On-line Load Balancing”

Yossi Azar | Andrei Z. Broderf Anna R. Karlinf

Abstract

The setup for our problem consists of n servers that must complete a set of tasks.
Each task can be handled only by a subset of the servers, requires a different level of
service, and once assigned can not be re-assigned. We make the natural assumption
that the level of service is known at arrival time, but that the duration of service
is not. The on-line load balancing problem is to assign each task to an appropriate
server in such a way that the maximum load on the servers is minimized. In this
paper we derive matching upper and lower bounds for the competitive ratio of the

on-line greedy algorithm for this problem, namely £3—n;)ﬁ(l + 0(1)), and derive a
lower bound, Q(nl/z), for any other deterministic or randomized on-line algorithm.

1 Introduction

Consider an idealized local area network that links multi-media workstations, com-
puters, I/O devices, etc. Each device is directly connected to one or more gateways
(bridges) to the net. Communication tasks arrive and disappear at arbitrary times.
Upon arrival, each task requests a certain guaranteed bandwidth (e.g. low for file
transfers, medium for graphic applications, high for video) and must be assigned
to one of the gateways directly connected to the device, for the duration of the
task. Service must begin immediately. The problem is to assign each task in such
a way that no bridge is overloaded.

The above is an example of the following general problem. Consider n servers
that must complete a set of tasks. Each task can be handled only by a subset of

* A preliminary version of this paper appeared in the proceedings of the 33rd Symposium
on Foundations of Computer Science, 1992.

TDEC Systems Research Center, 130 Lytton Avenue, Palo-Alto, CA 94301.
E-mail: azar@src.dec.com, broder@src.dec.com, and karlin@src.dec.com.

the servers, and requires a different level of service, called the weight of the task.
Tasks arrive and depart one by one. Service must start as soon as the task arrives.
A task once assigned can not be re-assigned. At assignment time only the weight
is known, but not the duration of service. The on-line load balancing problem is
to assign each task to an appropriate server in such a way that the maximum load
on the servers is minimized.

As usual nowadays, we evaluate the performance of the on-line algorithm by its
competitive ratio, which is the ratio between its maximum load and the maximum
load of the optimal off-line algorithm for the worst case sequence of tasks.

Previous analyses (e.g. [2, 3, 4, 10]) were restricted to models where either
the tasks continued forever, or where the tasks can be delayed for arbitrarily long
periods of time, thus forsaking real-time service.

If the arrival and departure times are known in advance, the servers are called
machines, and the tasks are called jobs, the question becomes an instance of the
well known class of static load balancing problems, studied in a myriad of variants.
(See [6] and references therein.)

There are two independent dichotomies that characterize the tasks, and this
leads to four possible load balancing problems. The first is according to how long
a task runs: We call tasks which start at arbitrary times but continue forever
permanent, while tasks that begin and end are said to be temporary. The second
is according to the set of servers on which a task can run. If a task can be assigned
to any server, we say it is unrestricted, whereas if it can only be assigned to a
proper subset of the servers, we say it is restricted. Three of the four possible
problems were considered in the past. Here we address the fourth one.

Graham [5] showed that for permanent, unrestricted tasks, the greedy algo-
rithm achieves a competitive ratio of 2 — % (There is a recent improvement of this
result due to Bartal et al. [3] to 2 — €, using a more complicated algorithm.) It is
straightforward to check that Graham’s analysis of the greedy algorithm extends
to temporary tasks and that the competitive ratio is still 2 — %

For permanent, restricted tasks, Azar, Naor, and Rom [2] showed that the
competitive ratio of the greedy algorithm is precisely log n and that no algorithm
can do better. Although the analysis of [2] does not generalize to temporary
tasks, it is natural to ask whether the log n competitive ratio holds for restricted
temporary tasks, the way the 2 — % competitive ratio holds for unrestricted tasks,
both permanent and temporary.

We answer this question negatively. More precisely we obtain matching upper
and lower bounds that show that the competitive ratio ;)f the greedy algorithm

(37%)2 3

for restricted temporary tasks is a surprisingly high *~5—(1 + o(1)). (The func-

tion implied by o(1) is different for the upper and lower bound, but the leading

term is exactly the same!) Moreover, we show a lower bound of Q(n'/?) for any
deterministic or randomized algorithm.

A variation on the model described so far is when the weight of a task can
be split among its allowed servers. For this case we show that the competitive
ratio for the natural, “water-level,” algorithm is also @(n2/3), and for any other
algorithm (deterministic or randomized) the lower bound is again Q(n'/?).

Recently, our lower bound of Q(nl/z) was matched by an algorithm of Azar
et al. [1]; and a related problem, where preemptive rescheduling is allowed was
considered by Phillips and Westbrook [9] who give algorithms that exhibit different
tradeoffs between the maximum on-line load and the number of preemptions.

Our problems can be recast in the dynamic graph framework. Previous results
on on-line algorithms for dynamic graphs (e.g. graph coloring [8, 11], on-line
matching [7]) allowed only vertex additions. Our results pertain to the more
challenging fully dynamic case, where arbitrarily long sequences of vertex additions
and deletions are allowed. However since the tasks-on-servers framework is more
natural, this is the one we adopt here.

1.1 Formal definition of the problem

Let M be a set of servers (or machines) that is supposed to run a set of tasks
that arrive and depart in time. Each task j has associated to it a weight, or load,
w(j) > 0, an arrival time 7(j), and a set M(j) C M of servers capable of running
it.

As soon as it arrives, each task must be assigned to exactly one of the servers
capable of running it, and once assigned, it can not be transferred to a different
server. The assigned server starts to run the task immediately, and continues to
run it until the task departs.

When task j arrives, an assignment algorithm must select a server i € M(j),
and assign task 7 to it.

The load on server ¢ at time ¢, denoted L;(t), is the sum of the weights of all
the tasks running on server ¢ at time .

Let ¢ be a sequence of task arrivals and departures, and let |o| be the time
of the last arrival. Then the cost, C'4(0), of an assignment algorithm A on the
sequence o, is defined as

C = L;i(t).
alo) ogt;ﬂralh;xieM (t)

An on-line assignment algorithm must assign an arriving task j at time 7(j)
to a server in M(j) knowing only w(j), M(j), the current state of the servers,

and the past — the decision is made without any knowledge about future arrivals
or departures. An optimal off-line assignment algorithm, denoted OPT, assigns
arriving tasks knowing the entire sequence of task arrivals and departures and
does so in a way that minimizes its cost.

The competitive ratio of an on-line algorithm A is defined as the supremum
over sequences o of Cy(c)/Copr(c). Our goal is to find an on-line assignment
algorithms with minimum competitive ratio.

Note that computing the optimal off-line solution is NP-complete even when
all the tasks are permanent, unrestricted, and there are only two processors. (An
easy reduction from PARTITION.)

1.2 Notation

Before plunging into proofs, we summarize the notations we already used, or plan
to use soon.

o M is the set of all servers (machines). |M| = n.

o Task (job) j has a weight w(j), an arrival time 7(j), and a set M(j) C M
of servers capable of running it.

o Ti(t) is the set of tasks run (by the on-line algorithm under consideration)
on server 7 at time ¢, and T'(t) = Uj<;<p, Ti(1).

o L;(t) is the load on server i at time ¢, that is Li(t) = 3 e, w(J)-

o m(j) € M(j) is the server on which opT (the optimum off-line algorithm)
runs task j. Thus, for S C M, m™1(5) is the set of tasks assigned by OPT
to servers in S

o T9(t), for i € M and S C M, is defined as T;(t) \ m™'(9), that is T(¢) is
the set of tasks being run on server i except for those tasks being run by
OPT on servers in 9.

o LE(t)= ZjeTf(t) w(j).

2 Upper Bounds
The greedy algorithm is formally defined as follows:

Algorithm GREEDY: Upon arrival of a task j assign it to the server in M (j) with
the current minimum load (ties are broken arbitrarily).

4

Lemma 1 Consider an execution of the algorithm GREEDY. Suppose that the
optimal off-line cost is . If there is a server (without loss of generality, server 1),
and a time t such that L1(t) = p, then for every k > 1, such that ((k-|2-1) + k) A<
i, there exists a time ty < t, and a set of k servers S (without loss of generality,

S ={1,2,...k}) such that

L) > p—(1+k)A

L) > p—((1+2)+ k)
L3(t) > p=((14+243)+k)A
o = ((7))

Proof: The proof is by induction on k. The base case is trivial: Take t; = t.
Since S = {1}, L7(t) > u — A. (The total load that may be excluded is the load
that oPT has on server 1, which is at most \).

For the induction step, assume that the hypothesis holds for k. Without loss of
generality assume that 5 = {1,2,...k}. Consider the set of tasks T = ;e 5 T/ (t4).
Let tg41 = mazjer 7(j). Let 7* € T be the task that started at time #;1;. Note
that the servers in 5 may work at time 7z on tasks that are no longer present at
time g, but that all the tasks in T are present at time x41.

By definition of TZ»S, the server m(j*) ¢ 5. Without loss of generality, assume
that m(5*) = k + 1. Therefore, at time ¢441, GREEDY could have placed task j*
on server m(j*), but did not. Hence,

Ligi(trg1) > ming<icr(LY (1k)) — w(5™)

(A4 (A4
= =
| |
TN TN
T
N B
o N+
~— —
> ~—
+

I
~—

pd

|

g

<

=

since w(j*) < A. Similarly for any set of servers S, we have 2 iem=1(8) w(g) < |9,
thus

k42
L () 2 - ())A—(lm)x
Finally, for 1 <1 <k,

L) > L () — A

(3

since every task in T;(#;) contributes to T;(#x41) with the possible exception of j*.
O

Theorem 2 For any sequence o of task arrivals and departures the greedy on-line

. . . / ..
assignment algorithm is %(1 + o(1)) competitive.

Proof: By Lemma 1, if the maximum load GREEDY ever has on some server is u
and the optimal off-line algorithm reaches a maximum load of A, then there is a
time when the sum of the loads on all the servers is at least

(e 2 ()
1<i<k

for any k such that (<k-|2-1) + k) A < p. But by hypothesis, the sum of all loads is
at most nA. Taking k£ to be (\/Q,u/A - 2) completes the proof. O

3 Lower bounds

3.1 Lower bound for the greedy algorithm

Theorem 3 The competitive ratio of the greedy on-line assignment algorithm is
at least
(3n)2/3
2

(L+o(1))

Proof: We assume that all tasks have unit weight, and allow GREEDY to break
ties in any deterministic way.

Let S(t) = (51(t), S2(t), ..., 5,(t)) be the sorted (non-increasing) n-tuple of
the loads that GREEDY has on servers at time ¢, and let s;(¢) be the server whose
load is S;(¢). Write S(t) > S(¢') if the tuple S(¢) is lexicographically greater than
S(t.

We prove the lower bound by showing that there is a finite sequence of requests
o for which the following three conditions hold:

1. For all j such that S;(|o]) > 0, 5;_1(|a|) — S;(Jo]) > 7 — 1.

6

2. There are n tasks running at time |o]|.
3. The maximum off-line load at all times ¢, 0 < ¢ < |o|, is 1.

If such a sequence o can be found, the theorem follows, since at |o| GREEDY’s
maximum load p must satisfy

pt =D+ (p—-0+2)+--
Hp— (1424 +(¢-1)) = n,

where ¢ is the number of busy servers at time ¢ and (g) < . Thus,

n)2/3
p B0 o),

e . 2/3
and the competitive ratio is at least %(1 + o(1)).

We build the sequence ¢ via a two step process. First we suppose that we can
construct a sequence of requests p such that at time |p| the following properties

are satisfied:

1. At time |p|, the number of active tasks |T'(|p|)|, is n.

2. At every time ¢, 0 < t < |p|, every server in the optimal off-line assignment
has load at most 1. (Thus at time p, every server in the optimal off-line
assignment has load ezactly 1)

3. If at time |p| GREEDY uses server ¢ at all (that is, L;(|p|) > 0) then GREEDY
runs on ¢ the task that opT runs on ¢, for the simple reason that it can not

be run anywhere else. (Symbolically, M (m~'(:)) = {i}.)

The following sequence p of n requests satisfies these conditions: for each server
i € M, a new task v; arrives, with M(v;) = {i}. Clearly, both GREEDY and OPT
must assign v; to server ¢. Properties 1 to 3 are trivially satisfied at time |p|.

The second step is to show that any sequence p satisfying these three properties
either has the property

P1: For all j, such that S;(|p|) > 0,

Si-1(lpl) = S;(lpD) 2 5 = 1,

or it can be extended by a subsequence p’ such that at time |pp’|, properties 1 to
3 are satisfied, and S(|pp|) > S(|p]).

Indeed, assume that we have constructed a sequence p that satisfies properties
1 to 3. If it satisfies property P1 we stop and set ¢ = p. If not, then we can
extend the sequence p with the following subsequence p’.

Let j > 2 be the smallest value for which 5;(|p|) > 0 and S;_1(|p]) — 5;(|p|) =
d<j—2.

The sequence p’ is constructed as follows:

1.

For 1 <1 < d, task m‘l(si) departs. This results in a decrease in the load
on each of the servers sq,...,sq by 1.

. Tasks m™1(s;) and m™1(s;_1) depart.

. For 1 <i < d, anew task ¢; with M(¢;) = {s;,s;} arrives. GREEDY assigns

all of these tasks to s;, since it is always less loaded than the alternative
machine. The result is that L; becomes equal to L;_;. (OPT assigns ¢; to

Si.)

. Two additional tasks ¢, and ¢, arrive with M(c,) = M(cp) = {s;,5;-1}.

GREEDY assigns one of them, say ¢,, to s;_;, and the other to s;. (opT
assigns ¢, to s; and ¢, to s;_q, that is, the opposite of GREEDY.)

. Tasks ¢;, 1 <4 < d depart, and then arrive again renamed ¢/, this time with

M(c) = {s;}, and task ¢, departs and then arrives again, this time renamed
¢, with M(c}) = s;_1.

. Fach task h run by GREEDY on server s; departs and then arrives again,

renamed i/, this time with M(h') = m(h).

It is straightforward to check that properties 1 to 3 hold at time |pp’|, and that
S(lep'l) > S(Ipl)-

Clearly, the sequence can be extended only a finite number of times because
each extension increases the lexicographic value of its state, S(|p|), and the state
can take only a finite number of different values since it consists of n non-negative
integers whose sum is n. But as long as property P1 does not hold, the sequence
can be further extended. Therefore after a finite number of extensions, property
P1 must hold. O

The proof can be extended to deal with a randomized variant of the greedy
on-line assignment algorithm, RGREEDY, whereby ties are broken using random

bits.

Theorem 4 The competitive ratio of the randomized greedy on-line assignment
algorithm, is at least
(371)2/3
4

(L+o(1))

Proof: The proof is almost identical to the proof of Theorem 3. The idea is to
modify the sequence o, such that RGREEDY has no random choices to make. The
modified sequence satisfies

1. For all j such that S;(|o]) > 0, 5;_1(|a|) — S;(Jo]) > 7 — 1.
2. There are n tasks running at time |o]|.

3. The maximum off-line load at all times ¢, 0 < ¢ < |o|, is 2.
We need to make two modifications to the construction of o:

a. At every time ¢, 0 < t < |p|, every server in the optimal off-line assignment
is allowed a load of up to 2. But at time p, every server in the optimal
off-line assignment has load ezactly 1.

b. Steps 4 and 5 in the construction of the extension sequence p’ are modified
as follows

4'. Three additional tasks ¢,, ¢, and ¢, arrive with M(¢,) = {s;}, M(¢;) =
{s;,8;_1}, and M(c.) = {s;—1}. RGREEDY assigns ¢, to s; and ¢, and
c. to s;_1, since there are no ties. OPT assigns ¢, and ¢; to s;, and ¢,
to s;_1. (At this point, and only at this point, opT has load 2 on s;.)

5. Tasks ¢;, 1 <14 < d depart, and then arrive again renamed ¢/, this time
with M(cl) = {s;}. Task ¢, departs. (At this point OPT has again load
1 on every server.)

With these modifications, the required properties are clearly satisfied and the
bound follows. O

3.2 The General Lower Bound

Theorem 5 The competitive ratio of any randomized on-line assignment algo-
rithm is at least Q(n'/?).

Proof: We follow the outline of the proof of Theorem 3. As before, we assume
that all tasks have unit weight. Let A be any randomized on-line algorithm. We
use the notion of an adjusted load Li(t). The adjusted loads have the following
properties:

1. Fach task j contributes to the adjusted load of exactly one server in M(5),
say k, and the value of j’s contribution to L}(¢) is py, the probability that A
assigns task j to server k. If |[M(j)| > 1 the choice of k € M(j) depends on
the randomized algorithm A but not on the outcome of its coin flips. Notice
that if |M(j)| = 1, task j always contributes exactly 1 to its server.

2. The sequence of requests generated by the adversary for the lower bound will
ensure that task j contributes to server k’s adjusted load only if p; > 1/3.
Therefore, if 7 tasks are running at time ¢, then Y ;c5; Li(¢) > 7/3.

The first property implies that L(¢) is a lower bound on the expected load on
server ¢ at time ¢, i.e. Li(t) < F(Li(t)).

Let S'(t) = (51(t), 9%(), ..., 5%(t)) to be the sorted (non-increasing) n-tuple
of adjusted loads that A has at time ¢. Define a partial order on S’ as follows:
S'(t) > S'(t') if there is a j such that for all 1 < i < j, S/(¢) > Si(t'), and
SH(t) = Si(t') > 1/3.

We prove the lower bound by showing that there is a sequence of requests o,
and a way to define the adjusted loads L’ so that the following three conditions
hold:

L. For all j such that Si(|a]) > 0, S%_;(|o|) — Si(le]) > 1/3.
2. There are n tasks running at time |o|. Therefore, 3~ -7 Li(|o]) > n/3.

3. The maximum off-line load at all times is at most 1.

If such a o can be found, the theorem follows, since at time |o|, A’s maximum
adjusted load g (and hence maximum expected load) must satisfy

pt(n=1/3)+(n=-2/3)+--
+u—(g=1)/3)> > li(la]) > n/3,

1EM

where ¢ < 3p 4 1 is the number of servers with a non-zero adjusted load at time

|o|. Hence,

(271)1/2
3

0 (14 o(1))

10

e . 1/2
and the competitive ratio is at least %(1 + o(1)).

We build the sequence ¢ via a two step process. First we suppose that we can
construct a sequence of requests p, and define the adjusted loads L’ such that at

time |p| the following properties are satisfied:

1. The number of active tasks, |T'(|p|)|,is n. Thus, > ;cpr Li(|p]) < n.

2. For any t, 0 <t < |p|, every server in the optimal off-line assignment has a
load of at most 1.

3. For any server ¢ with Li(|p|) > 0, the algorithm A runs on ¢ the task that
OPT runs on ¢, for the simple reason that it can not be run anywhere else.
(Symbolically, M (m™'(i)) = {i}.) Therefore, this task contributes precisely
1 to i’s adjusted load. We conclude that if L’(|p|) > 0, then Li(|p]) > 1.

The following sequence p of n requests satisfies these conditions: for each server
i € M, a new task v; arrives, with M(v;) = {i}. Clearly, both A and oPT must
assign v; to server ¢. Since we must have Li(|p|) = 1 for all ¢ € M, we observe that
Properties 1 to 3 are trivially satisfied.

The second step is to show that any sequence p satisfying these three properties
either has the property

P2: For all j such that $%[p| > 0,
Sialpl = Sjlpl = 1/3,

or it can be extended by a subsequence p’ such that at time |pp’|, properties 1 to
3 are satisfied, S'(|pp') > S'(Ipl).

Indeed, assume that we have constructed a sequence p that satisfies properties
1 to 3. If it satisfies property P2 we stop and set ¢ = p. If not, then we can
extend the sequence p with the following subsequence p’.

1. Let a and b be two distinct servers such that 1/3 > L/, — L; > 0 and L, > 0.
Tasks m™1(a) and m™!(b) depart. By the third property, this results in a
decrease in L and Lj by 1.

2. A new task j with M(j) = {a, b} arrives. Let p, (resp. py) be the probability
(conditioned on the entire sequence of requests up to now) that A assigns j
to a (resp. to b). Clearly p, + pp = 1.

3. The rest of p’ depends on the value of p,.

11

e p, > 1/3: opT assigns j to b. Task j contributes p, to the adjusted
load on a, and nothing to the adjusted load on b. A new task k& with
M(j) = a arrives. All tasks T' contributing to the adjusted load on b
depart and then arrive again, this time with M(v) = m(v) (v € T).

e p, < 1/3: opT assigns j to a. Task j contributes py to the adjusted
load on b, and nothing to the adjusted load on a. A new task k& with
M(j) = b arrives. All tasks T contributing to the adjusted load on «
depart and then arrive again, this time with M(v) = m(v) (v € T).

It is straightforward to verify that properties 1 to 3 hold at time |pp/|.

Lastly, we show that S/(pp’) > S’(p): In case 3(a), the subsequence of adjusted
loads (Lq(|p]), Ls(|p]),0,0,...,0,0) was replaced by (L.(|p|) + pa,0,1,1,...,1,1),
where L,(|p|) > 1 and p, > 1/3. In case 3(b), the subsequence of adjusted loads
(La(p))s Li(]p)),0,0,...,0,0) was replaced by (Li(|p|) + ps,0,1,1,...,1,1), where
pr > 2/3 and Lyllpl)+ po > Lallol) + 1/3, since La(lo]) - Ls(lpl) < 1/3. (The 0’s
and 1’s in these vectors correspond to servers running tasks in 7'.)

Finally, note that after a finite number of extensions of the sequence p, property
P2 will hold since the number of extensions is bounded by the length of the
maximum chain in the partial order on ', which is finite, since every difference is
bounded from below, and the sum of all components is bounded from above. O

For a general deterministic algorithm, we can simplify this proof and obtain a

lower bound of |v2n].

4 Split assignments

In this section we consider a variant of the load balancing problem where the
weight of an incoming task can be split among its allowed servers. The weights
can be split into arbitrary positive real portions, and, as before, once assigned can
not be re-assigned.

Algorithm WATER-LEVEL: Upon arrival of a task j, split its weight among the
servers in M(j) so that min;cps(;) L; is maximized.

The algorithm is called “water level” since it raises the load equally on the least
loaded servers in M (j). Azar, Naor, and Rom[2], showed that for permanent tasks
its competitive ratio is O(logn) and this is tight. For the general case (that is,
temporary tasks are allowed) we obtain:

12

Theorem 6 The competitive ratio of the water-level algorithm for the split as-

signment problem is £3—n22£(1 + o(1)). This is tight. Any other deterministic or

randomized on-line algorithm for this problem has competitive ratio Q(nl/Q).

. . 2/3 .
Proof: We can easily derive a %(1 +0(1)) lower bound by following the proof
of Theorem 4: since RGREEDY never encounters a tie, WATER-LEVEL on the same
sequence never splits any job and never produces non-integral loads, while at the

same time OPT can keep its maximum load under 2. The bound can be pushed to

£3—n;)ﬁ(l + o(1)) via an intricate modification of the sequence used in Theorem 3.
We omit this argument in the interest of brevity.

Similarly, the Q(nl/z) lower bound of Theorem 5 can be extended to the split
assignment problem by replacing the probability that the algorithm assigns a task
to one of two machines with the expected fraction of a job assigned to that machine.

The proof goes through, mutatis mutandis.

Finally, we show that a £3—7122&(1 +o(1)) upper bound for WATER-LEVEL follows

from Theorem 2 and the following Lemma.

Lemma 7 The competitive ratio of WATER-LEVEL for the split assignment prob-
lem is not larger than the competitive ratio of GREEDY for the non-split assignment
problem.

Proof: There are two steps to the proof.

In the first step, for any input instance I to WATER-LEVEL we create another
input I’ (to WATER-LEVEL) such that [and I’ have the same on-line and off-line
costs and the optimal off-line solution , 0PT, on I’ does not split any weights.

To do this, suppose that the weight w(j) of task 7 of I was split by OPT into
portions wi(jf),...,wq;(j). Then in I’, the arrival of task j is replaced by the
consecutive arrival of d; tasks, where the ¢'th task has weight w;(j), 1 < i < d;,
and they all have the same set of allowed processors, namely M (j). Similarly, the
departure of task j of I is replaced in I’ by the consecutive departure of these d;
tasks.

It is easy to verify that this transformation has the two properties stated above.
Indeed, after the arrival (or departure) of the replacement tasks for a task in I,
WATER-LEVEL is the same state in both I and I’, and hence has the same costs.
For the second property, we observe that, by definition, further splitting cannot
improve the performance of OPT.

In the second step, we transform the input instance I’ into an input I” such
that the cost of GREEDY on I” is equal to the cost of WATER-LEVEL on I’, and
OPT’s costs on I’ and I"” are the same.

13

Suppose that WATER-LEVEL split the weight w(j) of task j into several portions,
wi(f),...,wq;(j). In 1", the arrival of task j is replaced by the arrival of d; tasks,
where the 7’th has weight w;(j), 1 < 7 < d;, and they all have the same set of
allowed processors, namely M(j). Furthermore, in I” these d; tasks arrive in order
of non-increasing weight.

It is easy to verify that both GREEDY and WATER-LEVEL have the same loads
after the arrival (or departure) in I” of all the replacement tasks for a task ¢ from
I" as WATER-LEVEL had after the arrival (or departure) of ¢ in I’. The optimal
off-line costs of I’ and I” are the same, since OPT on I” can emulate OPT on I,
and vice versa.

This concludes the proof of the lemma. O

Since the competitive ratio of GREEDY 1is (3n2)2/3(1 + o(1)) the proof of the
theorem is complete. O
References

[1] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs and O. Waarts, “Online
Load Balancing of Temporary Tasks,” to appear in Workshop on Algorithms
and Data Structures (WADS), Montreal, Canada, 1993.

[2] Y. Azar, J. Naor and R. Rom, “The competitiveness of on-line assignment,”

Proceedings of the 3rd Annual ACM-SIAM SODA, 1992, pp. 203-210.

[3] Y. Bartal, A. Fiat, H. Karloff and R. Vohra “New algorithms for an Ancient
Scheduling Problem,” in Proceedings of the 2/th Annual ACM Symposium on
Theory of Computing, 1992.

[4] S. Baruah, G. Koren, B. Mishra, A. Raghunthan, L. Rosier, and D. Shasta,
“On-line Scheduling in the Presence of Overload,” Proceedings of the 32nd
IEFEE Symposium on Foundations of Computer Science, 1991, pp. 100-110.

[5] R. L. Graham, “Bounds for certain multiprocessing anomalies,” Bell System
Technical Journal 45 (1966), pp. 1563-1581.

[6] R. L. Graham, E.L. Lawler, J.K Lenstra, and A.H.G. Rinnooy Kan, “Op-
timization and approximation in deterministic sequencing and scheduling: a
survey,” Annals of Discrete Mathematics 5 (1979), pp. 287-326.

14

[7] R. Karp, U. Vazirani, and V. Vazirani, “An optimal algorithm for on-line bipar-
tite matching,” Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, Baltimore, Maryland, 1990, pp. 352-358.

[8] L. Lovdsz, M. Saks, and W. Trotter, “An on-line graph coloring algorithm with
sublinear performance ratio,” Discrete Math 75 (1989), pp. 319-325.

[9] S. Phillips and J. Westbrook, “Online Load Balancing and Network Flow” in
Proceedings of the 25th Annual ACM Symposium on Theory of Computing,
1993.

[10] D. Shmoys, J. Wein and D. P. Williamson, “Scheduling Parallel Machines On-
line,” Proceedings of the 32nd IFEFE Symposium on Foundations of Computer
Science, 1991, pp. 131-140.

[11] S. Vishwanathan, “Randomized on-line graph coloring,” Proceedings of the
31st Annual Symposium on Foundations of Computer Science, 1990, pp. 464—
469.

15

