The Competitiveness of On-Line Assignments *

Yossi Azar T Joseph (Seffi) Naor *
Computer Science Department Computer Science Department
Tel-Aviv University Technion
Tel-Aviv 69978, Israel Haifa 32000, Israel

Raphael Rom
Sun Microsystems
Mountain View

CA 94043-1100

Abstract

Consider the on-line problem where a number of servers are ready to provide service
to a set of customers. Each customer’s job can be handled by any of a subset of the
servers. Customers arrive one-by-one and the problem is to assign each customer to an
appropriate server in a manner that will balance the load on the servers. This problem
can be modeled in a natural way by a bipartite graph where the vertices of one side
(customers) appear one at a time and the vertices of the other side (servers) are known
in advance. We derive tight bounds on the competitive ratio in both deterministic and
randomized cases. Let n denote the number of servers. In the deterministic case we
provide an on-line algorithm that achieves a competitive ratio of k = [log, n] (up to an
additive 1) and prove that this is the best competitive ratio that can be achieved by any
deterministic on-line algorithm. In a similar way we prove that the competitive ratio
for the randomized case is &’ = In(n) (up to an additive 1). We conclude that for this
problem, randomized algorithms differ from deterministic ones by precisely a constant
factor.

* A preliminary version of this paper appeared in Proceedings of the 3rd Annual ACM-STAM Symposium
on Discrete Algorithms, Orlando, Florida, (1992), pp. 203-210.

YA portion of this work was done while the author was in the department of Computer Science, Stanford
University, CA, and supported by a Weizmann fellowship and contract ONR N00014-88-K-0166.

{Part of this work was done while the author was a post-doctoral fellow at the Computer Science De-
partment, Stanford University, Stanford, CA, and supported by contract ONR N00014-88-K-0166.

1 Introduction

Consider a wireless communication network, similar to that of the cellular phone system,
where customers arrive (i.e., turn on their phone) one-by-one in an arbitrary order. Upon
arrival, each customer discloses the extent of service it requires and must be assigned a
base-station, of those within range, to service it. Improper station assignment may cause
overloading of some stations (or equivalently, entail penalty of hand-off). Thus, it is desir-

able to spread the load as evenly as possible.

The above is actually an example of the following general problem. Consider a number
of servers ready to provide service to a set of customers. Each customer’s job can be handled
by any of a subset of the servers. Customers arrive one by one, each with a different amount
of required service, and the problem is to assign each customer to an appropriate server in a
manner that will even out the load balance on the servers. This is a typical on-line problem
in which an algorithm is sought that must make decisions based upon current state without

knowing future events.

The question of evaluating the performance of an on-line algorithm was addressed by
Sleator and Tarjan [13] who argued that the traditional approach of measuring the worst case
behavior does not seem appropriate for many on-line algorithms. Therefore, they suggested
a different measure, the competitive ratio. The performance of an on-line algorithm is
compared with the performance of an optimal off-line algorithm that knows the sequence of
events in advance. The maximum ratio between their respective performances, taken over

all sequences, is called the competitive ratio.

Graham [6] considered the above assignment/scheduling problem for the case where
each job can be handled by all the servers. He proved that the greedy algorithm achieves
a competitive ratio of 2 — 1/n. On-line scheduling problems were considered in [12] and
their references. On-line matching problems in graphs were considered by Karp, Vazirani
and Vazirani [9], and Kalyanasundaran and Pruhs [8]. Other on-line graph problems, in
particular, on-line vertex coloring, are discussed in [10, 14, 7]. The above are examples of the
extensive work that was done in recent years for finding the competitive ratio for different
problems which also include paging [5], servers in a metric space [11], and managing a linked
list [13]. However, there are only few problems for which the competitive ratio is known in

precise.

To further improve the competitiveness of on-line algorithms, extensive work was de-
voted to exploiting and understanding the power of randomization in such environments
[4]. The idea is that randomized on-line algorithms might exhibit a better competitive ratio
than deterministic ones, since they manage to “outsmart” the adversary sometimes. The
common adversary for randomized algorithms is the oblivious one: one who must construct
the request sequence in advance based on the description of the algorithm, but without
knowing the random choices made by the algorithm. It should be noted that an expo-

nential gap between the competitive ratio of deterministic on-line algorithms to that of
randomized ones might exist. In the paging problem, if & denotes the number of pages in
the cache, then £ is the competitive ratio of the best deterministic algorithm; in contrast,
it is known [5] that randomized algorithms can achieve a competitive ratio of log k.

In this paper we explore the problem of on-line weighted assignment in bipartite graphs
for both deterministic and randomized environments and derive exact competitive ratios for
either case. Let m and n denote the number of customers and servers respectively. In the
deterministic case we do so by providing an on-line algorithm that achieves a competitive
ratio of [logy(n)] 41 and by proving that the best competitive ratio that can be achieved by
any deterministic on-line algorithm is [log(n + 1)]. In addition, for randomized algorithms,
we prove that the exact competitive ratio in the unweighted case is Inn (up to an additive
1). We have thus determined the precise performance (including constant factors) in both
the deterministic and the randomized cases, and conclude that for the assignment problem,
randomized algorithms differ from deterministic ones by precisely a constant factor. It
should be noted that the proof of the upper bound in the randomized case holds only for
an oblivious adversary. For an adaptive adversary, we show that randomization does not
improve the competitive ratio. (See [4] for a discussion on the different types of adversaries
in the randomized case).

A related set of problems is that of the split-weight assignments in which the weight of
a vertex can be split and assigned to several of its neighbors. We show that the competitive

ratio for this case is ©(min{m,logn}).

As a result of our work some related problems were considered. We refer to the general
load balancing problem as the case where assigning a customer to a possible server increases
the load on that server by an arbitrary value which depends both on the customer and the
server. This problem was considered in [1] who presented an O(log n) competitive algorithm.
Our logn lower bound implies that their algorithm is optimal (up to a constant factor).
Another interesting model for the load-balancing assignment problems is the model that
customers are not necessarily permanent and hence may arrive and depart at arbitrary
times. It is shown in [2, 3] that there is an algorithm with competitive ratio ©(y/n) and
that no algorithm can do better.

2 The Problem Statement

Let G = (U, V, F) be a bipartite graph having |U| = m vertices on one side (“the customers”)
and |V| = n vertices on the other side (“the servers”) connected by the set of edges I2. We
define the one-sided assignment (or assignment, in short) as the matching of each and every
vertex u € U with a vertex v € V. In general, there may not be a perfect matching in
G, in which case some of the vertices in V will be assigned more than one vertex from U.
We reserve the term matching to the case in which no server is assigned to more than one

customer. Every vertex u; € U has a weight w; associated with it. The sum of the weights
of the vertices assigned to a vertex v € V is referred to as the load of vertex v. The goal
is to come up with an assignment that minimizes the maximum load on any vertex of V.
Clearly, if a perfect matching exists, the maximum load equals the maximum weight. We
will assume without loss of generality that n < m, since all our bounds can be stated as
depending on the minimum between |U| and |V| (except for Section 5).

It is not hard to prove that computing an optimal solution in the off-line case is NP-
complete for arbitrary weights. (This is done by reduction to the knapsack problem). How-
ever, if the weights are all equal, then an optimal solution can be computed in polynomial
time by reduction to maximum flow.

In the on-line version, the vertices of U appear either one-by-one, or in groups, in some
arbitrary order. The appearance of a vertex includes the disclosure of its identity, its weight,
and all the edges incident to it. The on-line algorithm must assign a vertex from V to each
vertex of U/ upon its appearance. We refer to an algorithm’s step as the appearance of a
vertex and its assignment to one of its neighbors (we shall often refer to the beginning of
the step—before any appearance, and the end of the step—after the assignment of that
step is done). In computing the performance of on-line algorithms, we are interested in the
competitive ratio, i.e., the maximum ratio over all possible inputs between the performance
of the on-line algorithm and the off-line one. In the deterministic case, the adversary
constructs the graph and assigns the weights in advance, but since it knows the behavior of

the algorithm for any sequence of requests, it can construct the worst possible sequence.

In the randomized environment we first assume an oblivious adversary, i.e., an adversary
that is familiar with the details of the algorithm, but cannot predict the outcome of the
coins flipped during the actual run. Asin the deterministic case, the adversary has to decide
upon the graph and weights in advance but this time without knowing the actual behavior

of the algorithm. In Section 4.3 we also consider the case of an adaptive adversary.

3 The Deterministic Upper and Lower Bounds

3.1 The Upper Bound

Let the vertices w € U of the bipartite graph G(U,V, F) appear one at a time. We assign
the appearing vertices of U according to the following algorithm.

Algorithm AW: Upon arrival of a vertex u € U assign it to a neighbor with the current
minimum load (ties are broken arbitrarily).

Theorem 3.1 Algorithm AW achieves a competitive ratio of [logn] + 1

Proof: Define W = 77", w; and denote by ¢ the maximum load of a vertex in V in an
optimal solution, denoted by OPT. Clearly, { > W/n.

To facilitate the proof, we adopt the following view of the assignment process. Let M
denote the assignment generated by Algorithm AW. We partition M into successive layers
so that in layer ¢ there is a subassignment M; such that the total load on a vertex in each
subassignment is maximal but does not exceed {. More formally, for every vertex v € V,
let wuj,...,u;, be the vertices assigned to it in M, sorted in the order that Algorithm
AW assigned them. These vertices are partitioned into the layers as follows. Assignment
My contains all the vertices uj ,...,u;, where either, p is the smallest index such that
Soi_qwj; > L, or p=k. The weight of vertex u;, is adjusted to be

p
! .
w; = th‘ {.
=1

Assignments My, M3, ... are defined recursively on the sequence wuj,, ..., u;, along with their
adjusted weights (nodes with a 0 adjusted weight are excluded). Thus every layer contains
the vertices V' and a subset of U as described above along with their adjusted weights.
Notice that any vertex from U may belong to at most two adjacent layers and when this
happens, its weight is partitioned between the two layers.

Let W, denote the sum of the weights of the vertices in M;, and let R; denote the residual
weight of layer ¢, i.e., the sum of the weights of the vertices that have not completed their
assignment in layers j, for j < ¢ (in other words, this is the sum of the adjusted weights
in layers greater than 7). By definition, Ry = W. Clearly, W; = R;_1 — R;,. We prove the
theorem by first showing that R; decreases exponentially with ¢ which we do via the next

two lemmas.

The following notation and definitions are required.
o W;; - The load of vertex v; in layer ¢. Note that) . W;; is the total load on v; and
Wi =31 Wiy

e 2, - The (partial) weight of vertex uy, € U assigned in layer ¢. Note that for every k,
there are at most two (adjacent) layers in which z; > 0.

o O; - The set of vertices in OPT adjacent to vertex v;.

e O;; - The subset of O; which has not finished its assignment in layer ¢, that is, the
subset of O; that appears in layers greater than .

o R;; - The sum of the (adjusted) weights in layer ¢ of the vertices in O;;. Note that
since R;; is a sum of weights of a subset of O}, it clearly follows that R;; < (.

Lemma 3.1 For every i and for each vertex v; € V, W;; > R;;.

If O;; = ¢, the Lemma follows immediately, since R;; = 0. The Lemma also follows
immediately if W;; = { since R;; < {. Therefore, the only remaining case is W;; < £ and a
nonempty O;;.

W;; < { means that in the ¢ th Jayer, v; is not completely loaded, implying that in all
subsequent layers the load on v; is 0. Since the set O;; is nonempty, we are lead to the
conclusion that all the vertices in O;; were assigned in M to vertices different from v;. Let
v, be such a vertex, i.e., uy € O;; is assigned in M to v,. Since AW is a greedy algorithm,
the load of v, could not have been greater than the load of v; at the time of the assignment.
The next two observations are crucial:

o W, = {; otherwise, vertex ux would have completed its assignment in layer ¢ contra-
dicting its belonging to O;;.

o Wi_1,; ={; W;_y; < {implies that W;; = 0, which in turn implies that the load on
v, is greater than that on v; (since W;, = (), which is a contradiction.

Hence, for every k such that u; € Oy;
(i—l)-ﬁ—l—Wij > (i—l)-ﬁ—l—(ﬁ—zik)

where the above LHS denotes the total load on vertex v; up to and including layer ¢, and

the RHS is the load of v, when u; was assigned to it. This implies that,

{—zy < Wy

Noting that ..., co,, wr < £ (since these are OPT assignments), we get from the above
and by the definition of z;,

Rij= > (wp—zix) =Y wp— Y zix <L— Y 2z < Wi

k;“keoi]
which completes the lemma. a
Lemma 3.2 Foralli, R; < % -R;_4.

We observe that for fixed ¢ and 1 < 7 < m, the sets O;; are mutually disjoint. Hence,
> 7oy Rij = R;. Thus, with the aid of Lemma 3.1

The latter inequality implies that B, = R,_1 — W; < R;_1 — R;. Hence,

R, < --Ri4

ot

a

We are now ready to complete the proof of the Theorem. Choose b = [logn]. Clearly,
by applying Lemma 3.2 b times we obtain that,

1
Ro< . my =Y <y
n n

Hence, the load on a vertex in V' can be at most £-b+ Ry. < (-(b+1). Since OPT achieves
a load of £, a competitive ratio of [logn] + 1 is established. a

3.2 The Lower Bound

Theorem 3.2 The competitive ratio of any on-line bipartite assignment algorithm is at

least k = [logy(n + 1)].

Proof: For simplicity and without loss of generality we assume that m is a power of 2, i.e.,
m = 2=, We also assume that all vertices have an equal weight of unity and that m = n.
A bipartite graph &' = (U, V, F) having the following properties is constructed on-line by
the adversary based on the decisions made by the on-line algorithm:

1. The vertices in U will be given to the on-line algorithm in steps. In Step 7, 1 <1 < k,
the set S; appears; for 1 < i <k —1, |S;| = m/2" and |Sy| = 1. Hence, U = UX_, 5;.

2. For 1 <1 < k, all the vertices in 5; have the same neighborhood set, denoted by Y;
3. Yiy1 CYiand |V = m/2i7 L,

4. At the beginning of Step i, before the vertices in 5; are assigned, the average load of

the vertices in Y; is at least ¢ — 1.

If a graph GG with the above properties can be constructed, then at the end of Step k£ —1,
since m = n, there is a vertex in Y;, whose load is at least £ — 1. Since |Y;| = 1 and |Sk| = 1,
at the end of Step k, the load of that vertex will be increased to k. Such a graph G does
have a perfect matching since all the vertices in 5; (1 <7 < k) can be perfectly matched to
all vertices in Y; — Y;11 (define Yiy1 = ¢). Hence, the competitive ratio of k is maintained.
Note that having the input arrive in sets is acceptable since an algorithm that receives its
input in sets, as described above, can do at least as well as an algorithm that receives the

input one vertex at a time.

To construct &, we need to describe how the set Y; is chosen so that the above properties
are maintained. The set Y7 is defined to be V. To obtain Y;41, choose, at the end of Step
i, the n/2" vertices in Y; having the highest load. Properties 1 and 2 can be maintained
independently of Y;, and property 3 clearly holds. We prove property 4 by induction on the
steps of the algorithm. It obviously holds for « = 1. Assume inductively that it holds for i,

i.e., at the beginning of step i the average load on a vertex in Y; is at least ¢ — 1. Hence,
the sum of the loads on the vertices in Y; is at least (7 — 1)|Y;]. In Step ¢, all the vertices in
S; are assigned to vertices from Y;, so that at the end of Step ¢, the sum of the loads of the
vertices of Y; is at least

. |
(i = Yl + 13l = (i =)il

Recall that Y;i; is defined to be the set of |Y;|/2 vertices of ¥; having the largest load. If
the largest load of a vertex of Y; that was not chosen for ;11 is at least ¢, then the load of
each vertex in Y;,; will also be at least 7 and obviously their average as well. Otherwise,
the sum of the loads of the vertices in ¥; — Y41 is at most

i = Yipa|(i = 1) = [Yipa|(z = 1) .

Thus, the sum of the loads of the vertices in Y44 is at least

1 . .
(i = Vil = (i = DYl = Vi)

and hence, the average load on vertices in Y;;q is at least ¢. a

4 The Randomized Upper And Lower Bounds

4.1 The Upper Bound

We restrict ourselves in this section to the case where all vertices have a weight of unity.
Our derivation of the upper bound is based on the ranking algorithm in [9] for on-line
matching in bipartite graphs which proceeds as follows. Choose a random permutation on
the vertices of V' which induces an unambiguous priority order on the vertices in V. Upon
arrival, match vertex u € U with the eligible unmatched vertex in V' of highest priority.
If all eligible vertices, i.e., all neighbors of u, are matched, then w is left unmatched. The
following is proven in [9]:

Theorem 4.1 (KVV) Let p denote the cardinality of the maximum matching in the bi-
partite graph G with 2n vertices. The ranking algorithm finds a matching of size at least

az1—(1—l)n>(1—1)

o - u, where

n €

It is interesting to note that [9] show that an on-line algorithm that matches a vertex
to a neighbor chosen in random performs poorly.

Coupling the algorithm of [9] with our deterministic algorithm yields the following ran-
domized algorithm:

Algorithm AR: For every 1 < ¢ < n, choose a random permutation 7; of the vertices in
V. Consider step [in the algorithm in which vertex u € U arrives, and
denote by j > 0 the minimum load among u’s neighbors upon its arrival.
Vertex u is then assigned to the neighbor of load 7 having the highest

priority according to m;4.

Theorem 4.2 Let G = (U,V, F) be a bipartite graph that contains a matching. The ex-
pected competitive ratio of Algorithm AR is at most k = 1+ In(n) where n = |U| = |V|.

Proof: We have to show that the expected load on each girl ! is at most & = 1 + In(n).
Algorithm AR can be stated in the following equivalent way: let us construct n copies of
the original graph, G1,..., G, and let the permutation 7; induce priorities on the vertices
of ;. When vertex u € U appears, let ¢ be the smallest index such that in G;, v has an
unmatched neighbor. Then, u is matched with its highest priority unmatched neighbor in
G, denoted by v and correspondingly, « is matched to v in the original graph G.

The following properties of the sequence of graphs {G;} are immediate at each step of
the algorithm:

o If vertex v € V is matched in the graph G, then it is also matched in the graphs &,
for j <.

e The load on each girl v € V' in G is equal to 7, where ¢ is the highest index such that

v is matched in G; .

We have to prove that the expected number of copies used by the algorithm in the

sequence {G;} is at most k.

Algorithm AR has an interesting recursive property of which we make use later. Consider
some graph G which was subjected to the execution of Algorithm AR, with permutations
7, ¢ > 1. Let My be the set of vertices matched in 7 during this execution. Consider now
a new graph G’ obtained from G by removing the vertices in My and all their incident edges,
and suppose Algorithm AR is executed on G’ with permutations 7/ = 7,4, ¢ > 1, and with
the same order of arrival of the vertices as in . The matching that Algorithm AR produced
in G'1,G'y, ... is identical to the matching in Gg,Gs,... of the original execution. This
property results from the fact that the permutation m; participates only in the assignments
of GG; and from the memoryless operation of Algorithm AR.

To generalize this, consider, as before, the sequence of graphs {G;} after Algorithm AR
finished its execution. At that time, let M; be the set of boys that are matched in G, let V;
denote the set of boys that are not matched at a lower indexed graph (N; = U — U;;lle),
and let F; be the graph that contains the set of boys N; along with all their incident edges
and neighbors. Notice that N;, F; and M; all depend on 7y ...m;_1. Clearly, the graph F;

'In the following, as commonly done, we refer to the set U as “the boys” and the set V as “the girls”.

has a maximum matching of size | V;| and in addition, the matching of the M; boys in G; is
a maximal matching in the graph F;. Moreover, irrespective of the permutations 7y ... 7;_1
themselves, this matching was chosen according to the ranking algorithm by using the
random permutation w; which is independent of the set IV;_; since the permutations are
mutually independent. (the probability space contains all possible choices of the random
permutations). Thus, by Theorem 4.1

| Vi1l

GRSy

Let T'(n) be a random variable denoting the maximum load in graph ' (where |U| =
|V| = n). To conclude the proof, we have to show that the expected value of T'(n) is at
most k’. It is here that we make use of the recursive feature mentioned above. Let n be the
number of boys in a graph and let n’ be the number of boys left after the removal of those
that were matched by Algorithm AR in Gy. Since Algorithm AR involves randomness, for a
given n, n' is a random variable. The following probabilistic recurrence is defined on T'(n):

The first inequality stems from the fact that the graph with n’ vertices is obtained from
that of n vertices by eliminating the latter’s Gy, meaning that the load difference cannot
exceed unity. The second inequality results directly from Theorem 4.1.

We now prove that E[T(n)] < 1+ In(n) for all positive n. To that end we define the
continuous function A(z) as follows:

Ae) = 1+In(z) =>1
v = x 0<x2<1

Note that the function A(z) is concave as a result of the concavity of the log function and
the fact that the straight line has the same derivative as the In function at the point x = 1.
In addition, since n’ is a random variable, we denote p; = Prob[n’ =il and E[n'] =3, ip;.
Note that always n’ < n.

Assume inductively that A(n) is the solution to the above recurrence relation. Then,

BT < 14 BTN =14 Y p70)

n—1 n—1
< 14 Y piAG) ST+ A dp))
7=0 7=0

= 1+A(ER)) <1+ A(g)

In the inequalities above, the transition in the second line takes advantage of the concavity

of A(z).

For n > 2 we get
E[T(n)] < 1 —|—A(g) —1+ (1 +1n(g)) = 141n(n).

Direct computation shows that E[7(2)] < 1.5 < 1+1n(2). Hence, E[T(n)] < 1+In(n) for
all positive n. a

At first sight it seems that identical bounds should also hold for graphs which do not
have a matching. Unfortunately, there does not seem to be a straightforward way of showing
this. Let § denote the maximum load on a vertex in the off-line case. The obvious approach
is to reduce the case of § > 1 to the case where § = 1 by replacing each vertex v € V by
(3 copies of it, each having the same neighborhood set as v. The new graph, G'(U, V', E'),
has a one-sided assignment. The requirement in Theorem 4.1 is that random permutations
of size 3n are chosen on V' by the randomized on-line algorithm. But, in effect, Algorithm
AR chooses permutations of size n on the vertex set V. We conjecture that the bounds of
Theorem 4.2 still hold in the case where 5 > 1.

4.2 The Lower Bound

Theorem 4.3 The competitive ratio of any randomized on-line assignment algorithm is at
least k — 1 = In(n)

Proof: The theorem is proved by constructing a bipartite graph G(U,V, F) in which the
expected value of the competitive ratio is at least k. Again |U| = |[V| = n. The vertices
u € U of GG appear one-by-one to a randomized on-line algorithm and &' will be constructed
on-line (step-by-step) by the adversary based on the on-line algorithm, but not on the
outcome of the coin-flips of the algorithm. Let Y; denote the set of neighbors of vertex
w; € U (1 <i<n)and let H, be the harmonic series sum, i.e., H, = Y 1", % The graph
G has the following properties:

1. For1 <4, Y41 CY..
2. Yil=n+1-1
3. The sum of the expected loads of the vertices in Y; at the beginning of Step ¢ is at

least (n — ¢+ 1)(H, — Hp—ig1).

If a graph GG with such properties can be constructed, then at the beginning of Step n,
the sum of the expected loads on the vertices of Y, is at least H, — Hy = H, — 1. Since
|Y,| = 1, the expected load on that vertex at the beginning of Step n is H, — 1 and is

10

increased to H, during this step. Note that the set ¥; — Y1 for 1 < i < n (Y41 = ¢)
contains a single vertex which can be matched with the vertex » that appears in the i-th
step, meaning that G contains a perfect matching. Thus, since In(n) < H, < 1+ In(n),
construction of the graph proves the theorem.

To construct the graph G, we define ¥; to be V. To obtain Y;11, at the end of step
t the adversary chooses from Y; the set of n — ¢ vertices with the largest expected load.
Being familiar with the algorithm, the adversary can compute the expected load of each
vertex by averaging over all possible coin-flips of the algorithm. Properties 1 and 2 are
clearly satisfied. We prove by induction on the step number that property 3 holds as
well. Property 3 trivially holds for Step ¢ = 1 and assume inductively that it holds at the
beginning of Step i (before vertex u; appeared). Thus, at the beginning of step ¢ the sum of
the expected loads of the vertices in Y; is at least (n — i+ 1)(H,, — H,—i+1). By definition,
the neighborhood of vertex w; is precisely Y;, which implies that the sum of the expected

load on the vertices in Y; at the end of step 7 is at least
(n—it+ 1) H, - Hpeir)+1=(n—i+ 1)(H,— H,—y) .

By the above choice of the set Y1, the sum of the expected loads on the vertices in Y; (at
the end of Step ¢) is at least

n_ilf“ (n—i+1)(Hy—Hu_i)=(n—i)(H, — H,_;)

which completes the proof. a

4.3 An Adaptive Adversary

A different type of adversary for randomized algorithms is the adaptive adversary (See [4]).
This adversary does not have to construct the graph in advance but rather is allowed to
construct it step by step, taking advantage of the coin flips and assignments made by the
on line algorithm up to that point. However, the adversary is not familiar with the outcome
of future coin flips. The adaptive on-line adversary has to serve the request immediately,
whereas the adaptive off-line adversary serves the request only after the sequence of requests

is completed.

It is clear that the adaptive on-line adversary is at least as powerful as the oblivious
one and at most as powerful as the adaptive off-line adversary. It is also known (see [4])
that the adaptive off-line adversary has the same power as any adversary for deterministic

algorithms. (For deterministic algorithms all adversaries are equivalent).

We now show that randomization does not improve the competitive ratio (denoted by
k") against an adaptive on-line adversary. From the discussion above and from the previous
sections we conclude that Inn < k" < [logy(n + 1)]. We now extend the lower bound for
the deterministic algorithm for this case. Recall that in each step in the proof of the lower

11

bound (see Section 3.2), the adversary provides the on-line algorithm with a set of vertices
S . We will now consider each vertex from this set separately and describe the decisions of
the off-line algorithm as a function of the decisions made by the on-line algorithm. When
the first vertex v of the set 5; appears, its set of neighbors is Y;, as described in the proof of
Theorem 3.2. The on-line algorithm chooses to assign v to some vertex of Y;, say u, while
the adversary chooses to assign v to a different vertex of Y;, say w. The neighborhood set
of the next vertex in 5; is updated by deleting the two vertices u and w from Y;. Since,
initially, |Y;| is twice as large as |.9;|, every vertex in S; has at least two neighbors, and the
adversary can match each vertex to a different vertex than the on-line algorithm. It is easy
to verify that the adversary’s matching is perfect. Moreover, after the on-line algorithm has
matched the entire set 5;, exactly half the vertices in Y; will have load ¢ — 1 and the other
half will have load ¢. Y;41 will be exactly the latter half of the set Y;. Thus, at the end, the
load on vertex S will be exactly k, which completes the proof.

Notice that our proof assumes that the adversary serves each request after the algorithm
has served it. If both the adversary and the algorithm are required to serve the request
simultaneously, the same lower bound holds as well, up to additive small lower order terms.

5 Split Assignments

In this section we consider a variant of the assignment problem where a vertex from the set
U is allowed to split its weight among any of its neighbors. We allow the weights to be split
into arbitrary positive real portions. Notice that in this case the optimal off-line solution
can be computed in polynomial time by reduction to the maximum flow problem.

Algorithm AS: Upon arrival of vertex u; € U with weight w;: let Y denote its set of
neighbors, and let Y, be those vertices of ¥ with minimal load before the
assignment of w; takes place. Assign the weight w; to the set of nodes
Y, C Y such that Y,, C Y, and all vertices of ¥, end up having equal
load.

Algorithm AS is a very natural one despite its complex description. Essentially the
weight w; is distributed among the neighbors of the arriving nodes in a manner that evenly
raises “the low water mark” of these neighbors.

Theorem 5.1 The competitive ratio of any on-line algorithm solving the split-assignment
problem is O(min{m,logn}) where |U| = m and |V| = n.

Proof: We first show that m is an upper bound on the performance of this algorithm.
Upon arrival of vertex u;, let v;, denote the neighbor which has maximum load. After u;
splits its weight among its neighbors, v;, will still be the neighbor which has maximum load
(not necessarily the only one). Hence, its load could have increased by at most ﬁj—:, where

12

d; denotes the degree of u;. Implying that at the end, the maximum load on a vertex in V

w;
m - max e

Obviously, for the off-line algorithm, there exists a vertex whose load is at least

w;
max e .

To prove that the performance of this algorithm is at most logn, we slightly modify

is at most,

the proof of Theorem 3.1. Suppose that the weight w; of vertex u; was split in the off-line
solution, OPT, into weights w;,...,w;q,. To simplify the proof, we now change the rules
for the off-line algorithm: (i) vertex u; appears as d; different vertices, each with weight w;,,
1 < g < d;; (ii) the off-line algorithm is not allowed to split the weights anymore. (Clearly,
now, splitting cannot improve the performance of the off-line algorithm). However, the on-
line algorithm receives the vertices as before and is allowed to split their weight. To prove
the competitive ratio, we now follow the proof of Theorem 3.1. The only lemma whose
proof needs to be modified is Lemma 3.1, although with splitting the proof becomes much
simpler. A modified proof of Lemma 3.1 (using the same notation) is presented next.

Lemma 5.1 For every i and for each vertex v; € V, W;; > R;;.

If the set S;; is empty, then R;; = 0 and the lemma holds. Otherwise, if it is not empty
for some ¢ and j, we claim that W;; = {. The reason is that 5;; cannot be nonempty if layer
¢ of vertex v; is only partially filled; since the on-line algorithm can split the weights, it
will first finish filling layer ¢ of vertex v; before filling layer ¢ + 1 of any other vertex. Since
R;; < {the lemma holds in this case as well. This completes the proof of the upper bound.
O

The proof of the lower bound follows from the graph constructed in the proof of Theorem
3.2 by contracting the vertices of each set 9; into one vertex whose weight is |9;]. More
specifically, the cardinality of vertex set U is m and the cardinality of V is 2771, (Notice
that here m and logn differ by one unit). For 1 < i < m, the weight of vertex u; € U is
2m=1=% and the weight of u,, is 1. The degree of vertex u; is 2”~%. The adversary chooses
the 27~ vertices of largest load from the neighborhood set of u;_; to be the neighborhood
set of w;. It is easy to verify that after vertex u; was served by the algorithm, the average
load of the vertices in its neighborhood set is at least i/2. At the end, therefore, the load

of the (single) neighbor of w,, is m/2.

It is easy to see that logn is a lower bound on the competitive ratio in case logn < m.
The same proof applies, but now only the first log n+ 1 vertices in U have non-zero weights.
All the other vertices have zero weight. a

Notice that the proof of the lower bound holds for the randomized case as well, by
considering the expected load of the vertices in V instead of their actual load.

13

Acknowledgement

We would like to thank Samir Khuller for useful discussions.

References

[1]

AspPNES, J., AzAR, Y., FiaT, A., PLOTKIN, S., AND WAARTZ, O. On-line machine

scheduling with applications to load balancing and virtual circuit routing. In Proc.
25th ACM Symp. on Theory of Computing (May 1993), pp. 623-631.

AzARr, Y., BRODER, A., AND KARLIN, A. On-line load balancing. In Proc. 33rd
IFEE Symp. on Foundations of Computer Science (October 1992), pp. 218-225.

AzAR, Y., KALYANASUNDARAM, B., PLoTKIN, S., PrUHS, K., AND WAARTS, O.
On-line load balancing of temporary tasks. In Proc. Workshop on Algorithms and Data
Structures (August 1993), pp. 119-130.

BeEn-Davip, S., BorobDIN, A., Karpr, R. M., Tarpos, G., AND WIGDERSON, A.
On the power of randomization in on-line algorithms. In Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing (Baltimore, Maryland, May 1990),
pp. 379-386.

Fiar, A., Karp, R. M., LuBy, M., McGrocH, L. A., SLEATOR, D. D., AND
YounG, N. E. Competitive paging algorithms. Journal of Algorithms 12 (1991),
685-699.

GraHAM, R. Bounds for certain multiprocessor anomalies. Bell System Technical
Journal 45 (1966), 1563-1581.

Irant, S. Coloring inductive graphs on-line. In Proceedings of the 31st Annual Sym-
posium on Foundations of Computer Science (St. Louis, Missouri, October 1990),
pp. 470-479.

KALYANASUNDARAN, B., aAND PrUHS, K. Online weighted matching. Journal of
Algorithms 14 (1993), 478-488.

Karp, R. M., VAZIRANI, U. V., AND VAZIRANI, V. V. An optimal algorithm for
on-line bipartite mathcing. In Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing (Baltimore, Maryland, May 1990), pp. 352-358.

Lovasz, L., SAKS, M., AND TROTTER, W. T. An on-line graph coloring algorithm
with sublinear performance ratio. Discrete Math 75 (1989), 319-325.

14

[11] Manasse, M. S., McGrocH, L. A., AND SLEATOR, D. D. Competitive algorithms
for on-line problems. In Proceedings of the 20th Annual ACM Symposium on Theory
of Computing (Chicago, Illinois, May 1988), pp. 322-333.

[12] Sumoys, D., WEIN, J., AND WILLIAMSON, D. Scheduling parallel machines on-line.
In Proc. 32nd IEEFE Symp. on Foundations of Computer Science (1991), pp. 131-140.

[13] SLEATOR, D. D., AND TARIAN, R. E. Amortized efficiency of list update and paging
rules. Communications of the ACM 28, 2 (1985), 202-208.

[14] VISHWANATHAN, S. Randomized on-line graph coloring. Journal of Algorithms 13
(1992), 657-669.

15

