
On-line Load Balancing�Yossi Azar y Andrei Z. Brodery Anna R. KarlinyAbstractThe setup for our problem consists of n servers that must complete a set of tasks.Each task can be handled only by a subset of the servers, requires a di�erent level ofservice, and once assigned can not be re-assigned. We make the natural assumptionthat the level of service is known at arrival time, but that the duration of serviceis not. The on-line load balancing problem is to assign each task to an appropriateserver in such a way that the maximum load on the servers is minimized. In thispaper we derive matching upper and lower bounds for the competitive ratio of theon-line greedy algorithm for this problem, namely (3n)2=32 (1 + o(1)), and derive alower bound,
(n1=2), for any other deterministic or randomized on-line algorithm.1 IntroductionConsider an idealized local area network that links multi-media workstations, com-puters, I/O devices, etc. Each device is directly connected to one or more gateways(bridges) to the net. Communication tasks arrive and disappear at arbitrary times.Upon arrival, each task requests a certain guaranteed bandwidth (e.g. low for �letransfers, medium for graphic applications, high for video) and must be assignedto one of the gateways directly connected to the device, for the duration of thetask. Service must begin immediately. The problem is to assign each task in sucha way that no bridge is overloaded.The above is an example of the following general problem. Consider n serversthat must complete a set of tasks. Each task can be handled only by a subset of�A preliminary version of this paper appeared in the proceedings of the 33rd Symposiumon Foundations of Computer Science, 1992.yDEC Systems Research Center, 130 Lytton Avenue, Palo-Alto, CA 94301.E-mail: azar@src.dec.com, broder@src.dec.com, and karlin@src.dec.com.

the servers, and requires a di�erent level of service, called the weight of the task.Tasks arrive and depart one by one. Service must start as soon as the task arrives.A task once assigned can not be re-assigned. At assignment time only the weightis known, but not the duration of service. The on-line load balancing problem isto assign each task to an appropriate server in such a way that the maximum loadon the servers is minimized.As usual nowadays, we evaluate the performance of the on-line algorithm by itscompetitive ratio, which is the ratio between its maximum load and the maximumload of the optimal o�-line algorithm for the worst case sequence of tasks.Previous analyses (e.g. [2, 3, 4, 10]) were restricted to models where eitherthe tasks continued forever, or where the tasks can be delayed for arbitrarily longperiods of time, thus forsaking real-time service.If the arrival and departure times are known in advance, the servers are calledmachines, and the tasks are called jobs, the question becomes an instance of thewell known class of static load balancing problems, studied in a myriad of variants.(See [6] and references therein.)There are two independent dichotomies that characterize the tasks, and thisleads to four possible load balancing problems. The �rst is according to how longa task runs: We call tasks which start at arbitrary times but continue foreverpermanent, while tasks that begin and end are said to be temporary. The secondis according to the set of servers on which a task can run. If a task can be assignedto any server, we say it is unrestricted, whereas if it can only be assigned to aproper subset of the servers, we say it is restricted. Three of the four possibleproblems were considered in the past. Here we address the fourth one.Graham [5] showed that for permanent, unrestricted tasks, the greedy algo-rithm achieves a competitive ratio of 2� 1n . (There is a recent improvement of thisresult due to Bartal et al. [3] to 2� �, using a more complicated algorithm.) It isstraightforward to check that Graham's analysis of the greedy algorithm extendsto temporary tasks and that the competitive ratio is still 2� 1n .For permanent, restricted tasks, Azar, Naor, and Rom [2] showed that thecompetitive ratio of the greedy algorithm is precisely log n and that no algorithmcan do better. Although the analysis of [2] does not generalize to temporarytasks, it is natural to ask whether the log n competitive ratio holds for restrictedtemporary tasks, the way the 2� 1n competitive ratio holds for unrestricted tasks,both permanent and temporary.We answer this question negatively. More precisely we obtain matching upperand lower bounds that show that the competitive ratio of the greedy algorithmfor restricted temporary tasks is a surprisingly high (3n)2=32 (1 + o(1)). (The func-tion implied by o(1) is di�erent for the upper and lower bound, but the leading2

term is exactly the same!) Moreover, we show a lower bound of
(n1=2) for anydeterministic or randomized algorithm.A variation on the model described so far is when the weight of a task canbe split among its allowed servers. For this case we show that the competitiveratio for the natural, \water-level," algorithm is also �(n2=3), and for any otheralgorithm (deterministic or randomized) the lower bound is again
(n1=2).Recently, our lower bound of
(n1=2) was matched by an algorithm of Azaret al. [1]; and a related problem, where preemptive rescheduling is allowed wasconsidered by Phillips and Westbrook [9] who give algorithms that exhibit di�erenttradeo�s between the maximum on-line load and the number of preemptions.Our problems can be recast in the dynamic graph framework. Previous resultson on-line algorithms for dynamic graphs (e.g. graph coloring [8, 11], on-linematching [7]) allowed only vertex additions. Our results pertain to the morechallenging fully dynamic case, where arbitrarily long sequences of vertex additionsand deletions are allowed. However since the tasks-on-servers framework is morenatural, this is the one we adopt here.1.1 Formal de�nition of the problemLet M be a set of servers (or machines) that is supposed to run a set of tasksthat arrive and depart in time. Each task j has associated to it a weight, or load,w(j) � 0, an arrival time �(j), and a set M(j) � M of servers capable of runningit. As soon as it arrives, each task must be assigned to exactly one of the serverscapable of running it, and once assigned, it can not be transferred to a di�erentserver. The assigned server starts to run the task immediately, and continues torun it until the task departs.When task j arrives, an assignment algorithm must select a server i 2 M(j),and assign task j to it.The load on server i at time t, denoted Li(t), is the sum of the weights of allthe tasks running on server i at time t.Let � be a sequence of task arrivals and departures, and let j�j be the timeof the last arrival. Then the cost, CA(�), of an assignment algorithm A on thesequence �, is de�ned as CA(�) = max0�t�j�j; i2M Li(t):An on-line assignment algorithm must assign an arriving task j at time �(j)to a server in M(j) knowing only w(j), M(j), the current state of the servers,3

and the past { the decision is made without any knowledge about future arrivalsor departures. An optimal o�-line assignment algorithm, denoted opt, assignsarriving tasks knowing the entire sequence of task arrivals and departures anddoes so in a way that minimizes its cost.The competitive ratio of an on-line algorithm A is de�ned as the supremumover sequences � of CA(�)=Copt(�). Our goal is to �nd an on-line assignmentalgorithms with minimum competitive ratio.Note that computing the optimal o�-line solution is NP-complete even whenall the tasks are permanent, unrestricted, and there are only two processors. (Aneasy reduction from partition.)1.2 NotationBefore plunging into proofs, we summarize the notations we already used, or planto use soon.� M is the set of all servers (machines). jM j = n.� Task (job) j has a weight w(j), an arrival time �(j), and a set M(j) � Mof servers capable of running it.� Ti(t) is the set of tasks run (by the on-line algorithm under consideration)on server i at time t, and T (t) = S1�i�n Ti(t).� Li(t) is the load on server i at time t, that is Li(t) =Pj2Ti(t)w(j).� m(j) 2 M(j) is the server on which opt (the optimum o�-line algorithm)runs task j. Thus, for S � M , m�1(S) is the set of tasks assigned by optto servers in S.� TSi (t), for i 2 M and S � M , is de�ned as Ti(t) nm�1(S), that is TSi (t) isthe set of tasks being run on server i except for those tasks being run byopt on servers in S.� LSi (t) =Pj2TSi (t)w(j).2 Upper BoundsThe greedy algorithm is formally de�ned as follows:Algorithm greedy: Upon arrival of a task j assign it to the server in M(j) withthe current minimum load (ties are broken arbitrarily).4

Lemma 1 Consider an execution of the algorithm greedy. Suppose that theoptimal o�-line cost is �. If there is a server (without loss of generality, server 1),and a time t such that L1(t) = �, then for every k � 1, such that ��k+12 �+ k�� <�, there exists a time tk � t, and a set of k servers S (without loss of generality,S = f1; 2; : : :kg) such thatLS1 (tk) � � � (1 + k)�LS2 (tk) � � � ((1 + 2) + k)�LS3 (tk) � � � ((1 + 2 + 3) + k)�...LSk (tk) � � � k + 12 !+ k!�Proof: The proof is by induction on k. The base case is trivial: Take t1 = t.Since S = f1g, LS1 (t) � � � �. (The total load that may be excluded is the loadthat opt has on server 1, which is at most �).For the induction step, assume that the hypothesis holds for k. Without loss ofgenerality assume that S = f1; 2; : : :kg. Consider the set of tasks T = Si2S TSi (tk).Let tk+1 = maxj2T �(j). Let j� 2 T be the task that started at time tk+1. Notethat the servers in S may work at time tk+1 on tasks that are no longer present attime tk, but that all the tasks in T are present at time tk+1.By de�nition of TSi , the server m(j�) 62 S. Without loss of generality, assumethat m(j�) = k + 1. Therefore, at time tk+1, greedy could have placed task j�on server m(j�), but did not. Hence,Lk+1(tk+1) � min1�i�k(LSi (tk))� w(j�)� � � k + 12 !+ k!�� w(j�)� � � k + 22 !�;since w(j�) � �. Similarly for any set of servers S, we havePj2m�1(S) w(j) � jSj��,thus LS[fk+1gk+1 (tk+1) � �� k + 22 !�� (k + 1)�:Finally, for 1 � i � k,LS[fk+1gi (tk+1) � LSi (tk)� �5

� �� i+ 12 !+ (k + 1)!�;since every task in Ti(tk) contributes to Ti(tk+1) with the possible exception of j�.2Theorem 2 For any sequence � of task arrivals and departures the greedy on-lineassignment algorithm is (3n)2=32 (1 + o(1)) competitive.Proof: By Lemma 1, if the maximum load greedy ever has on some server is �and the optimal o�-line algorithm reaches a maximum load of �, then there is atime when the sum of the loads on all the servers is at leastk� � k2 + X1�i�k i+ 12 !!�;for any k such that ��k+12 �+ k�� < �. But by hypothesis, the sum of all loads isat most n�. Taking k to be �p2�=�� 2� completes the proof. 23 Lower bounds3.1 Lower bound for the greedy algorithmTheorem 3 The competitive ratio of the greedy on-line assignment algorithm isat least (3n)2=32 (1 + o(1)).Proof: We assume that all tasks have unit weight, and allow greedy to breakties in any deterministic way.Let S(t) = (S1(t); S2(t); : : : ; Sn(t)) be the sorted (non-increasing) n-tuple ofthe loads that greedy has on servers at time t, and let si(t) be the server whoseload is Si(t). Write S(t) > S(t0) if the tuple S(t) is lexicographically greater thanS(t0).We prove the lower bound by showing that there is a �nite sequence of requests� for which the following three conditions hold:1. For all j such that Sj(j�j) > 0, Sj�1(j�j)� Sj(j�j)� j � 1.6

2. There are n tasks running at time j�j.3. The maximum o�-line load at all times t, 0 � t � j�j, is 1.If such a sequence � can be found, the theorem follows, since at j�j greedy'smaximum load � must satisfy�+ (�� 1) + (�� (1 + 2)) + � � �+(�� (1 + 2 + : : :+ (q � 1))) � n;where q is the number of busy servers at time t and �q2� < �. Thus,� � (3n)2=32 (1 + o(1));and the competitive ratio is at least (3n)2=32 (1 + o(1)).We build the sequence � via a two step process. First we suppose that we canconstruct a sequence of requests � such that at time j�j the following propertiesare satis�ed:1. At time j�j, the number of active tasks jT (j�j)j, is n.2. At every time t, 0 � t � j�j, every server in the optimal o�-line assignmenthas load at most 1. (Thus at time �, every server in the optimal o�-lineassignment has load exactly 1)3. If at time j�j greedy uses server i at all (that is, Li(j�j) > 0) then greedyruns on i the task that opt runs on i, for the simple reason that it can notbe run anywhere else. (Symbolically, M(m�1(i)) = fig.)The following sequence � of n requests satis�es these conditions: for each serveri 2 M , a new task vi arrives, with M(vi) = fig. Clearly, both greedy and optmust assign vi to server i. Properties 1 to 3 are trivially satis�ed at time j�j.The second step is to show that any sequence � satisfying these three propertieseither has the propertyP1: For all j, such that Sj(j�j)> 0,Sj�1(j�j)� Sj(j�j) � j � 1;or it can be extended by a subsequence �0 such that at time j��0j, properties 1 to3 are satis�ed, and S(j��0j) > S(j�j). 7

Indeed, assume that we have constructed a sequence � that satis�es properties1 to 3. If it satis�es property P1 we stop and set � = �. If not, then we canextend the sequence � with the following subsequence �0.Let j � 2 be the smallest value for which Sj(j�j)> 0 and Sj�1(j�j)� Sj(j�j) =d � j � 2.The sequence �0 is constructed as follows:1. For 1 � i � d, task m�1(si) departs. This results in a decrease in the loadon each of the servers s1; : : : ; sd by 1.2. Tasks m�1(sj) and m�1(sj�1) depart.3. For 1 � i � d, a new task ci with M(ci) = fsi; sjg arrives. greedy assignsall of these tasks to sj , since it is always less loaded than the alternativemachine. The result is that Lj becomes equal to Lj�1. (opt assigns ci tosi.)4. Two additional tasks ca and cb arrive with M(ca) = M(cb) = fsj ; sj�1g.greedy assigns one of them, say ca, to sj�1, and the other to sj . (optassigns ca to sj and cb to sj�1, that is, the opposite of greedy.)5. Tasks ci, 1 � i � d depart, and then arrive again renamed c0i, this time withM(c0i) = fsig, and task cb departs and then arrives again, this time renamedc0b with M(c0b) = sj�1.6. Each task h run by greedy on server sj departs and then arrives again,renamed h0, this time with M(h0) = m(h).It is straightforward to check that properties 1 to 3 hold at time j��0j, and thatS(j��0j) > S(j�j).Clearly, the sequence can be extended only a �nite number of times becauseeach extension increases the lexicographic value of its state, S(j�j), and the state Scan take only a �nite number of di�erent values since it consists of n non-negativeintegers whose sum is n. But as long as property P1 does not hold, the sequencecan be further extended. Therefore after a �nite number of extensions, propertyP1 must hold. 2The proof can be extended to deal with a randomized variant of the greedyon-line assignment algorithm, rgreedy, whereby ties are broken using randombits. 8

Theorem 4 The competitive ratio of the randomized greedy on-line assignmentalgorithm, is at least (3n)2=34 (1 + o(1)).Proof: The proof is almost identical to the proof of Theorem 3. The idea is tomodify the sequence �, such that rgreedy has no random choices to make. Themodi�ed sequence satis�es1. For all j such that Sj(j�j) > 0, Sj�1(j�j)� Sj(j�j)� j � 1.2. There are n tasks running at time j�j.3. The maximum o�-line load at all times t, 0 � t � j�j, is 2.We need to make two modi�cations to the construction of �:a. At every time t, 0 � t � j�j, every server in the optimal o�-line assignmentis allowed a load of up to 2. But at time �, every server in the optimalo�-line assignment has load exactly 1.b. Steps 4 and 5 in the construction of the extension sequence �0 are modi�edas follows40. Three additional tasks ca, cb, and cc arrive withM(ca) = fsjg,M(cb) =fsj ; sj�1g, and M(cc) = fsj�1g. rgreedy assigns ca to sj and cb andcc to sj�1, since there are no ties. opt assigns ca and cb to sj , and ccto sj�1. (At this point, and only at this point, opt has load 2 on sj .)50. Tasks ci, 1 � i � d depart, and then arrive again renamed c0i, this timewith M(c0i) = fsig. Task ca departs. (At this point opt has again load1 on every server.)With these modi�cations, the required properties are clearly satis�ed and thebound follows. 23.2 The General Lower BoundTheorem 5 The competitive ratio of any randomized on-line assignment algo-rithm is at least
(n1=2). 9

Proof: We follow the outline of the proof of Theorem 3. As before, we assumethat all tasks have unit weight. Let A be any randomized on-line algorithm. Weuse the notion of an adjusted load L0i(t). The adjusted loads have the followingproperties:1. Each task j contributes to the adjusted load of exactly one server in M(j),say k, and the value of j's contribution to L0k(t) is pk, the probability that Aassigns task j to server k. If jM(j)j > 1 the choice of k 2 M(j) depends onthe randomized algorithm A but not on the outcome of its coin ips. Noticethat if jM(j)j = 1, task j always contributes exactly 1 to its server.2. The sequence of requests generated by the adversary for the lower bound willensure that task j contributes to server k's adjusted load only if pk � 1=3.Therefore, if r tasks are running at time t, then Pi2M L0i(t) � r=3.The �rst property implies that L0i(t) is a lower bound on the expected load onserver i at time t, i.e. L0i(t) � E(Li(t)).Let S0(t) = (S 01(t); S 02(t); : : : ; S 0n(t)) to be the sorted (non-increasing) n-tupleof adjusted loads that A has at time t. De�ne a partial order on S0 as follows:S0(t) > S 0(t0) if there is a j such that for all 1 � i < j, S0i(t) � S 0i(t0), andS0j(t)� S 0j(t0) � 1=3.We prove the lower bound by showing that there is a sequence of requests �,and a way to de�ne the adjusted loads L0 so that the following three conditionshold:1. For all j such that S 0j(j�j) > 0, S 0j�1(j�j)� S 0j(j�j)� 1=3.2. There are n tasks running at time j�j. Therefore, Pi2M L0i(j�j) � n=3.3. The maximum o�-line load at all times is at most 1.If such a � can be found, the theorem follows, since at time j�j, A's maximumadjusted load � (and hence maximum expected load) must satisfy� + (�� 1=3) + (�� 2=3) + � � �+(� � (q � 1)=3) � Xi2M l0i(j�j)� n=3;where q < 3�+ 1 is the number of servers with a non-zero adjusted load at timej�j. Hence, � � (2n)1=23 (1 + o(1))10

and the competitive ratio is at least (2n)1=23 (1 + o(1)).We build the sequence � via a two step process. First we suppose that we canconstruct a sequence of requests �, and de�ne the adjusted loads L0 such that attime j�j the following properties are satis�ed:1. The number of active tasks, jT (j�j)j, is n. Thus, Pi2M L0i(j�j) � n.2. For any t, 0 � t � j�j, every server in the optimal o�-line assignment has aload of at most 1.3. For any server i with L0i(j�j) > 0, the algorithm A runs on i the task thatopt runs on i, for the simple reason that it can not be run anywhere else.(Symbolically, M(m�1(i)) = fig.) Therefore, this task contributes precisely1 to i's adjusted load. We conclude that if L0i(j�j)> 0, then L0i(j�j) � 1.The following sequence � of n requests satis�es these conditions: for each serveri 2 M , a new task vi arrives, with M(vi) = fig. Clearly, both A and opt mustassign vi to server i. Since we must have L0i(j�j) = 1 for all i 2 M , we observe thatProperties 1 to 3 are trivially satis�ed.The second step is to show that any sequence � satisfying these three propertieseither has the propertyP2: For all j such that S0j j�j > 0,S 0j�1j�j � S0j j�j � 1=3;or it can be extended by a subsequence �0 such that at time j��0j, properties 1 to3 are satis�ed, S0(j��0j) > S 0(j�j).Indeed, assume that we have constructed a sequence � that satis�es properties1 to 3. If it satis�es property P2 we stop and set � = �. If not, then we canextend the sequence � with the following subsequence �0.1. Let a and b be two distinct servers such that 1=3 > L0a�L0b � 0 and L0b > 0.Tasks m�1(a) and m�1(b) depart. By the third property, this results in adecrease in L0a and L0b by 1.2. A new task j with M(j) = fa; bg arrives. Let pa (resp. pb) be the probability(conditioned on the entire sequence of requests up to now) that A assigns jto a (resp. to b). Clearly pa + pb = 1.3. The rest of �0 depends on the value of pa.11

� pa � 1=3: opt assigns j to b. Task j contributes pa to the adjustedload on a, and nothing to the adjusted load on b. A new task k withM(j) = a arrives. All tasks T contributing to the adjusted load on bdepart and then arrive again, this time with M(v) = m(v) (v 2 T).� pa < 1=3 : opt assigns j to a. Task j contributes pb to the adjustedload on b, and nothing to the adjusted load on a. A new task k withM(j) = b arrives. All tasks T contributing to the adjusted load on adepart and then arrive again, this time with M(v) = m(v) (v 2 T).It is straightforward to verify that properties 1 to 3 hold at time j��0j.Lastly, we show that S0(��0) > S 0(�): In case 3(a), the subsequence of adjustedloads (La(j�j); Lb(j�j); 0; 0; : : : ; 0; 0) was replaced by (La(j�j) + pa; 0; 1; 1; : : : ; 1; 1),where La(j�j) � 1 and pa � 1=3. In case 3(b), the subsequence of adjusted loads(La(j�j); Lb(j�j); 0; 0; : : : ; 0; 0) was replaced by (Lb(j�j)+ pb; 0; 1; 1; : : : ; 1; 1), wherepb � 2=3 and Lb(j�j) + pb � La(j�j) + 1=3, since La(j�j)� Lb(j�j) < 1=3. (The 0'sand 1's in these vectors correspond to servers running tasks in T .)Finally, note that after a �nite number of extensions of the sequence �, propertyP2 will hold since the number of extensions is bounded by the length of themaximum chain in the partial order on S0, which is �nite, since every di�erence isbounded from below, and the sum of all components is bounded from above. 2For a general deterministic algorithm, we can simplify this proof and obtain alower bound of bp2nc.4 Split assignmentsIn this section we consider a variant of the load balancing problem where theweight of an incoming task can be split among its allowed servers. The weightscan be split into arbitrary positive real portions, and, as before, once assigned cannot be re-assigned.Algorithm water-level: Upon arrival of a task j, split its weight among theservers in M(j) so that mini2M(j)Li is maximized.The algorithm is called \water level" since it raises the load equally on the leastloaded servers in M(j). Azar, Naor, and Rom[2], showed that for permanent tasksits competitive ratio is O(logn) and this is tight. For the general case (that is,temporary tasks are allowed) we obtain:12

Theorem 6 The competitive ratio of the water-level algorithm for the split as-signment problem is (3n)2=32 (1 + o(1)). This is tight. Any other deterministic orrandomized on-line algorithm for this problem has competitive ratio
(n1=2).Proof: We can easily derive a (3n)2=34 (1+o(1)) lower bound by following the proofof Theorem 4: since rgreedy never encounters a tie, water-level on the samesequence never splits any job and never produces non-integral loads, while at thesame time opt can keep its maximum load under 2. The bound can be pushed to(3n)2=32 (1 + o(1)) via an intricate modi�cation of the sequence used in Theorem 3.We omit this argument in the interest of brevity.Similarly, the
(n1=2) lower bound of Theorem 5 can be extended to the splitassignment problem by replacing the probability that the algorithm assigns a taskto one of twomachines with the expected fraction of a job assigned to that machine.The proof goes through, mutatis mutandis.Finally, we show that a (3n)2=32 (1+o(1)) upper bound for water-level followsfrom Theorem 2 and the following Lemma.Lemma 7 The competitive ratio of water-level for the split assignment prob-lem is not larger than the competitive ratio of greedy for the non-split assignmentproblem.Proof: There are two steps to the proof.In the �rst step, for any input instance I to water-level we create anotherinput I 0 (to water-level) such that I and I 0 have the same on-line and o�-linecosts and the optimal o�-line solution , opt, on I 0 does not split any weights.To do this, suppose that the weight w(j) of task j of I was split by opt intoportions w1(j); : : : ; wdj(j). Then in I 0, the arrival of task j is replaced by theconsecutive arrival of dj tasks, where the i'th task has weight wi(j), 1 � i � dj ,and they all have the same set of allowed processors, namely M(j). Similarly, thedeparture of task j of I is replaced in I 0 by the consecutive departure of these djtasks.It is easy to verify that this transformation has the two properties stated above.Indeed, after the arrival (or departure) of the replacement tasks for a task in I ,water-level is the same state in both I and I 0, and hence has the same costs.For the second property, we observe that, by de�nition, further splitting cannotimprove the performance of opt.In the second step, we transform the input instance I 0 into an input I 00 suchthat the cost of greedy on I 00 is equal to the cost of water-level on I 0, andopt's costs on I 0 and I 00 are the same. 13

Suppose thatwater-level split the weight w(j) of task j into several portions,w1(j); : : : ; wdj(j). In I 00, the arrival of task j is replaced by the arrival of dj tasks,where the i'th has weight wi(j), 1 � i � dj , and they all have the same set ofallowed processors, namely M(j). Furthermore, in I 00 these dj tasks arrive in orderof non-increasing weight.It is easy to verify that both greedy and water-level have the same loadsafter the arrival (or departure) in I 00 of all the replacement tasks for a task t fromI 0 as water-level had after the arrival (or departure) of t in I 0. The optimalo�-line costs of I 0 and I 00 are the same, since opt on I 00 can emulate opt on I 0,and vice versa.This concludes the proof of the lemma. 2Since the competitive ratio of greedy is (3n)2=32 (1 + o(1)) the proof of thetheorem is complete. 2References[1] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs and O. Waarts, \OnlineLoad Balancing of Temporary Tasks," to appear in Workshop on Algorithmsand Data Structures (WADS), Montreal, Canada, 1993.[2] Y. Azar, J. Naor and R. Rom, \The competitiveness of on-line assignment,"Proceedings of the 3rd Annual ACM-SIAM SODA, 1992, pp. 203-210.[3] Y. Bartal, A. Fiat, H. Karlo� and R. Vohra \New algorithms for an AncientScheduling Problem," in Proceedings of the 24th Annual ACM Symposium onTheory of Computing, 1992.[4] S. Baruah, G. Koren, B. Mishra, A. Raghunthan, L. Rosier, and D. Shasta,\On-line Scheduling in the Presence of Overload," Proceedings of the 32ndIEEE Symposium on Foundations of Computer Science, 1991, pp. 100-110.[5] R. L. Graham, \Bounds for certain multiprocessing anomalies," Bell SystemTechnical Journal 45 (1966), pp. 1563-1581.[6] R. L. Graham, E.L. Lawler, J.K Lenstra, and A.H.G. Rinnooy Kan, \Op-timization and approximation in deterministic sequencing and scheduling: asurvey," Annals of Discrete Mathematics 5 (1979), pp. 287-326.14

[7] R. Karp, U. Vazirani, and V. Vazirani, \An optimal algorithm for on-line bipar-tite matching," Proceedings of the 22nd Annual ACM Symposium on Theoryof Computing, Baltimore, Maryland, 1990, pp. 352{358.[8] L. Lov�asz, M. Saks, and W. Trotter, \An on-line graph coloring algorithm withsublinear performance ratio," Discrete Math 75 (1989), pp. 319{325.[9] S. Phillips and J. Westbrook, \Online Load Balancing and Network Flow" inProceedings of the 25th Annual ACM Symposium on Theory of Computing,1993.[10] D. Shmoys, J. Wein and D. P. Williamson, \Scheduling Parallel Machines On-line," Proceedings of the 32nd IEEE Symposium on Foundations of ComputerScience, 1991, pp. 131-140.[11] S. Vishwanathan, \Randomized on-line graph coloring," Proceedings of the31st Annual Symposium on Foundations of Computer Science, 1990, pp. 464{469.

15

