Maximizing Job Benefits On-line *

Baruch Awerbuch Yossi Azar * Oded Regev *
November 19, 2000

Abstract

We consider a benefit model for on-line preemptive scheduling. In this
model jobs arrive at the on-line scheduler at their release time. Each job
arrives with its own execution time and benefit function. The flow time
of a job is the time that passes from its release to its completion. The
benefit function specifies the benefit gained for any given flow time. A
scheduler’s goal is to maximize the total benefit gained. We present a
constant competitive ratio algorithm for that model in the uniprocessor
case for benefit functions that do not decrease too rapidly. We also extend
the algorithm to the multiprocessor case while maintaining constant com-
petitiveness. The multiprocessor algorithm does not use migration, i.e.,
preempted jobs continue their execution on the same processor on which
they were originally processed.

1 Introduction

1.1 The basic problem

We are given a sequence of n jobs to be assigned to one machine. Each job j
has a release time r; and a length or execution time w;. Each job is known
to the scheduler only at its release time. The scheduler may schedule the job
at any time after its release time. The system allows preemption, that is, the
scheduler may stop a job and later continue running it. Note that the machine

*A preliminary version of this paper appears in the proceedings of APPROX’00.

tJohns Hopkins University, Baltimore, MD 21218, and MIT Lab. for Computer Science.
E-mail: baruch@blaze.cs.jhu.edu. Supported by Air Force Contract TNDGAFOSR-86-0078,
ARPA /Army contract DABT63-93-C-0038, ARO contract DAAL03-86-K-0171, NSF contract
9114440-CCR, DARPA contract N00014-J-92-1799, and a special grant from IBM.

fDepartment of Computer Science, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail:
azar@math.tau.ac.il. Research supported in part by the Israel Science Foundation and by the
US-Tsrael Binational Science Foundation (BSF).

§Department of Computer Science, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail:
odedr@math.tau.ac.il

can process only one job at a time. If job j is completed at time c¢; then we
define its flow time as f; = ¢; —r; (which is at least w;).

In the machine scheduling problem there are two major models. The first
is the cost model, where the goal is to minimize the total (weighted) flow time.
The second is the benefit model, where each job has its own deadline, and the
goal is to maximize the benefit of jobs that meet their deadline. Both models
have their disadvantages and the performance measurement is often misleading.
In the cost model, a small delay in a loaded system keeps interfering with new
jobs. Every new job has to wait a short while before the system is free. The
result is a very large increase in total cost. This might suggest that the benefit
model is favorable. However, it still lacks an important property: in many real
cases, jobs are delayed by some small constant and should therefore reduce the
overall system performance, but only by some small factor. In the standard
benefit model, jobs that are delayed beyond their deadline cease to contribute
to the total benefit. Thus, the property we are looking for is the possibility of
delaying jobs without drastically harming the overall system performance.

We present. a benefit model where the benefit is a function of its flow time:
the longer the processing of a job takes, the lower its benefit is. More specifi-
cally, each job j has an arbitrary monotone non-increasing non-negative benefit
density function B;(t) for t > w;, and the benefit gained is w;B;(f;), where f;
is its flow time. Note that the benefit density function may be different for each
job. The goal of the scheduler is to schedule the jobs so as to maximize the
total benefit, i.e., >, w;B;(f;), where f; is the flow time of job j. Note that
the benefit density function of different jobs can be uncorrelated and the ratio
between their values can be arbitrarily large. However, we restrict each Bj(t)
to satisfy

Bij(t)
Bj(t +wj) ~
for some fixed constant C'. That is, if we delay a job by its length then we lose
only a constant factor in its benefit.
An on-line algorithm is measured by its competitive ratio, defined as
OPT(I)
A
where A(I) denotes the benefit gained by the on-line algorithm A on input I,
and OPT(I) denotes the benefit gained by the optimal schedule.

As with many other scheduling problems, the uniprocessor model presented
above can be extended to a multiprocessor model where instead of just one
machine, we are given m identical machines. A job can be processed by at
most one machine at a time. The only definition that needs further explanation
is the definition of preemption. In the multiprocessor model we usually allow
the scheduler to preempt a job and later continue running it on a different
machine. That operation, known as migration, can be costly in many realistic

multiprocessor systems. A desirable property for a multiprocessor scheduler is
that it does not use migration, i.e., once a job starts running on a machine, it
continues running there up to its completion. Our multiprocessor algorithm has
that property with no significant degradation in performance.

1.2 The results in this paper

The main contribution of this paper is in defining a general benefit model and
providing a constant competitive algorithm for this model. We begin by de-
scribing and analyzing the uniprocessor scheduling algorithm. Later, we extend
the result to the multiprocessor case. Our multiprocessor algorithm does not
use migration. Nevertheless, there is no such restriction on the optimal algo-
rithm. In other words, the competitiveness result is against a possibly migrative
optimal algorithm.

1.3 Previous work

The benefit model of the real-time scheduling presented above is a well-studied
one. An equivalent way of looking at deadlines is to consider benefit density
functions of the following ‘stair’ form: the benefit density for flow times which
are less than or equal to a certain value, is fixed. Beyond that point, the benefit
density is zero. The point of time in which the flow time of a job passes that
point is the job’s deadline. Such benefit density functions do not match our
requirements because of their sharp decrease.

As a result of the firm deadline, the real-time scheduling model is hard to
approximate. The optimal deterministic competitive ratio for the uniprocessor
case is ©(®), where ® is the ratio between the maximum and minimum benefit
densities [3, 4, 7]. For the special case where ® = 1, there is a 4-competitive
algorithm. The optimal randomized competitive ratio for the uniprocessor case
is O(min(log ®,log A)), where A is the ratio between the longest and shortest
job [6].

For the multiprocessor case, Koren and Shasha [8] showed that when the
number of machines is very large, a O(log ®) competitive algorithm is possible.
That result is shown to be optimal. Their algorithm achieves that competitive
ratio without using migration.

Another related problem is the problem of minimizing the total flow time.
Recall that in this problem individual benefits do not exist and the goal function
is minimizing the sum (or equivalently, average) of flow times over all jobs.
Unlike real-time scheduling, the uniprocessor case is solvable in polynomial time
using the shortest remaining processing time first rule [2]. Using this rule,
also known as SRPT, the algorithm assigns the jobs with the least remaining
processing time to the available machines.

Minimizing the total flow time with more than one machine becomes NP —
hard [5]. In [9], Leonardi and Raz analyzed the performance of the SRPT algo-

rithm. They showed that it achieves a competitive ratio of O(log(min{A, 1))
where A is the ratio between the longest and shortest processing time. They
also showed that SRPT is optimal with two lower bounds for on-line algo-
rithms, Q(log 7-) and Q(log A). A fundamental property of SRPT is the use of
migration. In a recent paper [1], an algorithm which achieves almost the same
competitive ratio is shown. This algorithm however does not use migration.

2 The algorithm

The basic idea of the algorithm is to schedule a job whose current benefit density
is as high as possible. The problem with such an algorithm is that it may
preempt jobs in order to gain a small improvement in the benefit density and
hence delay a large number of jobs. To overcome this problem we schedule a
new job only if its benefit density is significantly higher than that of the current
job. In addition, we prefer partially processed jobs to non-processed jobs of
similar benefit density. The algorithm combines the above ideas and is formally
described below.

We begin by defining three ‘storage’ locations for jobs. The first is the pool
where new jobs arrive and stay until their processing begins. Once the scheduler
decides a job should begin running, the job is removed from the pool and pushed
into the stack where its processing begins. Two different possibilities exist at
the end of a job’s life cycle. The first is a job that is completed and can be
popped from the stack. The second is a job that after remaining too long in the
stack got thrown into the garbage collection. The garbage collection holds jobs
whose processing we prefer to defer. The actual processing can occur when the
system reaches an idle state. Throwing a job in the garbage collection means
we gain nothing from it and we prefer to throw it away in order to make room
for other jobs.

The job at the top of the stack is the job that is currently running. The
other jobs in the stack are preempted jobs. For each job j, denote by s; the time
it enters the stack. We define its breakpoint as the time s; 4+ 2w;. If a job is still
running when it reaches its breakpoint, it is thrown into the garbage collection.
We also define priorities for each job in the pool and in the stack. The priority
of job j at time ¢ is denoted by d;(t). For ¢t < s;, it is B;(t + w; — r;) and for
time t > s;, it is ch = Bj(s; + wj —r;). In other words, the priority of a job in
the pool is its benefit density if it would have run to completion starting at the
current time ¢. Once it enters the stack its priority becomes fixed, i.e. remains
the priority at time s;.

We describe Algorithm ALG1 as an event-driven algorithm. The algorithm
takes action at time ¢ when a new job is released, when the currently running
job is completed or when the currently running job reaches its breakpoint. If
some events happen at the same time we handle the completion of jobs first.

e A new job [arrives. If di(t) > 4dy, where k is the job at the top of

the stack or if the stack is empty, push job [into that stack and run it.
Otherwise, just add job I to the pool.

e The job at the top of the stack is completed or reaches its breakpoint.
Then, pop jobs from the top of the stack and insert them into the garbage
collection as long as their breakpoints have been reached. Unless the stack
is empty, let k be the index of the new job at the top of the stack. Continue
running job k only if d;(t) < 4dj, for all j in the pool. Otherwise, get, the
job from the pool with maximum d;(t), push it into the stack, and run it.

e Whenever the machine is idle (i.e., no jobs in the stack or in the pool) run
any uncompleted job from the garbage collection until a new job arrives.

We note several facts about this algorithm:

Observation 2.1 Every job enters the stack at some point in time. Then, by
time s; + 2wj, it is either completed or reaches its breakpoint and gets thrown
into the garbage collection.

Observation 2.2 The priority of a job is monotone non-increasing over time.
Once the job enters a stack, its priority remains fived until it is completed or
thrown away. At any time the priority of each job in a stack is at least 4 times
higher than the priority of the job below it.

Observation 2.3 Whenever the pool is not empty, the machine is not idle, that
is, the stack is not empty. Moreover, the priority of jobs in the pool is always
at most 4 times higher than the priority of the currently running job.

3 The analysis

We begin by fixing an input sequence and hence the behavior of the optimal
algorithm and the on-line algorithm. We denote by fjo PT the flow time of job
j by the optimal algorithm. As for the on-line algorithm, we only consider the
benefit of jobs which were not thrown into the garbage collection. Denote the
set of these jobs by A. So, for j € A, let fPN be the flow time of job j by the
on-line algorithm. By definition,

VOPT Z Wi fOPT
J

and
VON > Z w] fON)
JEA
We also define the pseudo-benefit of a job j by w; Jj. That is, each job donates a
benefit of w;d; as if it runs to completion without interruption from the moment

it enters the stack. Define the pseudo-benefit of the online algorithm as

VPSEUDO — § w]d] .
J

For 0 <t < wj, we define B;(t) = Bj(w;). In addition, we partition the set
of jobs J into two sets, J; and J>. The first is the set of jobs which are still
processed by the optimal scheduler at time s;, when they enter the stack. The
second is the set of jobs which have been completed by the optimal scheduler
before they enter the stack.

Lemma 3.1 Forj € Ji, >, ijj(fJQPT) < C-Vpseupo-
Proof: We note the following:
w;Bi(f7T) < C-w;B;(fTT +wj) < C-w;By(sj —rj + wj) = C - w;d;

where the first inequality is by our assumptions on Bj; and the second is by our
definition of J;. Summing over jobs in Ji, we have

5 w97 €€ 5 g < C-Vrsrno
jeJy JjeJ1

Lemma 3.2 For j € Jo, Y. ;5 w;iB;(fFT) < 4C - yPSEUDO
Proof: For each j € J5, we define its ‘optimal processing time’ as

7; = {t|job j is processed by OPT at time t}.

Z ijj(jOPT) = Z Bj(jOPT)dt

JET2 jeJs Y EETS
S Bj (t — T‘j)dt
JETs ter;
< -y d;(t)dt.
JETo teT;

According to the definition of .J5, during the processing of job j € Js by the
optimal algorithm, the on-line algorithm still keeps the job in its pool. By
Observation 2.3 we know that the job’s priority is not too high; it is at most 4
times the priority of the currently running job and, specifically, at time t € 7;,

its priority is at most 4 times the priority of the job at the top of the stack in
the on-line algorithm. Denote that job by j(t). So,

C.Z/ter dj(t)dt < 40-2/%74 djrdt

i€J2 I jETs
teur;
< 40‘/Jj(t)dt
t
< 4C- ijcij — 4C . VPSEUDO.
jeJ
| |
Corollary 3.3 VOFPT < 5V PSEUDO
Proof: Combining the two lemmas we get,
VOPT = 3 wiBi () + 3 wiB (")
JjEJ1 GEJo
< C-Vpsgupo +4C - yFSFUPO
— 5chSEUDO‘
| |

Lemma 3.4 VPSPUDO <90 . yyON

Proof: We show a way to divide a benefit of C'- VOV between all the jobs such
that the ratio between the gain allocated to each job and its pseudo-gain is at
most 2.

We begin by ordering the jobs so that jobs are preempted only by jobs
appearing earlier in the order. This is done by looking at the preemption graph:
each node represents a job and the directed edge (j,k) indicates that job j
preempts job k at some time in the on-line algorithm. This graph is acyclic
since the edge (j, k) exists only if d; > di. We use a topological order of this
graph in our construction. Jobs can only be preempted by jobs appearing earlier
in this order.

We begin by assigning a benefit of wj(fj to any job j in A, the set of jobs
not thrown into the garbage collection. At the end of the process the benefit
allocated to each job, not necessarily in A, will be at least w;d;.

According to the order defined above, we consider one job at a time. Assume
we arrive at job j. When j € A, it already has a benefit of wj(fj assigned to it.
Otherwise, job j gets thrown into the garbage collection. This job enters the
stack at time s; and leaves it at time s; + 2w;. During that time the scheduler

actually processes the job for less than w; time. So, job j is preempted for more
than w; time. For any job k running while job j is preempted, we denote by
Uy,; the set of times when job j is preempted by job k. Then, we move a benefit
of Uyl -dAj from k to j. Therefore, once we finish with job j, its allocated
benefit is at least chfj.

How much benefit is allocated to each job j at the end of the process? We
have seen that before moving on to the next job, the benefit allocated to job j
is at least w]d' (whether or not j € A). When job j enters the stack at time
s; it preempts several jobs; these jobs appear later in the order. Since jobs are
added and removed only from the top of the stack, as long as job j is in the
stack, the set of jobs preempted by it remains unchanged. Each job k of this
set gets a benefit of at most w;d}, from j. However, since all of these jobs exist
together with j in the stack at time s;, the sum of their priorities is at most
%cfj (according to Observation 2.2). So, after moving all the required benefit,

job j is left with at least Jw;d;, as needed.
In order to complete the proof,

yPSEUDO _ Zwid _22 “w;d;

< 2 Z w;d;
jEA
< 20271)] —r; + 2wj)
jEA
< 20 w;B;(f77)
jEA
< 20 -VON,
|
Theorem 3.5 Algorithm ALG1 is 100?% competitive.
Proof: By combining the previous lemmas, we conclude that
PSEUDO OPT
yon 5 ¥ SV
- 2C - 10C?
|

4 Multiprocessor scheduling

We extend Algorithm ALG1 to the multiprocessor model. In this model, the
algorithm holds m stacks, one for each machine, as well as m garbage collec-
tions. Jobs not completed by their deadline get thrown into the corresponding

garbage collection. Their processing can continue later when the machine is idle.
As before, we assume we get no benefit from these jobs. The multiprocessor
Algorithm ALG?2 is as follows:

e A new job [arrives. If there is a machine such that d;(t) > 4dy, where k
is the job at the top of its stack or its stack is empty, push job [into that
stack and run it. Otherwise, just add job I to the pool.

e The job at the top of a stack is completed or reaches its breakpoint. Then,
pop jobs from the top of that stack as long as their breakpoints have been
reached. Unless the stack is empty, let k& be the index of the new job at
the top of the stack. Continue running job k only if d;(t) < 4dy, for all j
in the pool. Otherwise, get the job from the pool with maximum d;(t),
push it into that stack, and run it.

e Whenever a machine is idle (i.e., no jobs in its stack or in the pool) run
any uncompleted job from its garbage collection until a new job arrives.

We define J; and J; in exactly the same way as in the uniprocessor case.
Lemma 4.1 For j € Jy, zjeJl ij]'(f].OPT) < C -Vpseuno.

Proof: Since the proof of Lemma 3.1 used the definition of .J; separately for
each job, it remains true in the multiprocessor case as well. [|

The following lemma extends Lemma 3.2 to the multiprocessor case:

Lemma 4.2 Forj € Ja, > Bj(f],OPT) < 4C - VPSEUDO,

jel W
Proof: For each j € J5, we define its ‘optimal processing time’ by machine ¢ as

Tji = {t|job j is processed by OPT on machine i at time t}.

S wiB (0P = Y Z/ B;(fO7T)dt

JEJ> j€J2 1<i<m teT;,i

< > > / B;(t —r;)dt
jETs 1<i<m Y t€Ti i
<oy y [

jET2 1<i<m V€I

According to the definition of J3, during the processing of job j € Jo by the
optimal algorithm, the on-line algorithm still keeps the job in its pool. By
Observation 2.3 we know that the job’s priority is not too high; it is at most 4
times the priority of the currently running jobs and, specifically, at time ¢ for

machine ¢ such that ¢ € 7;;, its priority is at most 4 times the priority of the
job at the top of stack 7 in the on-line algorithm. Denote that job by j(¢,7). So,

O > [aww < a0 S [

jET> 1<i<m Y tE€ s jET2 1<i<m Y tET4i

AC - Z /teu-r iy, dt

1<i<m

AC - Z/ 1,0y dt

1<i<m

AC Y wyd; = 4C - VPSEUDO,
JjEJ

IN

IN

IN

Lemma 4.3 VFPSEUDO <90 . yON,

Proof: By using Lemma 3.4 separately on each machine we obtain the same
result for the multiprocessor case. [|

Combining all the results together we get

Theorem 4.4 Algorithm ALG?2 for the multiprocessor case is 10C% competi-
tive.

References

[1]

2]
3]

[4]

B. Awerbuch, Y. Azar, S. Leonardi, and O. Regev. Minimizing the flow time
without migration. In ACM Symposium on Theory of Computing (STOC),
1999.

K.R. Baker. Introduction to Sequencing and Scheduling. Wiley, 1974.

S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier,
D. Shasha, and F. Wang. On the competitiveness of on-line real-time task
scheduling. In IEEFE Real-Time Systems Symposium, pages 106—-115, 1991.

S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and D. Shasha.
On-line scheduling in the presence of overload. In 32nd IEEE Annual Sympo-
sium on Foundations of Computer Science, pages 100-110, San Juan, Puerto
Rico, 1991.

J. Du, J. Y. T. Leung, and G. H. Young. Minimizing mean flow time with
release time constraint. Theoretical Computer Science, 75(3):347-355, 1990.

10

[6] B. Kalyanasundaram and K. Pruhs. Real-time scheduling with fault-
tolerance. Technical report, Computer Science Dept. University of Pitts-
burgh.

[7] G.Koren and D. Shasha. D°"": An optimal on-line scheduling algorithm for
over-loaded real-time systems. IEEE Real-time Systems Symposium, pages
290-299, 1992.

[8] G. Koren and D. Shasha. MOCA: a multiprocessor on-line competitive
algorithm for real-time system scheduling. Theoretical Computer Science,
128(1-2):75-97, 1994.

[9] S. Leonardi and D. Raz. Approximating total flow time on parallel machines.
In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of
Computing, pages 110-119, El Paso, Texas, 1997.

11

