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Vector Covering Algorithms 21 IntroductionProblem statement. For a set S � [0; 1]d and a coordinate i, 1 � i � d, we denote byDi(S) the sum of the i-th components of the elements in S. The set S is called a unit cover ifDi(S) � 1 holds for all 1 � i � d; in other words, the elements of a unit cover can be used tocover simultaneously all sides of the d-dimensional unit-bin. The d-dimensional vector coveringproblem is that of partitioning a given list X of vectors in [0; 1]d into the maximum number ofunit covers, i.e. covering the maximum number of unit-bins with the elements of X .This vector covering problem models a variety of situations encountered in business andin industry, from packing peach slices into tin cans so that each tin can contains at leastits advertised net weight, to such complex problems as breaking up monopolies into smallercompanies, each of which is large enough to be viable.Approximation algorithms. The vector covering problem is easily seen to be NP-complete.This suggests to look for fast approximation algorithms that come close to the optimum solutionin polynomial time. Let Opt(X) denote the number of unit covers in an optimum partition oflist X . For an approximation algorithm A, let A(X) denote the number of unit covers that Aproduces on input list X . De�ne for every k � 1RA(k) := min� A(X)Opt(X) j Opt(X) = k� : (1)The asymptotic worst case ratio RA (also called worst case performance, worst case guarantee,or just worst case ratio) of an approximation algorithm A, is de�ned byRA = lim infk!1 RA(k): (2)Clearly, RA(k) � 1 for every k � 1 and hence RA � 1. The asymptotic worst case ratio is theusual measure for the quality of an approximation algorithm for covering problems: the largerthe ratio, the better the approximation algorithm.Now assume an environment where the list X of vectors xt 2 [0; 1]d, 1 � t � n, arrivesone by one. When vector xt arrives, it must immediately and irrevocably be assigned to itsunit-bin, and the next vector xt+1 becomes only known after vector xt has been assigned. Suchan environment is called an on-line environment, and an approximation algorithm that is ableto work in an on-line environment is called an on-line algorithm. In contrast to this type ofalgorithm are the o�-line algorithms that only work under full knowledge of the problem data.Known results. The one-dimensional version of the vector covering problem was for the �rsttime investigated in the thesis [2] of Assmann and in the journal article by Assmann, Johnson,Kleitman and Leung [3]. There it is proved that the greedy algorithm (that simply keeps puttingitems into the same bin until this bin is covered and then moves on to the next bin) has a worstcase guarantee of 12 . Moreover, two more sophisticated algorithms were derived with worst caseratios 23 and 34 , respectively. Both of these sophisticated algorithms are based on presorting theitems, and consequently are o�-line algorithms. The greedy algorithm, however, is an on-linealgorithm. Csirik and Totik [7] proved that in fact the greedy algorithm is a best possible on-linealgorithm, since no on-line algorithm can have a worst case ratio that is strictly greater than 12 .Csirik, Frenk, Galambos and Rinnooy Kan [6] gave a probabilistic analysis of the one-dimensional bin covering and of the two-dimensional vector covering problem. Gaizer [9] con-structed an o�-line approximation algorithm with worst case guarantee 12 for dimension d = 2.



Vector Covering Algorithms 3The article by Csirik and Frenk [5] summarizes all results on vector covering problems thatwere derived till 1990 (actually, there are not too many of them).New results. In this paper, we derive �ve new results on vector covering problems.(1) For every d � 2, we construct an on-line approximation algorithm with worst case ratioarbitrarily close to 1=(2d).(2) For every d � 2, we show that no on-line algorithm can have a worst case ratio greaterthan 2=(2d+ 1).(3) For every d � 2, we show the existence of a polynomial time o�-line approximationalgorithm with worst case ratio (1 + o(1))=(2 lnd).(4) For d = 2, we present a very fast and very simple o�-line approximation algorithm withworst case ratio 12 .(5) For d � 2, we show how a method from the area of compact vector summation (seeSevastianov [13, 14]) can be used to construct o�-line approximation algorithms withworst case ratio 1=d.Result (1) provides the �rst non-trivial result on on-line approximations in dimensions d � 2.It also contradicts a statement of Csirik and Frenk [5] who claim that for d � 2, no on-linealgorithm can have a worst case ratio better than zero. Result (2) is a higher dimensionalcounterpart to the 1=2 lower bound of Csirik and Totik for d = 1. It also demonstrates thatResult (1) is not far from being best possible. Results (3), (4) and (5) give the �rst o�-line polynomial time approximability results for dimensions d � 2. Result (3) is based onprobabilistic arguments. Result (4) uses simple ad hoc arguments to simplify the ideas ofGaizer [9]. Result (5) outperforms result (3) for several small values of d.Other related results. The related vector packing problem asks for a partition of a list Xof vectors into the minimum number of parts such that in every part the sum of all items isat most one in every coordinate; cf. Garey, Graham, Johnson and Yao [10]. The best knownpolynomial time approximation algorithms for the o�-line version of d-dimensional packing haveworst case guarantees d + ", where " > 0 is an arbitrarily small positive real (Fernandez de laVega and Lueker [8]). The best on-line approximation algorithms have a worst case ratio ofd+ 710 for d � 2 (Garey, Graham, Johnson and Yao [10]) and 1:589 for d = 1 (Richey [12]).Since the vector covering problem may be considered to be a kind of inverse or dual versionof the vector packing problem, it is sometimes also called \dual bin-packing" or \dual vectorpacking" in the literature.Organization of the paper. Section 2 summarizes some basic notation that is used through-out the rest of the paper. Section 3 investigates an auxiliary problem that deals with the on-linepartitioning of vector sets subject to a certain min-max criterion. The results derived for thisauxiliary problem then constitute the main ingredients for the on-line approximation algorithmfor vector covering as described in Section 4. Section 5 presents the 2=(2d+1) lower bound foron-line algorithms in dimensions d � 2. Section 6 gives a combinatorial lower bound for theoptimum objective value. The proof of this combinatorial lower bound is probabilistic and canbe translated into an e�cient o�-line approximation algorithm with worst case ratio 
(1= logd)for d-dimensional vector packing. Section 7 presents and analyzes an ad hoc algorithm for



Vector Covering Algorithms 4the two-dimensional case. Section 8 deals with the results that are related to compact vectorsummation, and Section 9 gives the discussion.2 NotationFor a set X � [0; 1]d, we denote by s(X) the sum of all elements of X , and by Di(X) we denotethe i-th component of s(X). Moreover, we de�ne q(X) = min1�i�dDi(X) to be the smallestcomponent of s(X). Observe that Opt(X) � q(X) holds.For a < b, we denote by [a; b], (a; b), (a; b], and [a; b) the closed, open and half-open intervalsbetween a and b, respectively. IN is the set of non-negative integers and IR is the set of realnumbers. By log z we denote the base two logarithm of z, and by ln z the base e logarithm.3 An Auxiliary Problem: On-line Vector PartitioningThis section deals with an auxiliary problem that is called the d-dimensional on-line vectorpartition problem: A list X of vectors xt 2 [0; 1]d, 1 � t � n, has to be partitioned into d partsP1; : : : ; Pd. The vectors xt = (xt1; : : : ; xtd) arrive on-line, i.e. when vector xt arrives it must beassigned to a part Pi before vector xt+1 becomes known. The goal is to make the valuemin1�i�d Di(Pi)=Di(X) (3)as large as possible. In other words, the i-th part in the partition should get a fair amount ofthe total size of the i-th coordinate of list X .For an algorithmA for this partition problem, we denote by A1(X); : : : ; Ad(X) the partitionthat A generates for the input list X . To simplify notation, we will sometimes write Ai insteadof Ai(X) when the list X is clear from the context. This section is devoted to proving thefollowing theorem.Theorem 3.1 For every integer d � 1 and for every real 0 < " < 1, there exists a positive con-stant cd;" and an on-line algorithm A = A(d; ") for the d-dimensional vector partition problemsuch thatDi(Ai(X)) � 1� "d Di(X)� cd;" (4)holds for all input lists X and for all i, 1 � i � d.Proof. The proof will be done by induction on the dimension d. For d = 1, the claimedalgorithm trivially exists (even for " = 0 and cd;" = 0). Now assume that the statement of thetheorem holds for all dimensions up to d� 1. Consider some �xed ", 0 < " < 1.We introduce a number of technical de�nitions. De�ne � = (d + ")=(d + d") and notethat 1d < � < 1. Next, the interval [0; 1] is divided into an in�nite number of subintervalsIj = (�j+1; �j] for j 2 IN. Moreover, we de�ne I1 = [0]. With every vector c 2 (IN [ f1g)d,we associate a subset C(c) � [0; 1]d where x = (x1; : : : ; xd) 2 C(c) if and only if xi 2 Ic(i) forall 1 � i � d. These sets C(c) are called blocks and constitute an orthogonal partition of thecube [0; 1]d into an in�nite number of subsets. Finally, we �x for every vector c = (c1; : : : ; cd) 2(IN [ f1g)d a total order `�' of its coordinates as follows: For 1 � i 6= j � d, the relation



Vector Covering Algorithms 5i � j holds if and only if (i) ci > cj or (ii) ci = cj and i < j. Hence, components ci that are`small' with respect to � correspond to intervals Ici that are close to the zero point in [0; 1],and components that are `large' with respect to � correspond to intervals that are close to 1.The algorithm A = A(d; ") proceeds as follows. In the background, it simultaneously runs dcopies of the algorithmA(d� 1; "2) that exists by the inductive assumption. Every backgroundalgorithm sees only some fragments of the input list, and it maintains its own private partition ofthese fragments into d� 1 parts. Every time a new vector xt arrives, it is either assigned imme-diately by the master algorithm A = A(d; "), or it is handed over to one of these d backgroundalgorithms and then assigned depending on the decision of the background algorithm.(S0) Let xt = (xt1; : : : ; xtd) be the t-th vector that arrives. Determine the vector c� 2 (IN[f1g)dsuch that xt belongs to the block C(c�). Let k denote the smallest coordinate of c� withrespect to the ordering `�'.(S1) If jfx1; : : : ; xtg \ C(c�)j is divisible by d, then xt is immediately assigned to the part Ak.(S2) Otherwise, we remove the k-th component from xt while keeping the remaining compo-nents in the same order. The resulting vector has d�1 components and is handed over tothe k-th background algorithm who will assign it to, say, its `-th private set in its privatepartition.The master algorithm assigns it to the corresponding part while taking care of the removedcoordinate: If ` < k then A(d; ") assigns xt to the part A`, and otherwise it assigns xt tothe part A`+1.Next, we will prove that the algorithm de�ned above ful�lls inequality (4) for i = 1. Since thestatement of Theorem 3.1 and the algorithm A(d; ") are both almost symmetric with respectto all coordinates, this will be su�cient to establish the correctness of Theorem 3.1 (Note thatsmall but harmless asymmetries arise from the de�nition of the orders `�').De�ne X(c) = fx1; : : : ; xng \ C(c) and n(c) = jX(c)j. For 1 � i � d, let C(i) contain allthe vectors c 2 (IN [ f1g)d for which the i-th coordinate is minimum with respect to `�'. LetX(i) = Sc2C(i) X(c).Let us �rst deal with blocks C(c) where c 2 C(1). If the �rst component of c equals j, thenby step (S1) above,D1(A1 \X(c)) � �1dD1(X(c))� �j � 1� �d D1(X(c))� �j (5)holds, since every d-th vector of C(c) is assigned to A1 and since the �rst component of vectorsin C(c) is at most �j . It is easy to see that there are only (j+1)d�1 vectors c 2 C(1) whose �rstcomponent equals j. By summing up (5) over all vectors in C(1), we deriveD1(A1 \X(1)) � 1� �d D1(X(1))� 1Xj=0(j + 1)d�1�j : (6)Elementary calculus shows that the in�nite sum in the righthand side of (6) converges for � < 1.Hence, it is bounded by some constant depending only on � and d.Next, we consider blocks C(c) with c 2 C(2). Fix some arbitrary c 2 C(2) and assumethat its �rst component equals j. Observe that only bn(c)=dc elements of X(c) are assigned



Vector Covering Algorithms 6to A2 in step (S1), whereas the remaining d(1� 1d)n(c)e elements move on to step (S2). Sincen(c)�j+1 � D1(X(c)) � n(c)�j, and since the total size of the �rst components of the vectorspacked in step (S1) is at most bn(c)=dc�j, the total size �(c) of the �rst components of thevectors packed in step (S2) ful�lls�(c) � n(c)�j+1 � bn(c)=dc�j � n(c)�j ��� 1d� � ��� 1d�D1(X(c)): (7)This yields that the total size of the �rst components of all vectors in X(2) that move on tostep (S2) is at leastXc2C(2) �(c) � ��� 1d�D1(X(2)): (8)These vectors are packed according to the second background algorithm. Combining the induc-tive assumption with (8) we derive thatD1(A1 \X(2)) � 1� "2d� 1 0@ Xc2C(2) �(c)1A� cd�1;"2� 1� "2d� 1 �� � 1d�D1(X(2))� cd�1;"2= 1� "d D1(X(2))� cd�1;"2 : (9)For X(3); : : : ; X(d), inequalities analogous to (9) can be derived by analogous arguments. Sum-ming up these d� 1 inequalities for X(2); : : : ; X(d), and adding (6) to the result then yieldsD1(A1) = D1(A1 \X(1)) + dXi=2D1(A1 \X(i))� 1� �d D1(X(1))� 1Xj=0(j + 1)d�1�j + 1� "d dXi=2D1(X(i))� (d� 1)cd�1;"2� 1� "d dXi=1D1(X(i))� cd;"= 1� "d D1(X)� cd;"where cd;" � (d � 1)cd�1;"2 +P1j=0(j + 1)d�1�j is a constant. This proves inequality (4) fori = 1 and also completes the proof of Theorem 3.1.What about the time complexity of algorithmA(d; ")? It is straightforward to get a runningtime of O(n), where the constant hidden in the O-notation depends on d and ".4 An On-line Algorithm for Vector CoveringIn this section, we describe on-line approximation algorithms for vector covering whose worstcase ratio comes arbitrarily close to 1=(2d). Let us �rst recapitulate the corresponding resultfor d = 1.



Vector Covering Algorithms 7Observation 4.1 (Assmann, Johnson, Kleitman, Leung [3])There exists an on-line approximation algorithm G for one-dimensional vector covering thatful�llsG(X) � D1(X)=2� 1 � Opt(X)=2� 1 (10)for all input lists X. Hence, RG = 12.Proof. The greedy algorithm G (that covers bins one by one) puts into every bin a set of itemswith overall size at most 2.Theorem 4.2 For every integer d � 2 and for every real 0 < " < 1, there exists an on-linealgorithm B = B(d; ") for the d-dimensional vector covering problem with asymptotic worst caseratio RB = (1� ")=(2d).Proof. For every input list X , algorithm B(d; ") simulates the algorithm A(d; ") for on-linevector partitioning from Theorem 3.1 and uses the resulting partition A1; : : : ; Ad. If A(d; ")puts item xt into the i-th part Ai, algorithm B(d; ") forgets about all coordinates of xt withthe exception of the i-th coordinate, and thus prunes xt down to a one-dimensional item.By applying the greedy algorithm from Observation 4.1, item xt then is used for coveringthe i-th coordinate of the bins. Therefore, for every coordinate 1 � i � d, algorithm B willcover the i-th component of at least (1� ")Di(X)=(2d)� O(1) unit bins. This implies thatB(X) � min1�i�d 1� "2d Di(X)�O(1) � 1� "2d Opt(X)�O(1); (11)since Opt(X) � min1�i�dDi(X) holds. This completes the proof.5 A Lower Bound for On-line Vector Covering AlgorithmsIn this section, we show that for d � 2 there does not exist an on-line algorithm with worstcase ratio better than 2=(2d+ 1). Note that this lower bound is only a factor of 2 away fromthe upper bound 1=(2d) that has been derived in the preceding section.Let us suppose that there exists a dimension d � 2 and that there exists an on-line algorithmA for d-dimensional vector covering that ful�llsRA � 22d+ 1 + � for some � > 0. (12)We are going to derive a contradiction from this. Inequality (12) implies that there exists athreshold k(�) such that22d+ 1 + �2 � A(X)=Opt(X); whenever Opt(X) � k(�) (13)holds, where X is any �nite list over [0; 1]2. Consider a su�ciently large value k that ful�llsk � k(�) (the precise value of k will be determined later), and de�ne a small positive real number" = 1=(4kd). De�ne d+ 1 homogeneous lists X1, X2, X3 and Yi, 1 � i � d� 2, as follows.� List X1 contains 2kd times the vector (1� "; 1k ; 1k2 ; 1k3 ; : : : ; 1kd�1 ).



Vector Covering Algorithms 8� List X2 contains 2kd times the vector ("; 1; 1; 1; : : : ; 1).� List X3 contains kd times the vector (0; 1; 1; 1; : : : ; 1).� For 1 � i � d� 2, list Yi contains 2ki+1 times the vector ( 0; : : : ; 0| {z }(d�i)�times; 1; : : : ; 1| {z }i�times ).Next, we feed list X1 to algorithm A and we investigate the resulting partitioning of X1 intobins. Let z1 denote the number of bins that contain exactly 1 item, and let z2 denote thenumber of bins that contain at least 2 but less than k items. For 1 � j � d� 2, let mj denotethe number of bins that contain at least kj but less than kj+1 items. Finally,md�1 denotes thenumber of bins that contain at least kd�1 items. Clearly,z1 + 2z2 + d�1Xj=1 kjmj � 2kd (14)holds, and this impliesd�1Xj=1mj � 2kd�1: (15)Next, we observe that A(X1) = md�1 � 2k and Opt(X1) = 2k holds. By (13),22d+ 1 + �2 � md�12k : (16)Moreover, A(X1X2) � z1 + z2 +Pd�1j=1 mj , since A cannot �ll any bin with items from X2 ifthe bin does not contain at least one item from X1. Together with Opt(X1X2) = 2kd and theinequality in (13), this leads to22d+ 1 + �2 � 12kd (z1 + z2 + d�1Xj=1mj): (17)Next, observe that A(X1X3) � z2 + Pd�1j=1 mj since the �rst coordinates of the items in X3are too small to �ll a bin that does not already contain at least two items from X1. SinceOpt(X1X3) = kd, we get from (13) that22d+ 1 + �2 � 1kd (z2 + d�1Xj=1mj): (18)Next, observe that for 1 � i � d � 2, Opt(X1Yi) = 2ki+1, whereas A(X1Yi) � Pd�1j=d�i�1mj .Hence for 1 � i � d� 2, inequality (13) yields22d+ 1 + �2 � 12ki+1 ( d�1Xj=d�i�1mj): (19)



Vector Covering Algorithms 9Now we multiply (18) by 12 , and add the inequalities (16) and (17) and the d � 2 inequalities(19) for 1 � i � d� 2 to it. This yields1 + �4(2d+ 1) � 12kd 0@z1 + 2z2 + 2 d�1Xj=1mj + d�2Xi=0 kd�i�1 d�1Xj=d�i�1mj1A (20)= 12kd 0@z1 + 2z2 + 2 d�1Xj=1mj + kk � 1 d�1Xj=1 kjmj1A (21)� 12kd �2kd�1 + kk � 12kd� = 1k + kk � 1 : (22)where we applied (14) and (15) in order to derive the last inequality. As k tends to in�nity, therighthand side 1=k+ k=(k� 1) in (22) tends to 1, whereas the lefthand side is bounded strictlyaway from 1. This is a contradiction, and hence an on-line algorithm A that ful�lls (12) cannotexist.Theorem 5.1 For any on-line algorithm A for d-dimensional vector covering with d � 2, theinequality RA � 2=(2d+ 1) holds.A simple extension of the above argument combined with Yao's theorem [15] yields ananalogous result for randomized on-line algorithms. We omit the straightforward details.Theorem 5.2 For any randomized on-line algorithm A for d-dimensional vector covering withd � 2, the inequality RA � 2=(2d+ 1) holds.6 O�-line Results for Vector CoveringIn this section, we �rst provide a combinatorial lower bound for the size of the optimum solu-tion of d-dimensional vector covering problems. This lower bound is based on a probabilisticargument and then yields (by applying derandomization) an o�-line approximation algorithmwith worst case guarantee 
(1= logd).Theorem 6.1 For d � 2, let �d = 2 lnd + 2 ln ln d + 2. Then for every set X � [0; 1]d withq(X) � �d,Opt(X) � �q(X)�d ��1� 1lnd� = �q(X)2 lnd� (1� o(1)) : (23)Proof. Color the vectors in X with bq(X)=�dc � 1 colors, where each vector is coloredrandomly and independently according to a uniform distribution on the colors. Fix a color c�and consider the sum 	 of all vectors with this color c� at a �xed coordinate. The expectedvalue � of this sum is at least �d.By a standard estimate (cf., e.g., the remark after Theorem 2 in [11]) the following resultholds for a weighted sum 	 of independent Bernoulli trials where all weights are real numbersin [0; 1]: If � is the expected value of 	 and if 0 < 
 � 1, thenPr[	� � < �
�] < exp(�
2�=2): (24)



Vector Covering Algorithms 10By setting 
 = 1 � 1=� in our case, we derive from this that the probability that the sum ofvectors at the �xed coordinate is smaller than one isPr[	 < 1] = Pr[	� � < �
�] < exp(�
2�=2)< exp(1� �=2) < exp(� lnd� ln ln d) = 1d lnd:Therefore, the probability that the sum of vectors with color c� will be less than 1 in somecoordinate does not exceed d � 1=(d lnd) = 1= lnd. It follows that the expected number of colorswhose elements form a unit cover is at least (1� 1lnd)bq(X)=�dc.We remark that up to a constant factor, the lower bound in (23) is best possible. This canbe deduced from one of the results in [1]. It is proved there (see Section 3) that for every dthere is a collection F of d subsets of cardinality d each of a set Z of size bd lndc so that no setof at most ln2 d � 10 lnd members of Z intersects all subsets in the collection. Associate eachelement z of Z with a (0; 1)-vector vz = (vz(F ) : F 2 F) of length d whose coordinates areindexed by the subsets in F , where vz(F ) = 1 if z 2 F and vz(F ) = 0 otherwise. Let X be theset of all these vectors. Every coordinate of the sum of the members of X is precisely d, thatis q(X) = d. Also, by the properties of the above collection, every unit cover must contain atleast ln2 d� 10 lnd vectors. ThereforeOpt(X) � bd lndcln2 d� 10 lnd = (1 + o(1)) dlnd = (1 + o(1))q(X)ln d ; (25)proving the remark. Note also that by duplicating each vector as many times as needed, similarexamples X exist in which the value of Opt(X) is arbitrarily large.Moreover, by applying Raghavan's method of conditional probabilities with pessimistic esti-mators [11], we can convert the probabilistic existence proof of Theorem 6.1 into a deterministicpolynomial time algorithm. Since Opt(X) � q(X), this yields the following theorem.Theorem 6.2 For every d � 2, there exists a deterministic polynomial time o�-line ap-proximation algorithm for d-dimensional vector covering with asymptotic worst case ratio(1 + o(1))=(2 lnd).7 A Simple O�-line Algorithm for Dimension TwoIn this section, we present a fast and simple o�-line approximation algorithms for d = 2. It willproduce an approximative solution that covers at least q(X)=2� Opt(X)=2 bins.The algorithm assumes that the input list X ful�lls q(X) = D1(X) = D2(X) (otherwise,decrease some of the coordinates to make these values equal). Moreover, the algorithm some-times make use of a garbage bin: The items in X will be classi�ed into four classes. In casethat one of these classes contains only a single item, this item is thrown into the garbage binand disregarded from further arguments (in the end, the contents of the garbage bin is mergedwith one part of the constructed partition of X). Since there are just four classes, the garbagebin will contain at most four items and it will not e�ect the asymptotic worst case ratio of ouralgorithm.Next, let us classify the items: Items with two large components in the interval (12 ; 1] arecalled of type (+;+). Items where only the �rst component is large are called of type (+;�),



Vector Covering Algorithms 11items where only the second component is large are called of type (�;+), and items with bothcomponents in the interval [0; 12 ] are called of type (�;�).The algorithm B2 goes through the following four steps (0)|(3).(Step 0). As long as there exist two items x and y of type (�;�), replace them by anew item x+y. If there is a single item of type (�;�), it is thrown into the garbagebin.From now on, all items have at least one coordinate that is strictly greater than 12 .(Step 1). While there are at least two items of type (+;�) and at least two items oftype (�;+), repeat the following step: Take x of type (+;�) and y of type (�;+).If x+ y � (1; 1), replace them by a new item x+ y of type (+;+). If x+ y � (1; 1),pack them together and produce a unit cover. Otherwise assume w.l.o.g. that the�rst coordinate of x + y is in [1; 32) and the other coordinate is in (12 ; 1). Add anarbitrary item of type (�;+) and close the corresponding (covered!) bin.Without loss of generality, we assume that we eventually run out of (+;�)-items (a singlesurviving item of this type is thrown into the garbage bin) and that there only remain items oftype (�;+) and (+;+). In case we eventually run out of (�;+)-items, we apply a symmetricversion of (Step 3) below.(Step 2). While there are at least two items of type (+;+), the sum of these twoitems has both coordinates in the interval (1; 2]. We pack such a pair together tocover a unit bin. If in the end a single item of type (+;+) remains, it is thrown intothe garbage bin.(Step 3). Finally, pack the remaining items of type (�;+) with the greedy algorithmaccording to the �rst coordinate.Lemma 7.1 The asymptotic worst case ratio of the o�-line approximation algorithm B2 de�nedvia the above three steps equals 12 . The algorithm can be implemented to run in O(n) time.Proof. All bin covers that are produced during (Step 1) and (Step 2) have both componentsin [1; 2]. By Observation 4.1, the �rst component of all bin covers produced in (Step 3) is atmost 2. Hence, the number of produced bin covers is at least q(X)=2� 5=4, where the additiveconstant accounts for the items in the garbage bin.This yields that the worst case ratio is at least 12 . That this bound is tight follows byconsidering the listX� containing n-times the item (1�"; 12+") and n-times the item (3"; 12+"),where " < 1=(3n) is some small positive real. HereOpt(X�) = n and B2(X�) � n2+1. Reachingthe claimed time complexity is straightforward.8 An O�-line Algorithm with Worst Case Ratio 1/dIn this section, we present an o�-line approximation algorithm that exploits a method from thearea of compact vector summation (see Sevastianov [13, 14], and also Beck and Fiala [4].) Theapproximation algorithm has a worst case ratio of 1=d and is essentially based on the followingproposition.



Vector Covering Algorithms 12Proposition 8.1 (Sevastianov [13])Let W = fw1; : : : ; wng � IRd, let �0i 2 [0; 1], 1 � i � n and let w� = Pni=1 �0iwi. Then one can�nd in O(nd2) time a set of reals �i 2 [0; 1] such that� Pni=1 �iwi = w�, and� jfi j 0 < �i < 1gj � d.In other words, the linear dependence w� = Pni=1 �iwi can be easily transformed into anotherlinear dependence where almost all of the coe�cients are 0 or 1.Let ~1 denote the vector that has all of its d components equal to 1. For a vector x 2 IRdand an integer i, 1 � i � d, we will denote by x(i) the i-th component of vector x.Lemma 8.2 For an integer d � 2 and for a family fx1; : : : ; xng � [0; 1]d, of vectors, denotez := s(X)=q(X)� ~1. Then we can �nd in O(nd2) time a subset X 0 � X such that~1 � z � s(X 0) � dz: (26)Proof. Since for coe�cients �0j = 1=q(X), 1 � j � n, the equation z = Pnj=1 �0jxj holds, wemay apply Proposition 8.1 to transform the numbers f�0jg into reals �j 2 [0; 1] so thatnXj=1 �jxj = z; (27)jfj j �j 2 (0; 1)gj � d: (28)We denote N 0 = fj j �j 2 (0; 1)g and N 00 = fj j �j = 1g, and we de�ne y = Pj2N 00[N 0 xj andu =Pj2N 00 xj . Then we have by these de�nitions thaty � Xj2N 00[N 0 �jxj = z � Xj2N 00 xj = u: (29)If y � z+ (d� 1)~1, then y � dz, and we are done since the xj with indices in N 00[N 0 form thedesired solution set. Hence, from now on we assume without loss of generality thaty(1) > z(1) + d� 1: (30)Since u(1) � z(1) and y(1) = u(1) +Pj2N 0 xj(1) > z(1) + d� 1 holds, we obtainu(1) + xj(1) > z(1) for all j 2 N 0: (31)If Pj2N 0 �j � 1 theny(1)� z(1) = Xj2N 0(1� �j)xj(1) � Xj2N 0(1� �j) = jN 0j � Xj2N 0 �j � d� 1; (32)which contradicts (30). Hence,Xj2N 0 �j < 1: (33)



Vector Covering Algorithms 13Next, let us prove that8� 9j� 2 N 0 : u(�) + xj� (�) � z(�): (34)Suppose, that this is not the case and that for some coordinate �, 1 � � � d, we have u(�) +xj(�) < z(�) for all j 2 N 0. But in this casez(�) = u(�) + Xj2N 0 �jxj(�) < u(�) + Xj2N 0 �j (z(�)� u(�)) < z(�); (35)where the last inequality follows from (33). This contradiction proves (34).Finally, let us de�ne ~N to be the set of indices fj2; : : : ; jdg that exist by (34). Clearly,j ~N j � d� 1. It follows from (31) and (34) thatu(�) + Xj2 ~N xj(�) � z(�) for all � = 1; : : : ; d. (36)Thus, for y0 :=Pj2N 00[ ~N xj , we have y0 � z. Moreover,y0(�)� z(�) � y0(�)� u(�) = Xj2 ~N xj(�) � d� 1 (37)holds for all � = 1; : : : ; d, which implies z � y0 � z+(d�1)~1 � dz. Hence, X 0 = fxiji 2 N 00[ ~Ngyields the required set.Theorem 8.3 For every d � 2, there exists a deterministic polynomial time o�-line approxi-mation algorithm for d-dimensional vector covering with asymptotic worst case ratio 1=d. Thealgorithm can be implemented to run in O(d2n2) time.Proof. Let X = fx1; : : : ; xng � IRd be an input list for d-dimensional vector covering. Weapply the algorithm described in Lemma 8.2 repeatedly to list X , and remove in every step thecorresponding set X 0 from X . Clearly, every step produces a unit cover, and there are at leastbq(X)=dc steps. The claimed time complexity follows from Proposition 8.1.9 DiscussionIn this paper, we derived the �rst non-trivial approximation algorithms for on-line and o�-linevector covering. There remain many open questions.(Q1) Determine the exact approximability threshold for the on-line version! We feel thatour upper bound 1=(2d) should be closer to the true approximability threshold than our lowerbound 2=(2d+ 1).(Q2) Find lower bounds for the o�-line version! We do not know of any non-approximabilityresults for polynomial time approximation algorithms for the vector covering problem. Canour 
(1= logd) approximability result be beaten asymptotically? Does the problem allow anapproximation algorithm whose worst case ratio is a constant (that does not depend on thedimension d)? Does it allow a polynomial time approximation scheme?(Q3) Is it possible to improve on the ancient 34 approximation algorithm of Assmann et al[3] for the one-dimensional bin covering problem? This seems to be very di�cult. Can one atleast disprove the existence of a polynomial time approximation scheme?
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