
Maximizing Job Bene�ts On-line �Baru
h Awerbu
h y Yossi Azar z Oded Regev xNovember 19, 2000Abstra
tWe 
onsider a bene�t model for on-line preemptive s
heduling. In thismodel jobs arrive at the on-line s
heduler at their release time. Ea
h jobarrives with its own exe
ution time and bene�t fun
tion. The 
ow timeof a job is the time that passes from its release to its 
ompletion. Thebene�t fun
tion spe
i�es the bene�t gained for any given 
ow time. As
heduler's goal is to maximize the total bene�t gained. We present a
onstant 
ompetitive ratio algorithm for that model in the unipro
essor
ase for bene�t fun
tions that do not de
rease too rapidly. We also extendthe algorithm to the multipro
essor 
ase while maintaining 
onstant 
om-petitiveness. The multipro
essor algorithm does not use migration, i.e.,preempted jobs 
ontinue their exe
ution on the same pro
essor on whi
hthey were originally pro
essed.1 Introdu
tion1.1 The basi
 problemWe are given a sequen
e of n jobs to be assigned to one ma
hine. Ea
h job jhas a release time rj and a length or exe
ution time wj . Ea
h job is knownto the s
heduler only at its release time. The s
heduler may s
hedule the jobat any time after its release time. The system allows preemption, that is, thes
heduler may stop a job and later 
ontinue running it. Note that the ma
hine�A preliminary version of this paper appears in the pro
eedings of APPROX'00.yJohns Hopkins University, Baltimore, MD 21218, and MIT Lab. for Computer S
ien
e.E-mail: baru
h�blaze.
s.jhu.edu. Supported by Air For
e Contra
t TNDGAFOSR-86-0078,ARPA/Army 
ontra
t DABT63-93-C-0038, ARO 
ontra
t DAAL03-86-K-0171, NSF 
ontra
t9114440-CCR, DARPA 
ontra
t N00014-J-92-1799, and a spe
ial grant from IBM.zDepartment of Computer S
ien
e, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail:azar�math.tau.a
.il. Resear
h supported in part by the Israel S
ien
e Foundation and by theUS-Israel Binational S
ien
e Foundation (BSF).xDepartment of Computer S
ien
e, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail:odedr�math.tau.a
.il 1




an pro
ess only one job at a time. If job j is 
ompleted at time 
j then wede�ne its 
ow time as fj = 
j � rj (whi
h is at least wj).In the ma
hine s
heduling problem there are two major models. The �rstis the 
ost model, where the goal is to minimize the total (weighted) 
ow time.The se
ond is the bene�t model, where ea
h job has its own deadline, and thegoal is to maximize the bene�t of jobs that meet their deadline. Both modelshave their disadvantages and the performan
e measurement is often misleading.In the 
ost model, a small delay in a loaded system keeps interfering with newjobs. Every new job has to wait a short while before the system is free. Theresult is a very large in
rease in total 
ost. This might suggest that the bene�tmodel is favorable. However, it still la
ks an important property: in many real
ases, jobs are delayed by some small 
onstant and should therefore redu
e theoverall system performan
e, but only by some small fa
tor. In the standardbene�t model, jobs that are delayed beyond their deadline 
ease to 
ontributeto the total bene�t. Thus, the property we are looking for is the possibility ofdelaying jobs without drasti
ally harming the overall system performan
e.We present a bene�t model where the bene�t is a fun
tion of its 
ow time:the longer the pro
essing of a job takes, the lower its bene�t is. More spe
i�-
ally, ea
h job j has an arbitrary monotone non-in
reasing non-negative bene�tdensity fun
tion Bj(t) for t � wj , and the bene�t gained is wjBj(fj), where fjis its 
ow time. Note that the bene�t density fun
tion may be di�erent for ea
hjob. The goal of the s
heduler is to s
hedule the jobs so as to maximize thetotal bene�t, i.e., Pj wjBj(fj), where fj is the 
ow time of job j. Note thatthe bene�t density fun
tion of di�erent jobs 
an be un
orrelated and the ratiobetween their values 
an be arbitrarily large. However, we restri
t ea
h Bj(t)to satisfy Bj(t)Bj(t+ wj) � Cfor some �xed 
onstant C. That is, if we delay a job by its length then we loseonly a 
onstant fa
tor in its bene�t.An on-line algorithm is measured by its 
ompetitive ratio, de�ned asmaxI OPT (I)A(I) ;where A(I) denotes the bene�t gained by the on-line algorithm A on input I ,and OPT (I) denotes the bene�t gained by the optimal s
hedule.As with many other s
heduling problems, the unipro
essor model presentedabove 
an be extended to a multipro
essor model where instead of just onema
hine, we are given m identi
al ma
hines. A job 
an be pro
essed by atmost one ma
hine at a time. The only de�nition that needs further explanationis the de�nition of preemption. In the multipro
essor model we usually allowthe s
heduler to preempt a job and later 
ontinue running it on a di�erentma
hine. That operation, known as migration, 
an be 
ostly in many realisti
2



multipro
essor systems. A desirable property for a multipro
essor s
heduler isthat it does not use migration, i.e., on
e a job starts running on a ma
hine, it
ontinues running there up to its 
ompletion. Our multipro
essor algorithm hasthat property with no signi�
ant degradation in performan
e.1.2 The results in this paperThe main 
ontribution of this paper is in de�ning a general bene�t model andproviding a 
onstant 
ompetitive algorithm for this model. We begin by de-s
ribing and analyzing the unipro
essor s
heduling algorithm. Later, we extendthe result to the multipro
essor 
ase. Our multipro
essor algorithm does notuse migration. Nevertheless, there is no su
h restri
tion on the optimal algo-rithm. In other words, the 
ompetitiveness result is against a possibly migrativeoptimal algorithm.1.3 Previous workThe bene�t model of the real-time s
heduling presented above is a well-studiedone. An equivalent way of looking at deadlines is to 
onsider bene�t densityfun
tions of the following `stair' form: the bene�t density for 
ow times whi
hare less than or equal to a 
ertain value, is �xed. Beyond that point, the bene�tdensity is zero. The point of time in whi
h the 
ow time of a job passes thatpoint is the job's deadline. Su
h bene�t density fun
tions do not mat
h ourrequirements be
ause of their sharp de
rease.As a result of the �rm deadline, the real-time s
heduling model is hard toapproximate. The optimal deterministi
 
ompetitive ratio for the unipro
essor
ase is �(�), where � is the ratio between the maximum and minimum bene�tdensities [3, 4, 7℄. For the spe
ial 
ase where � = 1, there is a 4-
ompetitivealgorithm. The optimal randomized 
ompetitive ratio for the unipro
essor 
aseis O(min(log�; log�)), where � is the ratio between the longest and shortestjob [6℄.For the multipro
essor 
ase, Koren and Shasha [8℄ showed that when thenumber of ma
hines is very large, a O(log �) 
ompetitive algorithm is possible.That result is shown to be optimal. Their algorithm a
hieves that 
ompetitiveratio without using migration.Another related problem is the problem of minimizing the total 
ow time.Re
all that in this problem individual bene�ts do not exist and the goal fun
tionis minimizing the sum (or equivalently, average) of 
ow times over all jobs.Unlike real-time s
heduling, the unipro
essor 
ase is solvable in polynomial timeusing the shortest remaining pro
essing time �rst rule [2℄. Using this rule,also known as SRPT, the algorithm assigns the jobs with the least remainingpro
essing time to the available ma
hines.Minimizing the total 
ow time with more than one ma
hine be
omes NP �hard [5℄. In [9℄, Leonardi and Raz analyzed the performan
e of the SRPT algo-3



rithm. They showed that it a
hieves a 
ompetitive ratio of O(log(minf�; nmg))where � is the ratio between the longest and shortest pro
essing time. Theyalso showed that SRPT is optimal with two lower bounds for on-line algo-rithms, 
(log nm ) and 
(log�). A fundamental property of SRPT is the use ofmigration. In a re
ent paper [1℄, an algorithm whi
h a
hieves almost the same
ompetitive ratio is shown. This algorithm however does not use migration.2 The algorithmThe basi
 idea of the algorithm is to s
hedule a job whose 
urrent bene�t densityis as high as possible. The problem with su
h an algorithm is that it maypreempt jobs in order to gain a small improvement in the bene�t density andhen
e delay a large number of jobs. To over
ome this problem we s
hedule anew job only if its bene�t density is signi�
antly higher than that of the 
urrentjob. In addition, we prefer partially pro
essed jobs to non-pro
essed jobs ofsimilar bene�t density. The algorithm 
ombines the above ideas and is formallydes
ribed below.We begin by de�ning three `storage' lo
ations for jobs. The �rst is the poolwhere new jobs arrive and stay until their pro
essing begins. On
e the s
hedulerde
ides a job should begin running, the job is removed from the pool and pushedinto the sta
k where its pro
essing begins. Two di�erent possibilities exist atthe end of a job's life 
y
le. The �rst is a job that is 
ompleted and 
an bepopped from the sta
k. The se
ond is a job that after remaining too long in thesta
k got thrown into the garbage 
olle
tion. The garbage 
olle
tion holds jobswhose pro
essing we prefer to defer. The a
tual pro
essing 
an o

ur when thesystem rea
hes an idle state. Throwing a job in the garbage 
olle
tion meanswe gain nothing from it and we prefer to throw it away in order to make roomfor other jobs.The job at the top of the sta
k is the job that is 
urrently running. Theother jobs in the sta
k are preempted jobs. For ea
h job j, denote by sj the timeit enters the sta
k. We de�ne its breakpoint as the time sj+2wj . If a job is stillrunning when it rea
hes its breakpoint, it is thrown into the garbage 
olle
tion.We also de�ne priorities for ea
h job in the pool and in the sta
k. The priorityof job j at time t is denoted by dj(t). For t � sj , it is Bj(t + wj � rj) and fortime t > sj , it is d̂j = Bj(sj +wj � rj). In other words, the priority of a job inthe pool is its bene�t density if it would have run to 
ompletion starting at the
urrent time t. On
e it enters the sta
k its priority be
omes �xed, i.e. remainsthe priority at time sj .We des
ribe Algorithm ALG1 as an event-driven algorithm. The algorithmtakes a
tion at time t when a new job is released, when the 
urrently runningjob is 
ompleted or when the 
urrently running job rea
hes its breakpoint. Ifsome events happen at the same time we handle the 
ompletion of jobs �rst.� A new job l arrives. If dl(t) > 4d̂k, where k is the job at the top of4



the sta
k or if the sta
k is empty, push job l into that sta
k and run it.Otherwise, just add job l to the pool.� The job at the top of the sta
k is 
ompleted or rea
hes its breakpoint.Then, pop jobs from the top of the sta
k and insert them into the garbage
olle
tion as long as their breakpoints have been rea
hed. Unless the sta
kis empty, let k be the index of the new job at the top of the sta
k. Continuerunning job k only if dj(t) � 4d̂k for all j in the pool. Otherwise, get thejob from the pool with maximum dj(t), push it into the sta
k, and run it.� Whenever the ma
hine is idle (i.e., no jobs in the sta
k or in the pool) runany un
ompleted job from the garbage 
olle
tion until a new job arrives.We note several fa
ts about this algorithm:Observation 2.1 Every job enters the sta
k at some point in time. Then, bytime sj + 2wj , it is either 
ompleted or rea
hes its breakpoint and gets throwninto the garbage 
olle
tion.Observation 2.2 The priority of a job is monotone non-in
reasing over time.On
e the job enters a sta
k, its priority remains �xed until it is 
ompleted orthrown away. At any time the priority of ea
h job in a sta
k is at least 4 timeshigher than the priority of the job below it.Observation 2.3 Whenever the pool is not empty, the ma
hine is not idle, thatis, the sta
k is not empty. Moreover, the priority of jobs in the pool is alwaysat most 4 times higher than the priority of the 
urrently running job.3 The analysisWe begin by �xing an input sequen
e and hen
e the behavior of the optimalalgorithm and the on-line algorithm. We denote by fOPTj the 
ow time of jobj by the optimal algorithm. As for the on-line algorithm, we only 
onsider thebene�t of jobs whi
h were not thrown into the garbage 
olle
tion. Denote theset of these jobs by A. So, for j 2 A, let fONj be the 
ow time of job j by theon-line algorithm. By de�nition,V OPT =Xj wjBj(fOPTj )and V ON �Xj2AwjBj(fONj ) :We also de�ne the pseudo-bene�t of a job j by wj d̂j . That is, ea
h job donates abene�t of wj d̂j as if it runs to 
ompletion without interruption from the moment5



it enters the sta
k. De�ne the pseudo-bene�t of the online algorithm asV PSEUDO =Xj wj d̂j :For 0 � t < wj , we de�ne Bj(t) = Bj(wj). In addition, we partition the setof jobs J into two sets, J1 and J2. The �rst is the set of jobs whi
h are stillpro
essed by the optimal s
heduler at time sj , when they enter the sta
k. These
ond is the set of jobs whi
h have been 
ompleted by the optimal s
hedulerbefore they enter the sta
k.Lemma 3.1 For j 2 J1, Pj2J1 wjBj(fOPTj ) � C � VPSEUDO .Proof: We note the following:wjBj(fOPTj ) � C � wjBj(fOPTj + wj) � C � wjBj(sj � rj + wj) = C � wj d̂jwhere the �rst inequality is by our assumptions on Bj and the se
ond is by ourde�nition of J1. Summing over jobs in J1, we haveXj2J1 wjBj(fOPTj ) � CXj2J1 wj d̂j � C � VPSEUDO :Lemma 3.2 For j 2 J2, Pj2J2 wjBj(fOPTj ) � 4C � V PSEUDOProof: For ea
h j 2 J2, we de�ne its `optimal pro
essing time' as�j = ftjjob j is pro
essed by OPT at time tg:Xj2J2 wjBj(fOPTj ) = Xj2J2 Zt2�j Bj(fOPTj )dt� Xj2J2 Zt2�j Bj(t� rj)dt� C �Xj2J2 Zt2�j dj(t)dt:A

ording to the de�nition of J2, during the pro
essing of job j 2 J2 by theoptimal algorithm, the on-line algorithm still keeps the job in its pool. ByObservation 2.3 we know that the job's priority is not too high; it is at most 4times the priority of the 
urrently running job and, spe
i�
ally, at time t 2 �j ,6



its priority is at most 4 times the priority of the job at the top of the sta
k inthe on-line algorithm. Denote that job by j(t). So,C �Xj2J2 Zt2�j dj(t)dt � 4C �Xj2J2 Zt2�j d̂j(t)dt� 4C � Zt2[�j d̂j(t)dt� 4C � Zt d̂j(t)dt� 4C �Xj2J wj d̂j = 4C � V PSEUDO :Corollary 3.3 V OPT � 5CV PSEUDO.Proof: Combining the two lemmas we get,V OPT = Xj2J1 wjBj(fOPTj ) +Xj2J2 wjBj(fOPTj )� C � VPSEUDO + 4C � V PSEUDO= 5CV PSEUDO :Lemma 3.4 V PSEUDO � 2C � V ONProof: We show a way to divide a bene�t of C � V ON between all the jobs su
hthat the ratio between the gain allo
ated to ea
h job and its pseudo-gain is atmost 2.We begin by ordering the jobs so that jobs are preempted only by jobsappearing earlier in the order. This is done by looking at the preemption graph:ea
h node represents a job and the dire
ted edge (j; k) indi
ates that job jpreempts job k at some time in the on-line algorithm. This graph is a
y
li
sin
e the edge (j; k) exists only if d̂j > d̂k. We use a topologi
al order of thisgraph in our 
onstru
tion. Jobs 
an only be preempted by jobs appearing earlierin this order.We begin by assigning a bene�t of wj d̂j to any job j in A, the set of jobsnot thrown into the garbage 
olle
tion. At the end of the pro
ess the bene�tallo
ated to ea
h job, not ne
essarily in A, will be at least 12wj d̂j .A

ording to the order de�ned above, we 
onsider one job at a time. Assumewe arrive at job j. When j 2 A, it already has a bene�t of wj d̂j assigned to it.Otherwise, job j gets thrown into the garbage 
olle
tion. This job enters thesta
k at time sj and leaves it at time sj + 2wj . During that time the s
heduler7



a
tually pro
esses the job for less than wj time. So, job j is preempted for morethan wj time. For any job k running while job j is preempted, we denote byUk;j the set of times when job j is preempted by job k. Then, we move a bene�tof jUk;j j � d̂j from k to j. Therefore, on
e we �nish with job j, its allo
atedbene�t is at least wj d̂j .How mu
h bene�t is allo
ated to ea
h job j at the end of the pro
ess? Wehave seen that before moving on to the next job, the bene�t allo
ated to job jis at least wj d̂j (whether or not j 2 A). When job j enters the sta
k at timesj it preempts several jobs; these jobs appear later in the order. Sin
e jobs areadded and removed only from the top of the sta
k, as long as job j is in thesta
k, the set of jobs preempted by it remains un
hanged. Ea
h job k of thisset gets a bene�t of at most wj d̂k from j. However, sin
e all of these jobs existtogether with j in the sta
k at time sj , the sum of their priorities is at most12 d̂j (a

ording to Observation 2.2). So, after moving all the required bene�t,job j is left with at least 12wj d̂j , as needed.In order to 
omplete the proof,V PSEUDO = Xj wj d̂j = 2Xj 12wj d̂j� 2Xj2Awj d̂j� 2CXj2AwjBj(sj � rj + 2wj)� 2CXj2AwjBj(fONj )� 2C � V ON :Theorem 3.5 Algorithm ALG1 is 10C2 
ompetitive.Proof: By 
ombining the previous lemmas, we 
on
lude thatV ON � V PSEUDO2C � V OPT10C2 :4 Multipro
essor s
hedulingWe extend Algorithm ALG1 to the multipro
essor model. In this model, thealgorithm holds m sta
ks, one for ea
h ma
hine, as well as m garbage 
olle
-tions. Jobs not 
ompleted by their deadline get thrown into the 
orresponding8



garbage 
olle
tion. Their pro
essing 
an 
ontinue later when the ma
hine is idle.As before, we assume we get no bene�t from these jobs. The multipro
essorAlgorithm ALG2 is as follows:� A new job l arrives. If there is a ma
hine su
h that dl(t) > 4d̂k where kis the job at the top of its sta
k or its sta
k is empty, push job l into thatsta
k and run it. Otherwise, just add job l to the pool.� The job at the top of a sta
k is 
ompleted or rea
hes its breakpoint. Then,pop jobs from the top of that sta
k as long as their breakpoints have beenrea
hed. Unless the sta
k is empty, let k be the index of the new job atthe top of the sta
k. Continue running job k only if dj(t) � 4d̂k for all jin the pool. Otherwise, get the job from the pool with maximum dj(t),push it into that sta
k, and run it.� Whenever a ma
hine is idle (i.e., no jobs in its sta
k or in the pool) runany un
ompleted job from its garbage 
olle
tion until a new job arrives.We de�ne J1 and J2 in exa
tly the same way as in the unipro
essor 
ase.Lemma 4.1 For j 2 J1, Pj2J1 wjBj(fOPTj ) � C � VPSEUDO .Proof: Sin
e the proof of Lemma 3.1 used the de�nition of J1 separately forea
h job, it remains true in the multipro
essor 
ase as well.The following lemma extends Lemma 3.2 to the multipro
essor 
ase:Lemma 4.2 For j 2 J2, Pj2J2 wjBj(fOPTj ) � 4C � V PSEUDO :Proof: For ea
h j 2 J2, we de�ne its `optimal pro
essing time' by ma
hine i as�j;i = ftjjob j is pro
essed by OPT on ma
hine i at time tg:Xj2J2 wjBj(fOPTj ) = Xj2J2 X1�i�m Zt2�j;i Bj(fOPTj )dt� Xj2J2 X1�i�m Zt2�j;i Bj(t� rj)dt� C �Xj2J2 X1�i�m Zt2�j;i dj(t)dt:A

ording to the de�nition of J2, during the pro
essing of job j 2 J2 by theoptimal algorithm, the on-line algorithm still keeps the job in its pool. ByObservation 2.3 we know that the job's priority is not too high; it is at most 4times the priority of the 
urrently running jobs and, spe
i�
ally, at time t for9



ma
hine i su
h that t 2 �j;i, its priority is at most 4 times the priority of thejob at the top of sta
k i in the on-line algorithm. Denote that job by j(t; i). So,C �Xj2J2 X1�i�m Zt2�j;i dj(t)dt � 4C �Xj2J2 X1�i�m Zt2�j;i d̂j(t;i)dt� 4C � X1�i�m Zt2[�j;i d̂j(t;i)dt� 4C � X1�i�m Zt d̂j(t;i)dt� 4C �Xj2J wj d̂j = 4C � V PSEUDO :Lemma 4.3 V PSEUDO � 2C � V ON .Proof: By using Lemma 3.4 separately on ea
h ma
hine we obtain the sameresult for the multipro
essor 
ase.Combining all the results together we getTheorem 4.4 Algorithm ALG2 for the multipro
essor 
ase is 10C2 
ompeti-tive.Referen
es[1℄ B. Awerbu
h, Y. Azar, S. Leonardi, and O. Regev. Minimizing the 
ow timewithout migration. In ACM Symposium on Theory of Computing (STOC),1999.[2℄ K.R. Baker. Introdu
tion to Sequen
ing and S
heduling. Wiley, 1974.[3℄ S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier,D. Shasha, and F. Wang. On the 
ompetitiveness of on-line real-time tasks
heduling. In IEEE Real-Time Systems Symposium, pages 106{115, 1991.[4℄ S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and D. Shasha.On-line s
heduling in the presen
e of overload. In 32nd IEEE Annual Sympo-sium on Foundations of Computer S
ien
e, pages 100{110, San Juan, PuertoRi
o, 1991.[5℄ J. Du, J. Y. T. Leung, and G. H. Young. Minimizing mean 
ow time withrelease time 
onstraint. Theoreti
al Computer S
ien
e, 75(3):347{355, 1990.10



[6℄ B. Kalyanasundaram and K. Pruhs. Real-time s
heduling with fault-toleran
e. Te
hni
al report, Computer S
ien
e Dept. University of Pitts-burgh.[7℄ G. Koren and D. Shasha. Dover: An optimal on-line s
heduling algorithm forover-loaded real-time systems. IEEE Real-time Systems Symposium, pages290{299, 1992.[8℄ G. Koren and D. Shasha. MOCA: a multipro
essor on-line 
ompetitivealgorithm for real-time system s
heduling. Theoreti
al Computer S
ien
e,128(1{2):75{97, 1994.[9℄ S. Leonardi and D. Raz. Approximating total 
ow time on parallel ma
hines.In Pro
eedings of the Twenty-Ninth Annual ACM Symposium on Theory ofComputing, pages 110{119, El Paso, Texas, 1997.

11


