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1 IntroductionRecently a family of techniques has emerged to reduce or eliminate the use of random bitsby randomized algorithms [ABI, BR, CG, KW, Lu1, Lu2, MNN, NN]. Typically, thesetechniques involve substituting independent random variables by a collection of dependentrandom variables which can be generated using fewer truly independent random bits. Mo-tivated by this work, we formulate the notion of a good approximation to a joint probabilitydistribution of a collection of random variables.We consider probability distributions over a �nite abelian group G and, in particular,overZnd for any positive integers d and n. We measure the distance between two distributionsover G by the distance, in the maximum norm, of their Fourier transforms over G . Givenan arbitrary distribution D over G , a good approximation D is a distribution with a smalldistance to D, which is concentrated on a small subset of the sample space. Sampling fromthe approximating distribution requires signi�cantly fewer random bits than sampling fromthe original distribution.Before describing our work in detail, we brie
y review some related work. Alon, Babai,and Itai [ABI] and Luby [Lu1] observed that certain algorithms perform as well using pair-wise independent random bits, as on mutually independent bits. It turns out that n uni-form k-wise independent bits can be generated using sample spaces of size O(nbk=2c); a lowerbound of � nbk=2c� on the minimum size of such a sample space is also known [ABI, CGHFRS].Thus, these algorithms could be derandomized for constant k by an exhaustive search of the(polynomial-size) sample space. Unfortunately, this degree of independence is very restric-tive and limits the applicability of the approach. Berger and Rompel [BR] and Motwani,Naor, and Naor [MNN] showed that several interesting algorithms perform reasonably wellwith only (logn)-wise independence. The resulting sample space, while of super-polynomialsize, could be e�ciently searched via the method of conditional probabilities, due to Erd}osand Selfridge [ES73] (cf. [AS, Chapter 15]), in time logarithmic in the size of the samplespace. This led to the derandomization of a large class of parallel algorithms [BR, MNN].An alternate approach was proposed by Naor and Naor [NN] based on the notion of thebias of a distribution due to Vazirani [Va].De�nition 1.1 Let X1; : : : ; Xn be f0; 1g random variables. The bias of a subset S of therandom variables is de�ned to be jPr [ Pi2SXi = 0]� Pr [ Pi2SXi = 1]j, where the sum istaken modulo 2.For mutually independent and uniform random variables, the bias of each non-emptysubset is zero. It is not hard to show that the converse holds as well. In an �-biasedprobability distribution, each subset of the random variables has bias at most �. Naor andNaor [NN] showed how to construct such a distribution, for any � > 0, such that the size1



of the sample space is polynomial in n and 1=�. The �-biased distribution can be viewedas an almost (logn)-wise independent distribution. A result due to Peralta [Pe] implies adi�erent construction of �-biased probability distribution using the properties of quadraticresidues; this and two additional constructions of two-valued �-biased random variables arereported by Alon, Goldreich, H�astad, and Peralta [AGHP].We formulate and study the notion of a \good approximation" to a joint probabilitydistribution of (possibly multi-valued) random variables. Let D be any joint distribution ofn random variables over the range f0; : : : ; d�1g. Informally, a good approximationD to Dsatis�es the following properties: there is a uniform bound �=dn�1 on the absolute di�erencebetween corresponding Fourier coe�cients over the group Znd of the two distributions; and,the sample space required for D is of size polynomial in n, d, and 1=�. We demonstrate theviability of such approximations by proving that for any distribution D, there exists a goodapproximation D. In fact, this notion and the existence result extend to any probabilitydistribution over a �nite abelian group. The quality of the approximation can be furthercharacterized by showing that the variation distance between the two distributions D andD is bounded by the sum of the di�erences between their Fourier coe�cients.We also consider the issue of an e�cient construction of such an approximating distri-bution; speci�cally, for the uniform distribution over Znd. An e�cient construction mustdetermine D in time polynomial in the description length of D, and also in 1=�; clearly,this bound must apply to the size of the sample space of the approximating distribution D.(Note that the description of a distribution D overZnd may be of length as much as dn.) Weprovide an e�cient construction of a good approximation U to the uniform distribution UonZnd, i.e., for the joint distribution of uniform and independent d-valued random variablesX1; : : : ; Xn. Since the construction must guarantee that the Fourier coe�cients of U arevery close to those of U , it is essentially an �-biased distribution. This has the followingnatural interpretation in terms of linear combinations: for any vector A = (a1; : : : ; an),PaiXi (mod d) has \almost" the same distribution in the case where the random variablesX1; : : : ; Xn are chosen from U , as in the case where they are chosen from U . The analysisof this construction is based on Weil's character sum estimates, and it generalizes the workof Peralta [Pe] to d-valued random variables. Our results hold for non-prime values of d aswell1.This construction has found application in the work of H�astad, Phillips, and Safra [HPS].They consider the approximability of the following algebraic optimization problem: givena collection of quadratic polynomials over Fq , the �eld of order q, �nd a common root tothe largest possible sub-collection of these polynomials. Our construction is used to show1Following our work, Even [Ev] generalized one of the constructions of Alon, Goldreich, H�astad, andPeralta [AGHP] to the d-valued case when d is a prime.2



that �nding an approximate solution (to within a ratio of d � �) is as hard as �nding anexact solution, and hence is NP-hard; this applies to polynomials over rationals and reals aswell. The constructions of two-valued �-biased random variables due to Naor and Naor [NN]and Alon, Goldreich, H�astad, and Peralta [AGHP] are insu�cient for this purpose, and ourconstruction of d-valued �-biased random variables needs to be used.We also show that the variation distance between two distributions can be boundedin terms of the di�erences in their Fourier coe�cients. This allows us to demonstratethat our construction gives random variables which are \almost" (logdn)-wise independent.Our construction is optimal in this respect. We also explore some connections with theconstruction of linear codes. Our results provide a construction of a linear code over anarbitrary alphabet which has the property that for each non-zero codeword, the distributionof the alphabet symbols is almost uniform, and that the length of the codeword is polynomial(quadratic) in the dimension of the code. Previously, such codes were known only over F2.The remaining sections are organized as follows: Section 2 provides some mathematicalpreliminaries; the existence of a good approximation to an arbitrary distribution and boundson the variation distance are shown in Section 3; Section 4 studies the notions of bias andk-wise independence. Section 5 gives a construction of an �-biased distribution; Section 6studies the parameters of the construction; �nally, in Section 7 our construction is appliedto linear codes.2 Preliminaries2.1 Characters of Finite Abelian Groups. Our discussion here follows the expositionof Babai [Ba] and Ledermann [Le]. Let T denote the multiplicative group of complexnumbers with unit modulus. A character of a �nite abelian group G is a homomorphism� : G ! T. The characters of G form the dual group bG under pointwise multiplication (for�; �0 2 bG we set ��0(x) = �(x)�0(x)). It is known that bG �= G (cf. [Ba]). The identityelement of bG is the principal character �0 de�ned by setting �0(x) = 1, for all x 2 G . Theorder of a character is its order as an element of bG .Let C(n) denote a cyclic group of order n, written multiplicatively. The characters ofG = C(n) are constructed as follows. Let z denote a generator of G .De�nition 2.1 For 0 � r � n� 1, the rth character of C(n), denoted by �r, is de�ned asfollows: �r(zs) = e�rsn �;where s = 0; : : : ; n� 1, and the function e(x) denotes e2�ix for i = p�1.It follows that �r has order n=gcd(r; n). 3



We remark that in the case that G is the multiplicative group of a �nite �eld F, thecharacters are usually extended to all of F by setting �(0) = 0.Let now G be an arbitrary �nite abelian group, given as the direct product of cyclicgroups: G = C(n1)� : : :� C(nk). Each element x 2 G can be uniquely expressed asx = za11 za22 � � �zakk ;where zi is a generator of C(ni) and 0 � ai < ni. We can thus represent x by the k-tuple (a1; : : : ; ak) 2 Zn1 � : : :�Znk. There is a character corresponding to each k-tupleR = (r1; : : : ; rk) 2Zn1 � : : :�Znk, de�ned as follows:�R(x) = e kXi=1 airini ! :We are particularly interested in the set of characters of the group Znd. In this case, thepreceding formula simpli�es to�R(a1; : : : ; an) = e 1d nXi=1 airi! :where R = (r1; : : : ; rn) 2Znd.2.2 Discrete Fourier Transform. We give a brief overview of the basic concepts indiscrete Fourier analysis; see [DM], [K�o], or [Ba] for more details.As before, let G be a �nite abelian group. The set C G = ff : G ! C g of complexfunctions over the group G forms a jG j�dimensional vector space over C . The inner productof two functions f and g is de�ned as follows:<f; g>= 1jG j Xx2G f(x)g(x)�;where � denotes the complex conjugate operation. The characters of G form an orthonormalbasis of C G with respect to the inner product < ; >.Any function f 2 CG can be uniquely written as a linear combination of characters:f = X�2bG bf��:The coe�cients bf� are called the Fourier coe�cients of f , and are given by bf� =<f; �>.We use the term principal Fourier coe�cient for bf�0 , the Fourier coe�cient correspondingto the principal character.The function bf : bG ! C is the Fourier transform of f .4



A probability distribution over G is a function D : G ! R such that for all x 2 G ,D(x) � 0, and Px2G D(x) = 1:In our estimates of the distance between probability distributions over a �nite abeliangroup G , we shall make use of the Fourier transforms of these probability distributions.As usual, for 1 � p � 1 we shall use kfkp to denote the Lp-norm of the function f 2 CG ,i. e. for p < 1 we set kfkp = (Px2G jf(x)jp)1=p; for p = 1 we set kfk1 = maxx2G jf(x)j:Note that for the L2-norm this notion does not correspond to the inner product < ; >.3 Approximating arbitrary distributionsIn this section we suggest an approach to approximating arbitrary distributions. Previouswork concentrated on approximating the uniform distribution over two-valued random vari-ables. Let D be a probability distribution over a �nite abelian group G . We will show thatthere exists a small probability space which approximates D. The following is a somewhatstrengthened version of our original theorem, based on an observation due to Mario Szegedy.Let � be a sample space of size `, and D be a probability distribution over �. Inwhat follows, we will often represent such a distribution D by a (probability) vector D in `dimensions.Theorem 3.1 Let M be an `� ` matrix of complex numbers with entries of absolute valueat most 1. For any probability distribution D represented by the vector D of length `, andany � > 0, there exists a probability distribution F represented by a vector F with at mostO(��2 log `) non-zero entries, such thatjjD �M � F �M jj1 � �:Proof: We use the probabilistic method [ES74, AS] to demonstrate the existence of asample space 
 � � such that a uniformly chosen sample point from 
 has a distributionapproximating D; thus, F is the uniform distribution over 
. We choose 
 = f!1; : : : ; !kgas follows: pick each !i independently from � according to the distribution D. Since thesample points !i 2 � need not be distinct, in general, 
 will be a multi-set; if necessary,the repetitions can be eliminated by suitably modifying the probability measure.We index the rows of M by s 2 S. We claim that, provided k is large enough, for everys 2 S the probability that jD �Ms � F �Msj > � is less than 1=`. Since the number of rowsis `, this implies that Pr [9 s; jD �Ms � F �Msj > � ] < 1:Note that the probability in the above expression is with respect to the random choice of
. Thus, it follows that there exists a choice of the elements !i 2 �, for 1 � i � k, which5



will yield the probability space (
;F) as required.It remains to prove the claim. Let us now concentrate only on the row indexed by aspeci�c s. For 1 � i � k, let wi be the jth coordinate of the sth row, where j is the indexof the element that was chosen as !i. It follows thatF �Ms = kXi=1 1kwi;that is F � Ms is proportional to the sum of k independent random variables. In whatfollows, E and Pr denote expectation and probability with respect to the uniform measureon the (multi-set) sample space 
. We have that E[wi] = D �Ms andE[F �Ms] = E"1k kXi=1wi# = E[wi] = D �Ms:To complete the proof we show that the sum of the wi does not di�er from its expectedvalue by more than �k. Let S be sum of n independent variables, each of which has anabsolute value of at most 1. By a version of the Cherno� bound [AS, p.240], for any h � 0,Pr[ jS � E[S]j � h ] � 2e�
(h2=n):This bound implies thatPr"����� kXi=1wi � kD �Ms����� > �# � 2e�
(�2=k):In our case, the bound on the allowed deviation from the expected value is � = �k. We needto choose k such that e�
(�2=k) < 1=2`. This is clearly true for k = �(��2log `). 2The following theorem shows the existence of a good approximation (
;F) to the dis-tribution D such that the sample space 
 is small.Theorem 3.2 For any probability distribution D de�ned over a �nite abelian group G andany � 2 [0; 1], there exists a probability space (
;F), such that:1. k bF � bDk1 � �=jG j,2. the size of the probability space 
 is at most O(��2log jG j).Proof: The proof is an immediate consequence of Theorem 3.1. We choose M to be thecharacter table of the group G , i. e., the rows are indexed by the characters, the columnsby the elements of G , and Msx = �s(x). 2The following Corollary shows the existence of a good approximation to the uniformdistribution over Znd. 6



Corollary 3.3 There exists a probability distribution F over Znd of size O(��2n logd) suchthat the value of all of its Fourier coe�cients (except for the principal coe�cient) is at most�=dn.We now discuss the signi�cance of Theorem 3.2.De�nition 3.4 Let D1 and D2 be two probability distributions over a �nite abelian groupG . We de�ne the variation distance between these two distributions as kD1 � D2k1.The next theorem bounds the variation distance between D and F in terms of theirFourier coe�cients.Theorem 3.5 Let the probability distributions D and F be de�ned over a �nite abeliangroup G . Then, kD � Fk1 � jG j � k bD � bFk2 � jG j � k bD � bFk1:Proof: The right inequality is immediate. Let H = D � F . Using the Cauchy-SchwarzInequality and Parseval's Equality, we conclude thatkHk1 �qjG j � kHk2 = jG j � k bHk2: 2Let X1; : : : ; Xn be random variables taking values from Zd. Let D : Znd ! R denotetheir joint probability distribution. Let S � f1; : : :ng be of cardinality k. For any x 2 Znd,let xjS denote the projection of the vector x speci�ed by S. We de�ne DS , the restrictionof D to S, by setting DS(XS = y) = Xx2Znd; xjS=yD(x)for all y 2Zkd.We �rst observe the following relation between the Fourier coe�cients of D and DS . LetA � Znd denote the set of elements (a1; : : : ; an) in Znd for which ai = 0 for all i 62 S.Lemma 3.6 For all A 2 A, dn�k � u = vwhere u is the Fourier coe�cient of D corresponding to A, and v is the Fourier coe�cientof DS corresponding to AjS.Proof: The proof follows directly by substituting appropriate values into the de�nitionof Fourier coe�cients. 2Corollary 3.7 Let D and F be probability distributions de�ned over Znd such that k bD �bFk1 � �=dn for some 0 � � � 1. Then, for any subset S of cardinality k of the randomvariables, kDS � FSk1 � �dk:7



Proof: Applying Theorem 3.5 and Lemma 3.6, we conclude thatkDS � FSk1 � dk � k bDS � bFSk1� d2k � k bDS � bFSk1� d2k � dn�k � k bD � bFk1� dn+k � �dn = �dk ;which completes the proof. 2If � is chosen to be polynomially small, then Corollary 3.7 implies that: for any dis-tribution D, there exists a distribution F over a polynomial size sample space such thatany subset S of the random variables is distributed in F \almost" as in D, provided thatjSj = O(logd n).4 Bias and k-wise near-independenceIn this section we de�ne the notion of a �-biased distribution. (This distribution has beenstudied earlier [NN, AGHP] for the case d = 2). Generalized �-biased distributions rep-resent a convenient formalization of the concept of \good" approximation to the uniformdistribution. Our main result here is a theorem that bounds the Fourier coe�cients of aprobability distribution over Znd in terms of the bias of the distribution. We also give abound on the variation distance of a distribution from the uniform distribution in terms ofthe Fourier coe�cients.We �rst generalize the de�nition of �-biased distributions to the case of multi-valuedrandom variables. Let X = (X1; : : : ; Xn) be a random variable over a set 
 � Znd. Wede�ne the bias of X with respect to any A 2Znd as follows.De�nition 4.1 Let A = (a1; : : : ; an) be any vector in Znd and let g = gcd(a1; : : : ; an; d).The bias of A is de�ned to bebias(A) = 1g max0�k< dg �����Pr" nXi=1 aiXi � kg (mod d)#� gd ����� :We introduce g in this de�nition because, regardless of the distribution of the randomvariables, the only values that Pni=1 aiXi (mod d) can take are multiples of g.De�nition 4.2 Let 0 � � � 1 and let 
 � Znd. A probability space (
;P) is said to be �-biased if the corresponding random variable X = (X1; : : : ; Xn) has the following properties.1. For 1 � i � n, Xi is uniformly distributed over Zd.2. For all vectors A 2Znd, bias(A) � �. 8



We �rst note that Theorem 3.1 implies that an �-biased probability space of small sizeexists. In Section 5 we provide an explicit construction which is somewhat weaker.Corollary 4.3 There exists a probability distribution F over Znd of size O(��2n logd) suchthat for all A = (a1; : : : ; an) 2Znd, bias(A) � �.Proof: The proof follows immediately from Theorem 3.1 by the following choice of matrixM . Let the columns ofM correspond to the elements ofZnd, and the rows ofM correspond toall pairs (A; k) such that A = (a1; : : : ; an) 2Znd, 0 � k < d=g, where g = gcd(a1; : : : ; an; d).Let X = (X1; : : : ; Xn) 2Znd. We de�ne:M((A; k); X) = 8<: 1 if Pni=1 aiXi � kg (mod d)0 otherwiseIn order to apply Theorem 3.1, we transformmatrixM into a square matrix by adding zerorows. 2Let D be an �-biased distribution. We now relate the bias and the Fourier coe�cientfor any A 2Znd as follows.Lemma 4.4 For all non-zero A = (a1; : : : ; an) 2Znd, we have thatj bDAj � bias(A)dn�1 :Proof: Let g = gcd(a1; : : : ; an; d). By the de�nition of a Fourier coe�cient,bDA = <D; �A>= 1dn Xx D(x)�A(x)�= 1dn Xx D(x) e 1d nXi=1 aixi!!�= 1dn Xx D(x) e �1d nXi=1 aixi! :Taking absolute values, we have thatj bDAj = 1dn �����Xx D(x) e��1dX aixi������= 1dn �������dg�1Xk=0 e��kgd �Pr hX aixi � kg (mod d)i������� :The probability is with respect to a random choice of x 2 Znd with the distribution D.9



De�ne Pkg = Pr[Paixi � kg (mod d)]. Then,j bDAj = 1dn ������� dg�1Xk=0 e��kgd �Pkg�������= 1dn �������gd dg�1Xk=0 e��kgd �+ dg�1Xk=0 e��kgd ��Pkg � gd��������Note that P e��kgd � = 0 since the (d=g)th roots of unity sum to zero. We then concludethat j bDAj = 1dn ������� dg�1Xk=0 e��kgd ��Pkg � gd��������� 1dn dg�1Xk=0 ���� e��kgd ����� ����Pkg � gd ����� 1dn � dg � (g � bias(A))= bias(A)dn�1 ;where the last inequality follows from the de�nition of the bias as well as the fact thatj e(�kg=d) j = 1. 2The following theorem is a generalization of a result due to Vazirani [Va]. It relates thebiases of an arbitrary distribution to its variation distance from the uniform distribution.Theorem 4.5 Let D be an arbitrary probability distribution de�ned onZnd, and let U denotethe uniform distribution on Znd. Then,jjD � Ujj1 � dXA bias(A);where the bias is de�ned with respect to the distribution D.Proof: We �rst evaluate bD~0,bD(~0) =<D; �~0>= Xx2Zdn D(x)dn = 1dn :The variation distance is,jjD � Ujj1 = Xx2Zdn ����D(x)� 1dn ���� = Xx2Zdn �����XA bDA�A(x)� 1dn ����� :10



Since bD~0 = 1dn , Xx2Zdn �����XA bDA�A(x)� 1dn ����� = Xx2Zdn ������XA6=~0 bDA�A(x)������� Xx2Zdn XA6=~0 ��� bDA��� j�A(x)j= dn XA6=~0 ��� bDA���� dnXA ddnbias(A);where the last inequality follows from Lemma 4.4. Thus,jjD � Ujj1 � dXA6=~0 bias(A): 2Corollary 4.6 For � = 0, an �-biased distribution is the same as the uniform distribution.The following de�nition is similar to that of Naor and Naor [NN] and Ben-Nathan [Be].De�nition 4.7 LetX1; : : : ; Xn be random variables taking values fromZd. Let D :Znd ! Rdenote their joint probability distribution. For any x 2 Znd, let xjS denote the projection ofthe vector x speci�ed by S. Let DS denote the restriction of D to S, by settingDS(XS = y) = Xx2Znd; xjS=yD(x)for all y 2 Zkd. We say that the variables X1, : : : , Xn are k-wise �-dependent if for allsubsets S such that jSj � k, jjD(S)� U(S)jj1 � �;where U denotes the uniform distribution.The next Corollary follows from Theorem 4.5 and Corollary 3.7.Corollary 4.8 If the random variables X1; : : : ; Xn taking values from Zd are �-biased,then they are also k-wise �-dependent, for � = �dk. In particular, they are (logdn)-wise(1=poly(n))-dependent with a polynomially small �.5 Constructing an �-biased probability distributionIn this section we show how to approximate a uniform probability distribution overZnd. Wepresent an explicit construction of �-biased random variables such that the sample space 
11



has size which is bounded by a small polynomial in n, d and 1=�. This implies that we havean explicit construction for random variables which are almost (logdn)-wise independent,such that the corresponding sample space is of polynomial size, where � is polynomiallysmall.We describe the �-biased probability distribution implicitly by specifying an algorithmfor choosing a random sample point. In what follows, we assume that the prime power qand a character �r of F�q are chosen such that d = (q � 1)=r is the order of the character;further, we assume that q � 1 � n. Let z be a generator for F�q . Let b1; b2; : : : ; bn be some�xed distinct elements in Fq .Random Sampling Algorithm:1. Choose the value of the random variable Y from F�q uniformly at random. For 1 �i � n, let Yi = Y + bi.2. For 1 � i � n:(a) Let Zi = 8<: Yi if Yi 6= 0bi otherwise(b) Let si be such that Zi = zsi .(c) Choose Xi = si mod d.In Step 2(a), we take care of the case where one of the random variables Yi = Y + bi is zeroand, therefore, not in F�q . This guarantees that each Zi is uniformly distributed over F�q .Let � be a primitive dth root of unity and let �r(x) = �log x, where logx denotes thediscrete log of x to the base z. Notice that for all i, provided each Yj is non-zero,�r(Y + bi) = �r(Zi) = �r(zsi) = �si = �Xi : (1)We will establish that these random variables have the desired properties via Weil'scharacter sum estimates (see Schmidt [Sc, page 43, Theorem 2C]). Let f be a polynomialover a �eld F. Let k be the greatest common divisor of the multiplicities of the roots of fover the algebraic closure of F. We shall say that k is the greatest common multiplicity off .Theorem 5.1 (Weil's Theorem) Let F be a �nite �eld of order q and let � be a mul-tiplicative character of order d. Let f 2 F[x] be a polynomial with n distinct zeros in thealgebraic closure of F. Suppose d does not divide the greatest common multiplicity of f .Then ������Xx2F�(f(x))������ � (n� 1)pq:12



To analyze the properties of our construction, we need the following corollary.Corollary 5.2 Let F be a �nite �eld of order q and let � be a primitive dth root of unity.Let f 2 F[x] be a polynomial with n distinct roots in the algebraic closure of F. Assume thatthe greatest common multiplicity of f is relatively prime to d. De�ne rk to be the numberof solutions x 2 F to the equation �(f(x)) = �k. Then,����rk � qd ���� � (n� 1)pq:Proof: The de�nition of rj implies that for 0 � ` � d� 1,Xx2F(�(f(x)))` = d�1Xj=0 rj�`j : (2)(Here for ` = 0 we set 0` = 0.) Denoting the number of distinct roots of f in F by � (� � n),it follows that q � � + d�1X̀=1Xx2F(�(f(x)))` = d�1X̀=0Xx2F(�(f(x)))`= d�1X̀=0 d�1Xj=0 rj�`j= dr0 + d�1Xj=1 rj d�1X̀=0�j`= dr0:Hence, jdr0� qj � � + ������d�1X̀=1Xx2F(�(f(x)))`������ � � + d�1X̀=1 ������Xx2F(�(f(x)))`������ :The order of the character �` is d0 = d=gcd(d; `) which is greater than 1 for 0 < ` < dand it is relatively prime to the greatest common multiplicity of f , hence we may applyTheorem 5.1 to each term on the right hand side. We obtainjdr0 � qj � � + d�1X̀=1(n� 1)pq � � + (d� 1)(n� 1)pq < d(n� 1)pq:This implies that ����r0 � qd ���� � (n� 1)pq:To conclude the proof, observe that if both sides of (2) are multiplied by ��k`, then thesame result is obtained for any rk. 2We now analyze the properties of the random variables de�ned above.Theorem 5.3 Let the random variables X1; : : : ; Xn be de�ned by the Random SamplingAlgorithm. Then the following two conditions hold:13



1. For 1 � i � n, Xi is uniformly distributed over Zd.2. For all A 2Znd, bias(A) � 2n=pq.Proof: For each i, distinct values of Y 2 F�q yield distinct values for Zi 2 F�q . Since Yis chosen uniformly at random from F�q , it follows that Zi is uniformly distributed over F�q .Since F�q is cyclic, we conclude that the random variable si is uniformly distributed overf0; 1; : : : ; q�2g. By our choice of q, we have djq�1, and this implies that Xi � si (mod d)is uniform over the set Zd, thereby establishing the �rst part of the theorem.Let A = (a1; : : : ; an) be any vector in Znd and let g = gcd(a1; : : : ; an; d). Assume �rstthat g = 1. We de�ne the polynomial fA(x) as follows:fA(x) = nYi=1(x+ bi)ai :Let us now restrict ourselves to the case where all values Yj are non-zero. By (1),�r(fA(Y )) = nYi=1[�r(Y + bi)]ai = nYi=1(�Xi)ai = �Pni=1 aiXi :The number of values of Y 2 F�q such that Pni=1 aiXi � j (mod d) is exactly equal tothe value of rj de�ned in Corollary 5.2 for the polynomial fA(x). However, we are onlyconsidering the case where all values Yj are non-zero. This can create at most an additiveerror of n in the bounds given in Theorem 5.1 and Corollary 5.2. It then follows from thede�nition of the bias that bias(A) � maxj jrj � q=dj + nq :The assumption g = 1 means the greatest common multiplicity of f is relatively prime tod. From Corollary 5.2 it follows thatbias(A) � npq + nq � 2npq :Consider now the case g > 1, and let �i = ai=g. Let g0 = gcd(a1; : : : ; an) and ci = ai=g0.By the preceding argument, the bias of the vector C = (c1; : : : ; cn) is bounded by 2n=pq.For 0 � j � d=g � 1, the number of vectors X that satisfy the equationnXi=1 aiXi � jg (mod d):is equal to the number of vectors X that satisfynXi=1 ciXi � j + dlg (mod d);14



where 0 � l � g � 1. Since g0=g is relatively prime to d=g, the number of such vectors isalso equal to the number of vectors X that satisfynXi=1 ciXi � j 0 + dl0g (mod d)where j � j 0(g0=g) (mod d=g). By De�nition 4.3,bias(A) = 1d � d � bias(G) = bias(G);which establishes the second part of the theorem. 2The parameters of our construction are described in the following theorem. Let q(d; k)denote the smallest prime power such that djq � 1 and d � k.Theorem 5.4 For any � > 0, n � 2, and d � 2, the probability space (
;P) de�ned by theRandom Sampling Algorithm generates n random variables over Zd which are �-biased, andthe size of the sample space is j
j = q(d; 4n2��2)� 1.Proof: Generating the random variables X only requires choosing Y 2 F�q uniformlyat random. Hence the sample space is 
 = F�q where q is a prime such that djq � 1 andq � 4n2��2: Choose the smallest prime power satisfying these constraints. 26 Estimates for q(d; k)In this section we review results from number theory relevant to estimating q(d; k). Letp(d; k) denote the smallest prime such that djp� 1 and d � k. Clearly q(d; k) � p(d; k).For any d and k, the quantity p(d; k) can be estimated using Linnik's Theorem es-tablishing the existence of small primes in arithmetic progressions: among the integers� t (mod m) (where gcd(m; t) = 1) there exists a prime p = O(mC). Heath-Brown [H]proves C � 11=2: Note that this result does not depend on any hypothesis. Under theExtended Riemann Hypothesis, Bach and Sorenson [BS] prove that p can be chosen to be� 2(m lnm)2, hence C � 2 + o(1).Let now p(d) denote the smallest prime such that djp� 1. Let further m(d; k) be thesmallest integer m such that djm and m � k. Note that m(d; k) < d+ k. Note further thatp(d; k) � p(m(d; k)). Summarizing, there exist absolute constants c and C such thatp(d; k) < c(d+ k)C : (3)Here C is the exponent in Linnik's Theorem discussed above.15



The exponent C can be reduced to 1 if d is small compared to k. For �xed d we havep(d; k) < (1 + o(1))k: (4)Moreover, for any constant c > 0 and for any d � logc k we havep(d; k) < c1k; (5)where the constant c1 depends only on c. These bounds follow from results that in thisrange, the primes are nearly uniformly distributed among the modd residue classes whichare relatively prime to d (prime number theorem for arithmetic progressions, cf. [Da, pp.132-133]).In conclusion we summarize the bounds obtained for the size of the sample space.Theorem 6.1 For any � > 0, n � 2, and d � 2, the probability space (
;P) de�ned by theRandom Sampling Algorithm generates n random variables over Zd which are �-biased, andthe size of the sample space is j
j < c0(d + n2��2)C where C is the constant in Linnik'sTheorem. Moreover, if d � logc(n2��2) then we have j
j < c1n2��2 where c1 depends on conly. For constant d we have j
j < (1 + o(1))n2��2.Note that the bounds obtained in the above theorem are not the best possible, comparewith Corollary 4.3. Theorem 6.1 together with Corollary 4.8 imply that we can construct(logdn)-wise (1=poly(n))-dependent random variables over Znd using a polynomially largesample space. Also, Theorem 6.1 together with Lemma 4.4 imply that we can approximatethe Fourier coe�cients of the uniform distribution onZnd within �=dn with a sample space ofsize O(��2n2d2) for small d. This construction may not be the best possible since Corollary3.3 guarantees the existence of an approximating sample space whose size is O(��2n logd).7 Linear codesIn this section we observe that the �-biased distribution can also be looked upon as aconstruction of a nearly uniform linear code. The linear code that we obtain has a largedistance and the interesting property that each non-zero codeword has roughly the samenumber of occurrences of each possible symbol in the alphabet, or the �eld, over which thecode is de�ned. Also, the length of the codewords is only polynomial (quadratic) in thedimension of the code and thus the code is relatively dense.A code C is called an [n; k] code if it transforms words of length k into codewords oflength n. The dimension of C is de�ned to be k. A linear code C is a linear subspace of Fn ,for some �eld F. A generator matrix G for a linear code C is a k � n matrix whose rowsform a basis for C. If G is a generator matrix for C, then the code can be de�ned asC = fa �G ja 2 Fkg:16



The distance between two codewords is de�ned to be their Hamming distance. The weightof a codeword is the number of non-zero symbols that it contains.We may interpret the sample space of an �-biased distribution as the generator ma-trix G of a particular linear code C�. Let q be a prime power chosen in accordance withTheorem 5.4; the generator matrix G is of dimension n � q and every column in G is apossible assignment to the random variables X1; : : : ; Xn. Let N(c; k) denote the numberof occurrences of the letter k in codeword c. The following corollary is a consequence ofTheorem 5.3.Corollary 7.1 For every codeword c 2 C� and letter k 2 f0; : : : ; d�1g where d is a prime,����N(c; k)� qd���� � q� = 2npq:It is well known that for linear codes, the minimumdistance between any two codewordsis equal to the minimum (positive) weight among all codewords. It follows from the abovetheorem that a codeword can contain at most q(�+1=d) zero entries and hence, the minimumdistance of C� is q(1� � � 1=d).We note that a construction of a code which has the property that for every codeword,the distribution of the alphabet symbols is almost uniform and that the length of thecodeword is polynomial in the dimension has been known for the case of a binary alphabet.The dual code of a binary BCH code has this property and the proof follows from Weil'sTheorem (see MacWilliams and Sloane [MS, pages 280{282]).8 Open ProblemsAn important direction for further work is to e�ciently construct (in time polynomial inthe number of random variables n) probability distributions that approximate special typesof joint distributions. In particular, can we construct in time polynomial in n a goodapproximation to the joint distribution where each random variable independently takesvalue 1 with probability p and 0 with probability 1 � p? Note that this is only known forthe case where p = 1=2.It is also not clear that our construction of an �-biased distribution on n d-valued randomvariables is the best possible. Theorem 3.2 guarantees the existence of such a distributionusing a smaller sample space (by a factor of n). Can this be achieved constructively?17
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