weights
with the original ones.

Denote by lA the load vector corresponding to the assignment returned by the algorithm
with the original job weights and by l′A the load vector corresponding to the assignment
with the rounded weights. Analogously denote by lopt and l′opt the optimal assignment with
the original and rounded weights, respectively. We first prove that the suggested algorithm
returns an assignment which guarantees (1 + ε)-approximation to the optimal solution.

Lemma 4.1 For any ε > 0 choosing δ = ε/n for the algorithm yields:
‖lA‖p−‖lopt‖p

‖lopt‖p
≤ ε

Proof:

‖lA‖p ≤ ‖l′A + δn ·~1‖p
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≤ ‖l′A‖p + δn · m1/p

≤ ‖l′opt‖p + δn · m1/p

≤ ‖lopt‖p + δn · m1/p .

The first inequality follows from the fact that the rounding procedure decreases each job
weight by at most δ thus lAi ≤ l′Ai + δn (i = 1, . . . , m). The third inequality results from l′A

being optimal for the rounded weights. Recall that ‖lopt‖p ≥ m1/p, thus:

‖lA‖p − ‖lopt‖p

‖lopt‖p
≤ δn · m1/p

m1/p
.

By the choice δ = ε/n we get:
‖lA‖p−‖lopt‖p

‖lopt‖p
≤ ε, as required.

We now analyze the algorithm time complexity. There are n layers (n jobs) in the
dynamic program and the number of states in each layer is (m/δ)m since there are m
machines and each machine load has m/δ possibilities. Calculating the value for a certain
state requires looking at the values of at most m other states. Hence the algorithm time
complexity is: O

(

mn
(

m
δ

)m)

. By substituting δ with its chosen value the complexity is:
O(mn(mn

ε )m), which is polynomial in n and 1/ε. Hence the family of algorithms Aε is a
FPTAS.
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