
The Competitiveness of On-Line Assignments �Yossi Azar yComputer Science DepartmentTel-Aviv UniversityTel-Aviv 69978, Israel Joseph (Se�) Naor zComputer Science DepartmentTechnionHaifa 32000, IsraelRaphael RomSun MicrosystemsMountain ViewCA 94043-1100AbstractConsider the on-line problem where a number of servers are ready to provide serviceto a set of customers. Each customer's job can be handled by any of a subset of theservers. Customers arrive one-by-one and the problem is to assign each customer to anappropriate server in a manner that will balance the load on the servers. This problemcan be modeled in a natural way by a bipartite graph where the vertices of one side(customers) appear one at a time and the vertices of the other side (servers) are knownin advance. We derive tight bounds on the competitive ratio in both deterministic andrandomized cases. Let n denote the number of servers. In the deterministic case weprovide an on-line algorithm that achieves a competitive ratio of k = dlog2 ne (up to anadditive 1) and prove that this is the best competitive ratio that can be achieved by anydeterministic on-line algorithm. In a similar way we prove that the competitive ratiofor the randomized case is k0 = ln(n) (up to an additive 1). We conclude that for thisproblem, randomized algorithms di�er from deterministic ones by precisely a constantfactor.�A preliminary version of this paper appeared in Proceedings of the 3rd Annual ACM-SIAM Symposiumon Discrete Algorithms, Orlando, Florida, (1992), pp. 203-210.yA portion of this work was done while the author was in the department of Computer Science, StanfordUniversity, CA, and supported by a Weizmann fellowship and contract ONR N00014-88-K-0166.zPart of this work was done while the author was a post-doctoral fellow at the Computer Science De-partment, Stanford University, Stanford, CA, and supported by contract ONR N00014-88-K-0166.

1 IntroductionConsider a wireless communication network, similar to that of the cellular phone system,where customers arrive (i.e., turn on their phone) one-by-one in an arbitrary order. Uponarrival, each customer discloses the extent of service it requires and must be assigned abase-station, of those within range, to service it. Improper station assignment may causeoverloading of some stations (or equivalently, entail penalty of hand-o�). Thus, it is desir-able to spread the load as evenly as possible.The above is actually an example of the following general problem. Consider a numberof servers ready to provide service to a set of customers. Each customer's job can be handledby any of a subset of the servers. Customers arrive one by one, each with a di�erent amountof required service, and the problem is to assign each customer to an appropriate server in amanner that will even out the load balance on the servers. This is a typical on-line problemin which an algorithm is sought that must make decisions based upon current state withoutknowing future events.The question of evaluating the performance of an on-line algorithm was addressed bySleator and Tarjan [13] who argued that the traditional approach of measuring the worst casebehavior does not seem appropriate for many on-line algorithms. Therefore, they suggesteda di�erent measure, the competitive ratio. The performance of an on-line algorithm iscompared with the performance of an optimal o�-line algorithm that knows the sequence ofevents in advance. The maximum ratio between their respective performances, taken overall sequences, is called the competitive ratio.Graham [6] considered the above assignment/scheduling problem for the case whereeach job can be handled by all the servers. He proved that the greedy algorithm achievesa competitive ratio of 2 � 1=n. On-line scheduling problems were considered in [12] andtheir references. On-line matching problems in graphs were considered by Karp, Vaziraniand Vazirani [9], and Kalyanasundaran and Pruhs [8]. Other on-line graph problems, inparticular, on-line vertex coloring, are discussed in [10, 14, 7]. The above are examples of theextensive work that was done in recent years for �nding the competitive ratio for di�erentproblems which also include paging [5], servers in a metric space [11], and managing a linkedlist [13]. However, there are only few problems for which the competitive ratio is known inprecise.To further improve the competitiveness of on-line algorithms, extensive work was de-voted to exploiting and understanding the power of randomization in such environments[4]. The idea is that randomized on-line algorithms might exhibit a better competitive ratiothan deterministic ones, since they manage to \outsmart" the adversary sometimes. Thecommon adversary for randomized algorithms is the oblivious one: one who must constructthe request sequence in advance based on the description of the algorithm, but withoutknowing the random choices made by the algorithm. It should be noted that an expo-1

nential gap between the competitive ratio of deterministic on-line algorithms to that ofrandomized ones might exist. In the paging problem, if k denotes the number of pages inthe cache, then k is the competitive ratio of the best deterministic algorithm; in contrast,it is known [5] that randomized algorithms can achieve a competitive ratio of log k.In this paper we explore the problem of on-line weighted assignment in bipartite graphsfor both deterministic and randomized environments and derive exact competitive ratios foreither case. Let m and n denote the number of customers and servers respectively. In thedeterministic case we do so by providing an on-line algorithm that achieves a competitiveratio of dlog2(n)e+1 and by proving that the best competitive ratio that can be achieved byany deterministic on-line algorithm is dlog(n+1)e. In addition, for randomized algorithms,we prove that the exact competitive ratio in the unweighted case is lnn (up to an additive1). We have thus determined the precise performance (including constant factors) in boththe deterministic and the randomized cases, and conclude that for the assignment problem,randomized algorithms di�er from deterministic ones by precisely a constant factor. Itshould be noted that the proof of the upper bound in the randomized case holds only foran oblivious adversary. For an adaptive adversary, we show that randomization does notimprove the competitive ratio. (See [4] for a discussion on the di�erent types of adversariesin the randomized case).A related set of problems is that of the split-weight assignments in which the weight ofa vertex can be split and assigned to several of its neighbors. We show that the competitiveratio for this case is �(minfm; logng).As a result of our work some related problems were considered. We refer to the generalload balancing problem as the case where assigning a customer to a possible server increasesthe load on that server by an arbitrary value which depends both on the customer and theserver. This problem was considered in [1] who presented an O(logn) competitive algorithm.Our log n lower bound implies that their algorithm is optimal (up to a constant factor).Another interesting model for the load-balancing assignment problems is the model thatcustomers are not necessarily permanent and hence may arrive and depart at arbitrarytimes. It is shown in [2, 3] that there is an algorithm with competitive ratio �(pn) andthat no algorithm can do better.2 The Problem StatementLet G = (U; V; E) be a bipartite graph having jU j = m vertices on one side (\the customers")and jV j = n vertices on the other side (\the servers") connected by the set of edges E. Wede�ne the one-sided assignment (or assignment, in short) as the matching of each and everyvertex u 2 U with a vertex v 2 V . In general, there may not be a perfect matching inG, in which case some of the vertices in V will be assigned more than one vertex from U .We reserve the term matching to the case in which no server is assigned to more than one2

customer. Every vertex ui 2 U has a weight wi associated with it. The sum of the weightsof the vertices assigned to a vertex v 2 V is referred to as the load of vertex v. The goalis to come up with an assignment that minimizes the maximum load on any vertex of V .Clearly, if a perfect matching exists, the maximum load equals the maximum weight. Wewill assume without loss of generality that n � m, since all our bounds can be stated asdepending on the minimum between jU j and jV j (except for Section 5).It is not hard to prove that computing an optimal solution in the o�-line case is NP-complete for arbitrary weights. (This is done by reduction to the knapsack problem). How-ever, if the weights are all equal, then an optimal solution can be computed in polynomialtime by reduction to maximum
ow.In the on-line version, the vertices of U appear either one-by-one, or in groups, in somearbitrary order. The appearance of a vertex includes the disclosure of its identity, its weight,and all the edges incident to it. The on-line algorithm must assign a vertex from V to eachvertex of U upon its appearance. We refer to an algorithm's step as the appearance of avertex and its assignment to one of its neighbors (we shall often refer to the beginning ofthe step|before any appearance, and the end of the step|after the assignment of thatstep is done). In computing the performance of on-line algorithms, we are interested in thecompetitive ratio, i.e., the maximum ratio over all possible inputs between the performanceof the on-line algorithm and the o�-line one. In the deterministic case, the adversaryconstructs the graph and assigns the weights in advance, but since it knows the behavior ofthe algorithm for any sequence of requests, it can construct the worst possible sequence.In the randomized environment we �rst assume an oblivious adversary, i.e., an adversarythat is familiar with the details of the algorithm, but cannot predict the outcome of thecoins
ipped during the actual run. As in the deterministic case, the adversary has to decideupon the graph and weights in advance but this time without knowing the actual behaviorof the algorithm. In Section 4.3 we also consider the case of an adaptive adversary.3 The Deterministic Upper and Lower Bounds3.1 The Upper BoundLet the vertices u 2 U of the bipartite graph G(U; V; E) appear one at a time. We assignthe appearing vertices of U according to the following algorithm.Algorithm AW: Upon arrival of a vertex u 2 U assign it to a neighbor with the currentminimum load (ties are broken arbitrarily).Theorem 3.1 Algorithm AW achieves a competitive ratio of dlogne + 13

Proof: De�ne W = Pmk=1 wk and denote by ` the maximum load of a vertex in V in anoptimal solution, denoted by OPT. Clearly, ` � W=n.To facilitate the proof, we adopt the following view of the assignment process. Let Mdenote the assignment generated by Algorithm AW . We partition M into successive layersso that in layer i there is a subassignment Mi such that the total load on a vertex in eachsubassignment is maximal but does not exceed `. More formally, for every vertex v 2 V ,let uj1 ; : : : ; ujk be the vertices assigned to it in M , sorted in the order that AlgorithmAW assigned them. These vertices are partitioned into the layers as follows. AssignmentM1 contains all the vertices uj1 ; : : : ; ujp where either, p is the smallest index such thatPpi=1 wji � `, or p = k. The weight of vertex ujp is adjusted to bew0jp = pXi=1wji � `:AssignmentsM2;M3; : : : are de�ned recursively on the sequence ujp ; : : : ; ujk along with theiradjusted weights (nodes with a 0 adjusted weight are excluded). Thus every layer containsthe vertices V and a subset of U as described above along with their adjusted weights.Notice that any vertex from U may belong to at most two adjacent layers and when thishappens, its weight is partitioned between the two layers.LetWi denote the sum of the weights of the vertices inMi, and let Ri denote the residualweight of layer i, i.e., the sum of the weights of the vertices that have not completed theirassignment in layers j, for j � i (in other words, this is the sum of the adjusted weightsin layers greater than i). By de�nition, R0 = W . Clearly, Wi = Ri�1 � Ri. We prove thetheorem by �rst showing that Ri decreases exponentially with i which we do via the nexttwo lemmas.The following notation and de�nitions are required.� Wij - The load of vertex vj in layer i. Note that PiWij is the total load on vj andWi =Pnj=1Wij .� zik - The (partial) weight of vertex uk 2 U assigned in layer i. Note that for every k,there are at most two (adjacent) layers in which zik > 0.� Oj - The set of vertices in OPT adjacent to vertex vj .� Oij - The subset of Oj which has not �nished its assignment in layer i, that is, thesubset of Oj that appears in layers greater than i.� Rij - The sum of the (adjusted) weights in layer i of the vertices in Oij . Note thatsince Rij is a sum of weights of a subset of Oj , it clearly follows that Rij � `.Lemma 3.1 For every i and for each vertex vj 2 V , Wij � Rij.4

If Oij = �, the Lemma follows immediately, since Rij = 0. The Lemma also followsimmediately if Wij = ` since Rij � `. Therefore, the only remaining case is Wij < ` and anonempty Oij .Wij < ` means that in the i th layer, vj is not completely loaded, implying that in allsubsequent layers the load on vj is 0. Since the set Oij is nonempty, we are lead to theconclusion that all the vertices in Oij were assigned in M to vertices di�erent from vj . Letvr be such a vertex, i.e., uk 2 Oij is assigned in M to vr. Since AW is a greedy algorithm,the load of vr could not have been greater than the load of vj at the time of the assignment.The next two observations are crucial:� Wir = `; otherwise, vertex uk would have completed its assignment in layer i contra-dicting its belonging to Oij .� Wi�1;j = `; Wi�1;j < ` implies that Wij = 0, which in turn implies that the load onvr is greater than that on vi (since Wir = `), which is a contradiction.Hence, for every k such that uk 2 Oij(i� 1) � `+Wij � (i� 1) � `+ (`� zik)where the above LHS denotes the total load on vertex vj up to and including layer i, andthe RHS is the load of vr when uk was assigned to it. This implies that,`� zik � WijNoting thatPk;uk2Oij wk � ` (since these are OPT assignments), we get from the aboveand by the de�nition of zik,Rij = Xk;uk2Oij(wk � zik) =Xwk �X zik � `�X zik �Wijwhich completes the lemma. 2Lemma 3.2 For all i, Ri � 12 �Ri�1.We observe that for �xed i and 1 � j � m, the sets Oij are mutually disjoint. Hence,Pmj=1Rij = Ri. Thus, with the aid of Lemma 3.1Wi = nXj=1Wij � nXj=1Rij = Ri :The latter inequality implies that Ri = Ri�1 �Wi � Ri�1 �Ri. Hence,Ri � 12 �Ri�15

2We are now ready to complete the proof of the Theorem. Choose b = dlog ne. Clearly,by applying Lemma 3.2 b times we obtain that,Rb � 1n �R0 = Wn � `Hence, the load on a vertex in V can be at most ` � b+Rb: � ` � (b+1). Since OPT achievesa load of `, a competitive ratio of dlog ne+ 1 is established. 23.2 The Lower BoundTheorem 3.2 The competitive ratio of any on-line bipartite assignment algorithm is atleast k = dlog2(n+ 1)e.Proof: For simplicity and without loss of generality we assume that m is a power of 2, i.e.,m = 2k�1. We also assume that all vertices have an equal weight of unity and that m = n.A bipartite graph G = (U; V; E) having the following properties is constructed on-line bythe adversary based on the decisions made by the on-line algorithm:1. The vertices in U will be given to the on-line algorithm in steps. In Step i, 1 � i � k,the set Si appears; for 1 � i � k � 1, jSij = m=2i and jSkj = 1. Hence, U = [ki=1Si.2. For 1 � i � k, all the vertices in Si have the same neighborhood set, denoted by Yi3. Yi+1 � Yi and jYij = m=2i�1.4. At the beginning of Step i, before the vertices in Si are assigned, the average load ofthe vertices in Yi is at least i� 1.If a graph G with the above properties can be constructed, then at the end of Step k�1,since m = n, there is a vertex in Yk whose load is at least k�1. Since jYk j = 1 and jSkj = 1,at the end of Step k, the load of that vertex will be increased to k. Such a graph G doeshave a perfect matching since all the vertices in Si (1 � i � k) can be perfectly matched toall vertices in Yi � Yi+1 (de�ne Yk+1 = �). Hence, the competitive ratio of k is maintained.Note that having the input arrive in sets is acceptable since an algorithm that receives itsinput in sets, as described above, can do at least as well as an algorithm that receives theinput one vertex at a time.To construct G, we need to describe how the set Yi is chosen so that the above propertiesare maintained. The set Y1 is de�ned to be V . To obtain Yi+1, choose, at the end of Stepi, the n=2i vertices in Yi having the highest load. Properties 1 and 2 can be maintainedindependently of Yi, and property 3 clearly holds. We prove property 4 by induction on thesteps of the algorithm. It obviously holds for i = 1. Assume inductively that it holds for i,6

i.e., at the beginning of step i the average load on a vertex in Yi is at least i � 1. Hence,the sum of the loads on the vertices in Yi is at least (i� 1)jYij. In Step i, all the vertices inSi are assigned to vertices from Yi, so that at the end of Step i, the sum of the loads of thevertices of Yi is at least (i� 1)jYij+ jSij = (i� 12)jYij :Recall that Yi+1 is de�ned to be the set of jYij=2 vertices of Yi having the largest load. Ifthe largest load of a vertex of Yi that was not chosen for Yi+1 is at least i, then the load ofeach vertex in Yi+1 will also be at least i and obviously their average as well. Otherwise,the sum of the loads of the vertices in Yi � Yi+1 is at mostjYi � Yi+1j(i� 1) = jYi+1j(i� 1) :Thus, the sum of the loads of the vertices in Yi+1 is at least(i� 12)jYij � (i� 1)jYi+1j = ijYi+1jand hence, the average load on vertices in Yi+1 is at least i. 24 The Randomized Upper And Lower Bounds4.1 The Upper BoundWe restrict ourselves in this section to the case where all vertices have a weight of unity.Our derivation of the upper bound is based on the ranking algorithm in [9] for on-linematching in bipartite graphs which proceeds as follows. Choose a random permutation onthe vertices of V which induces an unambiguous priority order on the vertices in V . Uponarrival, match vertex u 2 U with the eligible unmatched vertex in V of highest priority.If all eligible vertices, i.e., all neighbors of u, are matched, then u is left unmatched. Thefollowing is proven in [9]:Theorem 4.1 (KVV) Let � denote the cardinality of the maximum matching in the bi-partite graph G with 2n vertices. The ranking algorithm �nds a matching of size at least� � �, where � � 1� �1� 1n�n > (1� 1e)It is interesting to note that [9] show that an on-line algorithm that matches a vertexto a neighbor chosen in random performs poorly.Coupling the algorithm of [9] with our deterministic algorithm yields the following ran-domized algorithm: 7

Algorithm AR: For every 1 � i � n, choose a random permutation �i of the vertices inV . Consider step l in the algorithm in which vertex u 2 U arrives, anddenote by j � 0 the minimum load among u's neighbors upon its arrival.Vertex u is then assigned to the neighbor of load j having the highestpriority according to �j+1.Theorem 4.2 Let G = (U; V; E) be a bipartite graph that contains a matching. The ex-pected competitive ratio of Algorithm AR is at most k = 1+ ln(n) where n = jU j = jV j.Proof: We have to show that the expected load on each girl 1 is at most k = 1 + ln(n).Algorithm AR can be stated in the following equivalent way: let us construct n copies ofthe original graph, G1; : : : ; Gn, and let the permutation �i induce priorities on the verticesof Gi. When vertex u 2 U appears, let i be the smallest index such that in Gi, u has anunmatched neighbor. Then, u is matched with its highest priority unmatched neighbor inGi, denoted by v and correspondingly, u is matched to v in the original graph G.The following properties of the sequence of graphs fGig are immediate at each step ofthe algorithm:� If vertex v 2 V is matched in the graph Gi, then it is also matched in the graphs Gj ,for j � i.� The load on each girl v 2 V in G is equal to i, where i is the highest index such thatv is matched in Gi .We have to prove that the expected number of copies used by the algorithm in thesequence fGig is at most k.AlgorithmAR has an interesting recursive property of which we make use later. Considersome graph G which was subjected to the execution of Algorithm AR, with permutations�i, i � 1. Let M1 be the set of vertices matched in G1 during this execution. Consider nowa new graph G0 obtained from G by removing the vertices in M1 and all their incident edges,and suppose Algorithm AR is executed on G0 with permutations �0i = �i+1, i � 1, and withthe same order of arrival of the vertices as in G. The matching that Algorithm AR producedin G01; G02; : : : is identical to the matching in G2; G3; : : : of the original execution. Thisproperty results from the fact that the permutation �i participates only in the assignmentsof Gi and from the memoryless operation of Algorithm AR.To generalize this, consider, as before, the sequence of graphs fGig after Algorithm AR�nished its execution. At that time, let Mi be the set of boys that are matched in Gi, let Nidenote the set of boys that are not matched at a lower indexed graph (Ni = U � [i�1j=1Mj),and let Fi be the graph that contains the set of boys Ni along with all their incident edgesand neighbors. Notice that Ni, Fi and Mi all depend on �1 : : : �i�1. Clearly, the graph Fi1In the following, as commonly done, we refer to the set U as \the boys" and the set V as \the girls".8

has a maximum matching of size jNij and in addition, the matching of the Mi boys in Gi isa maximal matching in the graph Fi. Moreover, irrespective of the permutations �1 : : : �i�1themselves, this matching was chosen according to the ranking algorithm by using therandom permutation �i which is independent of the set Ni�1 since the permutations aremutually independent. (the probability space contains all possible choices of the randompermutations). Thus, by Theorem 4.1E[jNij] � jNi�1je :Let T (n) be a random variable denoting the maximum load in graph G (where jU j =jV j = n). To conclude the proof, we have to show that the expected value of T (n) is atmost k0. It is here that we make use of the recursive feature mentioned above. Let n be thenumber of boys in a graph and let n0 be the number of boys left after the removal of thosethat were matched by Algorithm AR in G1. Since Algorithm AR involves randomness, for agiven n, n0 is a random variable. The following probabilistic recurrence is de�ned on T (n):T (n) � 1 + T (n0)such that E[n0] � neand T (1) = 1; T (0) = 0:The �rst inequality stems from the fact that the graph with n0 vertices is obtained fromthat of n vertices by eliminating the latter's G1, meaning that the load di�erence cannotexceed unity. The second inequality results directly from Theorem 4.1.We now prove that E[T (n)] � 1 + ln(n) for all positive n. To that end we de�ne thecontinuous function �(x) as follows:�(x) = (1 + ln(x) x > 1x 0 � x � 1Note that the function �(x) is concave as a result of the concavity of the log function andthe fact that the straight line has the same derivative as the ln function at the point x = 1.In addition, since n0 is a random variable, we denote pi = Prob[n0 = i] and E[n0] =Pi ipi.Note that always n0 < n.Assume inductively that �(n) is the solution to the above recurrence relation. Then,E[T (n)] � 1 + E[T (n0)] = 1 + n�1Xj=0 pjT (j)� 1 + n�1Xj=0 pj�(j) � 1 + �(n�1Xj=0 jpj)= 1 + �(E[n0]) � 1 + �(ne)9

In the inequalities above, the transition in the second line takes advantage of the concavityof �(x).For n > 2 we getE[T (n)] � 1 + �(ne) = 1 + �1 + ln(ne)� = 1 + ln(n) :Direct computation shows that E[T (2)]� 1:5 < 1+ ln(2). Hence, E[T (n)] � 1+ ln(n) forall positive n. 2At �rst sight it seems that identical bounds should also hold for graphs which do nothave a matching. Unfortunately, there does not seem to be a straightforward way of showingthis. Let � denote the maximum load on a vertex in the o�-line case. The obvious approachis to reduce the case of � > 1 to the case where � = 1 by replacing each vertex v 2 V by� copies of it, each having the same neighborhood set as v. The new graph, G0(U; V 0; E 0),has a one-sided assignment. The requirement in Theorem 4.1 is that random permutationsof size �n are chosen on V 0 by the randomized on-line algorithm. But, in e�ect, AlgorithmAR chooses permutations of size n on the vertex set V . We conjecture that the bounds ofTheorem 4.2 still hold in the case where � > 1.4.2 The Lower BoundTheorem 4.3 The competitive ratio of any randomized on-line assignment algorithm is atleast k � 1 = ln(n)Proof: The theorem is proved by constructing a bipartite graph G(U; V; E) in which theexpected value of the competitive ratio is at least k. Again jU j = jV j = n. The verticesu 2 U of G appear one-by-one to a randomized on-line algorithm and G will be constructedon-line (step-by-step) by the adversary based on the on-line algorithm, but not on theoutcome of the coin-
ips of the algorithm. Let Yi denote the set of neighbors of vertexui 2 U (1 � i � n) and let Hn be the harmonic series sum, i.e., Hn = Pni=1 1i . The graphG has the following properties:1. For 1 � i, Yi+1 � Yi.2. jYij = n+ 1� i3. The sum of the expected loads of the vertices in Yi at the beginning of Step i is atleast (n� i+ 1)(Hn �Hn�i+1).If a graph G with such properties can be constructed, then at the beginning of Step n,the sum of the expected loads on the vertices of Yn is at least Hn � H1 = Hn � 1. SincejYnj = 1, the expected load on that vertex at the beginning of Step n is Hn � 1 and is10

increased to Hn during this step. Note that the set Yi � Yi+1 for 1 � i � n (Yn+1 = �)contains a single vertex which can be matched with the vertex v that appears in the i-thstep, meaning that G contains a perfect matching. Thus, since ln(n) < Hn � 1 + ln(n),construction of the graph proves the theorem.To construct the graph G, we de�ne Y1 to be V . To obtain Yi+1, at the end of stepi the adversary chooses from Yi the set of n � i vertices with the largest expected load.Being familiar with the algorithm, the adversary can compute the expected load of eachvertex by averaging over all possible coin-
ips of the algorithm. Properties 1 and 2 areclearly satis�ed. We prove by induction on the step number that property 3 holds aswell. Property 3 trivially holds for Step i = 1 and assume inductively that it holds at thebeginning of Step i (before vertex ui appeared). Thus, at the beginning of step i the sum ofthe expected loads of the vertices in Yi is at least (n� i+ 1)(Hn �Hn�i+1). By de�nition,the neighborhood of vertex ui is precisely Yi, which implies that the sum of the expectedload on the vertices in Yi at the end of step i is at least(n� i+ 1)(Hn �Hn�i+1) + 1 = (n� i+ 1)(Hn �Hn�i) :By the above choice of the set Yi+1, the sum of the expected loads on the vertices in Yi (atthe end of Step i) is at leastn � in� i+ 1 � (n� i+ 1)(Hn �Hn�i) = (n� i)(Hn �Hn�i)which completes the proof. 24.3 An Adaptive AdversaryA di�erent type of adversary for randomized algorithms is the adaptive adversary (See [4]).This adversary does not have to construct the graph in advance but rather is allowed toconstruct it step by step, taking advantage of the coin
ips and assignments made by theon line algorithm up to that point. However, the adversary is not familiar with the outcomeof future coin
ips. The adaptive on-line adversary has to serve the request immediately,whereas the adaptive o�-line adversary serves the request only after the sequence of requestsis completed.It is clear that the adaptive on-line adversary is at least as powerful as the obliviousone and at most as powerful as the adaptive o�-line adversary. It is also known (see [4])that the adaptive o�-line adversary has the same power as any adversary for deterministicalgorithms. (For deterministic algorithms all adversaries are equivalent).We now show that randomization does not improve the competitive ratio (denoted byk00) against an adaptive on-line adversary. From the discussion above and from the previoussections we conclude that ln n � k00 � dlog2(n + 1)e. We now extend the lower bound forthe deterministic algorithm for this case. Recall that in each step in the proof of the lower11

bound (see Section 3.2), the adversary provides the on-line algorithm with a set of verticesSi . We will now consider each vertex from this set separately and describe the decisions ofthe o�-line algorithm as a function of the decisions made by the on-line algorithm. Whenthe �rst vertex v of the set Si appears, its set of neighbors is Yi, as described in the proof ofTheorem 3.2. The on-line algorithm chooses to assign v to some vertex of Yi, say u, whilethe adversary chooses to assign v to a di�erent vertex of Yi, say w. The neighborhood setof the next vertex in Si is updated by deleting the two vertices u and w from Yi. Since,initially, jYij is twice as large as jSij, every vertex in Si has at least two neighbors, and theadversary can match each vertex to a di�erent vertex than the on-line algorithm. It is easyto verify that the adversary's matching is perfect. Moreover, after the on-line algorithm hasmatched the entire set Si, exactly half the vertices in Yi will have load i� 1 and the otherhalf will have load i. Yi+1 will be exactly the latter half of the set Yi. Thus, at the end, theload on vertex Sk will be exactly k, which completes the proof.Notice that our proof assumes that the adversary serves each request after the algorithmhas served it. If both the adversary and the algorithm are required to serve the requestsimultaneously, the same lower bound holds as well, up to additive small lower order terms.5 Split AssignmentsIn this section we consider a variant of the assignment problem where a vertex from the setU is allowed to split its weight among any of its neighbors. We allow the weights to be splitinto arbitrary positive real portions. Notice that in this case the optimal o�-line solutioncan be computed in polynomial time by reduction to the maximum
ow problem.Algorithm AS: Upon arrival of vertex ui 2 U with weight wi: let Y denote its set ofneighbors, and let Ym be those vertices of Y with minimal load before theassignment of wi takes place. Assign the weight wi to the set of nodesYa � Y such that Ym � Ya and all vertices of Ya end up having equalload.Algorithm AS is a very natural one despite its complex description. Essentially theweight wi is distributed among the neighbors of the arriving nodes in a manner that evenlyraises \the low water mark" of these neighbors.Theorem 5.1 The competitive ratio of any on-line algorithm solving the split-assignmentproblem is �(minfm; logng) where jU j = m and jV j = n.Proof: We �rst show that m is an upper bound on the performance of this algorithm.Upon arrival of vertex ui, let vji denote the neighbor which has maximum load. After uisplits its weight among its neighbors, vji will still be the neighbor which has maximum load(not necessarily the only one). Hence, its load could have increased by at most widi , where12

di denotes the degree of ui. Implying that at the end, the maximum load on a vertex in Vis at most, m �maxi�m �widi �Obviously, for the o�-line algorithm, there exists a vertex whose load is at leastmaxi�m �widi � :To prove that the performance of this algorithm is at most logn, we slightly modifythe proof of Theorem 3.1. Suppose that the weight wi of vertex ui was split in the o�-linesolution, OPT, into weights wi1; : : : ; widi. To simplify the proof, we now change the rulesfor the o�-line algorithm: (i) vertex ui appears as di di�erent vertices, each with weight wiq,1 � q � di; (ii) the o�-line algorithm is not allowed to split the weights anymore. (Clearly,now, splitting cannot improve the performance of the o�-line algorithm). However, the on-line algorithm receives the vertices as before and is allowed to split their weight. To provethe competitive ratio, we now follow the proof of Theorem 3.1. The only lemma whoseproof needs to be modi�ed is Lemma 3.1, although with splitting the proof becomes muchsimpler. A modi�ed proof of Lemma 3.1 (using the same notation) is presented next.Lemma 5.1 For every i and for each vertex vj 2 V , Wij � Rij.If the set Sij is empty, then Rij = 0 and the lemma holds. Otherwise, if it is not emptyfor some i and j, we claim thatWij = `. The reason is that Sij cannot be nonempty if layeri of vertex vj is only partially �lled; since the on-line algorithm can split the weights, itwill �rst �nish �lling layer i of vertex vj before �lling layer i+ 1 of any other vertex. SinceRij � ` the lemma holds in this case as well. This completes the proof of the upper bound.2 The proof of the lower bound follows from the graph constructed in the proof of Theorem3.2 by contracting the vertices of each set Si into one vertex whose weight is jSij. Morespeci�cally, the cardinality of vertex set U is m and the cardinality of V is 2m�1. (Noticethat here m and logn di�er by one unit). For 1 � i < m, the weight of vertex ui 2 U is2m�1�i and the weight of um is 1. The degree of vertex ui is 2m�i. The adversary choosesthe 2m�i vertices of largest load from the neighborhood set of ui�1 to be the neighborhoodset of ui. It is easy to verify that after vertex ui was served by the algorithm, the averageload of the vertices in its neighborhood set is at least i=2. At the end, therefore, the loadof the (single) neighbor of um is m=2.It is easy to see that logn is a lower bound on the competitive ratio in case logn < m.The same proof applies, but now only the �rst log n+1 vertices in U have non-zero weights.All the other vertices have zero weight. 2Notice that the proof of the lower bound holds for the randomized case as well, byconsidering the expected load of the vertices in V instead of their actual load.13

AcknowledgementWe would like to thank Samir Khuller for useful discussions.References[1] Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., and Waartz, O. On-line machinescheduling with applications to load balancing and virtual circuit routing. In Proc.25th ACM Symp. on Theory of Computing (May 1993), pp. 623{631.[2] Azar, Y., Broder, A., and Karlin, A. On-line load balancing. In Proc. 33rdIEEE Symp. on Foundations of Computer Science (October 1992), pp. 218{225.[3] Azar, Y., Kalyanasundaram, B., Plotkin, S., Pruhs, K., and Waarts, O.On-line load balancing of temporary tasks. In Proc. Workshop on Algorithms and DataStructures (August 1993), pp. 119{130.[4] Ben-David, S., Borodin, A., Karp, R. M., Tardos, G., and Wigderson, A.On the power of randomization in on-line algorithms. In Proceedings of the 22ndAnnual ACM Symposium on Theory of Computing (Baltimore, Maryland, May 1990),pp. 379{386.[5] Fiat, A., Karp, R. M., Luby, M., McGeoch, L. A., Sleator, D. D., andYoung, N. E. Competitive paging algorithms. Journal of Algorithms 12 (1991),685{699.[6] Graham, R. Bounds for certain multiprocessor anomalies. Bell System TechnicalJournal 45 (1966), 1563{1581.[7] Irani, S. Coloring inductive graphs on-line. In Proceedings of the 31st Annual Sym-posium on Foundations of Computer Science (St. Louis, Missouri, October 1990),pp. 470{479.[8] Kalyanasundaran, B., and Pruhs, K. Online weighted matching. Journal ofAlgorithms 14 (1993), 478{488.[9] Karp, R. M., Vazirani, U. V., and Vazirani, V. V. An optimal algorithm foron-line bipartite mathcing. In Proceedings of the 22nd Annual ACM Symposium onTheory of Computing (Baltimore, Maryland, May 1990), pp. 352{358.[10] Lov�asz, L., Saks, M., and Trotter, W. T. An on-line graph coloring algorithmwith sublinear performance ratio. Discrete Math 75 (1989), 319{325.14

[11] Manasse, M. S., McGeoch, L. A., and Sleator, D. D. Competitive algorithmsfor on-line problems. In Proceedings of the 20th Annual ACM Symposium on Theoryof Computing (Chicago, Illinois, May 1988), pp. 322{333.[12] Shmoys, D., Wein, J., and Williamson, D. Scheduling parallel machines on-line.In Proc. 32nd IEEE Symp. on Foundations of Computer Science (1991), pp. 131{140.[13] Sleator, D. D., and Tarjan, R. E. Amortized e�ciency of list update and pagingrules. Communications of the ACM 28, 2 (1985), 202{208.[14] Vishwanathan, S. Randomized on-line graph coloring. Journal of Algorithms 13(1992), 657{669.

15

