On-line Bin-Stretching *

Yossi Azar! Oded Regev?

Abstract

We are given a sequence of items that can be packed into m unit size bins. In the
classical bin packing problem we fix the size of the bins and try to pack the items in
the minimum number of such bins. In contrast, in the bin-stretching problem we fix
the number of bins and try to pack the items while stretching the size of the bins as
least as possible. We present two on-line algorithms for the bin-stretching problem that
guarantee a stretching factor of 5/3 for any number m of bins. We then combine the
two algorithms and design an algorithm whose stretching factor is 1.625 for any m.
The analysis for the performance of this algorithm is tight. The best lower bound for
any algorithm is 4/3 for any m > 2. We note that the bin-stretching problem is also
equivalent to the classical scheduling (load balancing) problem in which the value of the
makespan (maximum load) is known in advance.

Keywords. On-line algorithms, approximation algorithms, bin-stretching, load bal-
ancing, scheduling, bin-packing.

1 Introduction

The on-line bin-stretching problem is defined as follows. We are given a sequence of items
that can be packed into m bins of unit size. We are asked to pack them in an on-line fashion
minimizing the stretching factor of the bins. In other words, our goal is to stretch the sizes
of the bins as least as possible to fit the sequence of items. Bin-stretching is somewhat
related to the bin-packing problem [10, 13, 18]. In both cases all the items are to be packed
in bins of a certain size. However, in bin-packing the goal is to minimize the number of
bins while in bin-stretching the number of bins is fixed and the goal is to minimize the
stretching factor of the bins. Hence, results for bin packing do not seems to imply results
for the bin-stretching problem.

A bin-stretching algorithm is defined to have a stretching factor g if for every sequence

*A Preliminary version of this paper appears in the proceedings of RANDOM’98, 1998.

'Department of Computer Science, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail:
azar@math.tau.ac.il. Research supported in part by the Israel Science Foundation and by the US-Israel
Binational Science Foundation (BSF).

'Department of Computer Science, Tel Aviv University, Tel-Aviv, 69978, Israel. E-Mail:
odedr@math.tau.ac.il



of items that can be assigned to m bins of a unit size, the the algorithm assigns the items
to m bins of size of at most g.

The motivation for our problem comes from the following file allocation problem. Con-
sider a case in which a set of files are stored on a system of m servers, each of some unit
capacity. The files are sent one by one to a remote system of m servers in some order. The
only information the remote system has on the files is that they were originally stored on
m servers of unit capacity. Our goal is to design an algorithm that can assign the arriving
sequence of files on the remote system with the minimum capacity required. An algorithm
for our problem whose stretching factor is 8 can assign the sequence of jobs to servers of

capacity 8.

It is also natural to view the bin-stretching problem as scheduling (load balancing)
problem. In the classical on-line scheduling (load balancing) problem there are m identical
machines and n jobs arriving one by one. Each job has some weight and should be assigned
to a machine upon its arrival. The makespan (load) of a machine is the sum of the weights
of the jobs assigned to it. The objective of an assignment algorithm is to minimize the
makespan (maximum load) over all machines. In the bin-stretching problem we have the
additional information that the optimal load is some known value and the goal is to minimize
the maximum load given this information.

It is clear that an upper bound for the classical scheduling (load balancing) problem
is also an upper bound for the bin-stretching problem since we may ignore the knowledge
of the optimal makespan (load). The classical scheduling problem was first introduced by
Graham [14, 15] who showed that the greedy algorithm has a performance ratio of exactly
2— # where m is the number of machines. Better algorithms and lower bounds are shown
in [7, 8, 9, 11, 12, 19, 21]. Recently, Albers [1] designed an algorithm whose performance
ratio is 1.923 and improved the lower bound to 1.852.

The only previous result on bin-stretching is for two machines (bins). Kellerer et al. [20]
showed that the performance ratio is exactly 4/3 for two machines. For m > 2 there were no
algorithms for bin-stretching that achieve a better performance than those for scheduling.
In this paper we provide for the first time algorithms for bin-stretching on arbitrary number
of machines (bins) that achieve better bounds than the scheduling/load-balancing results.
Specifically, we show the following results:

e Two algorithms for the bin-stretching problem whose stretching factor is 5/3 for any
number m of machines (bins).

e An improved algorithm which combines the above two algorithms whose stretching
factor is 1.625 for any number m of machines (bins). Our analysis for the stretching
factor of this algorithm is tight (for large m).

5z_1 which is better than 1.625

e For a fixed number m > 3 we get an upper bound 32—

for m < 20.

e Also, we easily extend the lower bound of 4/3 on the stretching factor of any deter-
ministic algorithm for m = 2 for any number m > 2.



Observe that the additional information that bin-stretching has over the scheduling problem
really helps in improving the performance of the algorithms. Moreover, our upper bounds for
the bin-stretching problem are lower than the lower bounds for the classical load balancing
problem for all m > 2 and this fact separates the two problems.

Note that the notion of stretching factor has been already used for various problems and,
in particular, for scheduling. A paradigm that is used for attacking many of the off-line
and on-line problems is to design algorithms that know an upper bound on the value of
the optimal algorithm. Binary search for the optimal value is used in the off-line setting.
In fact, this is the way that scheduling is reduced to bin-stretching by the polynomial
approximation scheme of [17]. This paradigm is also used for the related machines model [16]
which corresponds to bins of different sizes. In the on-line case the paradigm of stretching
factor is used with a doubling technique. Reducing the case of unknown optimal value to
known optimal value results in loosing a factor of 4 [2]. The notion of stretching factor
has also been used in the temporary jobs model where jobs arrive and depart at arbitrary
times [3, 4, 5, 6].

2 Notation

Let M be a set of machines (bins) and J a sequence of jobs (items) that have to be assigned
to the machines (bins). Each job j has an associated weight, w; > 0. As job j arrives it
must be permanently assigned to one of the machines. An assignment algorithm selects a
machine ¢ for each arriving job j. Whenever we speak about time 7 we mean the state of
the system after the jth job is assigned. Let [;(j) denote the load on machine ¢ at time j,
i.e., the sum of the weights of all the jobs on machine ¢ at time j. The cost of an assignment
algorithm A on a sequence of n jobs J is defined as the maximum load over all machines,
or, C4(J) = maxiep l;(n).

The objective of an on-line bin-stretching algorithm is to minimize the stretching factor
B; i.e., the cost of a sequence of jobs given that the optimal off-line assignment algorithm
(that knows the sequence of jobs in advance) assigns them at a unit cost. This is unlike
the classical on-line scheduling (load balancing) problems where the optimal cost is not
known in advance and the performance is measured by the regular competitive ratio which
is defined as the supremum of the ratio between the cost of the on-line assignment and the
cost of the optimal off-line assignment.

We say that a sequence of jobs can be assigned to m machines by an optimal off-line
algorithm if it can be assigned with a unit cost. We note some simple properties of such
sequences of jobs. First, the weight of all jobs must be at most 1 since a job that is larger
than 1 cannot be assigned by any algorithm without creating a load larger than 1. Second,
the sum of weights of all jobs in a sequence of jobs is at most m, the number of machines.
That follows from the fact that the optimal off-line algorithm can assign jobs with total
weight of at most 1 to each machine.



3 Two algorithms with 5/3 stretching factor

In this section we present two algorithms with a stretching factor of 5/3 for the on-line
bin-stretching problem. These are actually two families of algorithms. For each family we
prove the same 5/3 upper bound.

We start with a simple algorithm with a stretching factor of 2: put each arriving job
on an arbitrary machine such that the resulting load on that machine will not exceed 2.
Obviously, if the algorithm does not fail to find such machine it has a stretching factor of 2
by definition. In order to show that such a machine is always available we notice that there
must be a machine whose load is at most 1. Otherwise, all the machines have loads larger
than 1 which contradicts the fact that the optimal solution has maximal load 1. Since the
weight of each job is at most 1, each arriving job can be assigned to some machine which
implies that the algorithm never fails.

Our algorithms use a threshold a to classify machines according to their loads. An
appropriate choice of a will lead as described later to an algorithm whose stretching factor
isl+ o.

Definition 3.1 A machine is said to be short if its load is at most a. Otherwise, it is tall.

At the arrival time of job j, we define three disjoint sets of machines based on the current
load and the job’s weight.

Definition 3.2 When job j arrives, 1 < j < n, define the following three disjoint sets:

o SFU)={teM|L(G—-1)+w; <a}

e Sy(N={ieM|(i-1)<oa, a<li(j-1)+w; <1+a}

o S§() ={i € M|L(ji—1)>a, L(j — 1)+ w; <1+ a}

The set S is of machines that are short and remain short if the current job is placed on
them. The second set S, is of machines that are short but become tall if the job is placed
on them. The last set S3 is of machines that are tall but remain below 1 + « if the job is

placed on them. Note that there may be machines which are not in any of the sets. We
omit the indices 7 and a when they are clear from the context.

Using this definition we can now describe the two algorithms:

ALG1,: When job j arrives:

e Put the job on any machine from the set S3 or S; but not on an empty machine from
S if there is a non-empty machine from 5j.

o If S; = S3 = ¢ then put the job on the least loaded machine from the set S,.

o If S = Sy = 53 = ¢ then report failure.

ALG2,: When job j arrives:



I+eo

€S, €8, €S, €S, €S, S, <§

Figure 1: 51, S2 and S3

Put the job on any machine from the set S;.

If S1 = ¢ then put the job on any machine from the set S3.

If S1 = S3 = ¢ then put the job on the least loaded machine from the set S,.

If S; =S5 = 53 = ¢ then report failure.

Notice that these two algorithms are actually families of algorithms. In the first algo-
rithm we are free to choose how to select a machine from S3 and whether we put a job on
a machine from S; or from S3. In the second algorithm we are free to choose how to select
a machine from S; and from Ss.

Note that since the algorithms assign job j only to machines from the sets S;(7), S2(7)
and S3(7), their stretching factor is at most 14« as long as they do not fail. For1 < ¢ < 3let
J; be the set of jobs j assigned to a machine in S;(j) at their arrival time by the algorithm.

I+ex

1 m
[ ]Jobsin the setJ, [7] Jobs in the set J, [[]] Jobs in the set J,

Figure 2: Jy, Jo and J3
Theorem 3.3 ALG1, above never fails for & > 2/3. Therefore, for « = 2/3 it has a
stretching factor of 5/3.

Theorem 3.4 ALG2, above never fails for & > 2/3. Therefore, for « = 2/3 it has a
stretching factor of 5/3.



In order to prove the above theorems we assume by contradiction that ALG1, or ALG2,
fail on the last job of some sequence of n + 1 jobs and that this sequence can be assigned
by an optimal algorithm. We start with the following simple lemmas:

Lemma 3.5 At time n all the machines are tall and there are at least two machines whose
load is less than 1.

Proof: At time n, when the last job arrives, the three sets, S1, Sy and S3 are empty. Hence,
li(n) + wpy1 > 1+ a for all 1 < ¢ < m. Since the weight of each job is at most 1,
li(n) >14+ o —wppy > aforalll <i< m. Thus, all the machines are tall. Assume by
contradiction that except a machine %, all the machines have loads of 1 or more. When the
last job comes, l;(n) + wny1 > 1+ o > 1 and since all other machines also have loads of 1
or more it implies that the sum of all loads is above m which contradicts the fact that the
sequence of jobs can be assigned by an optimal algorithm. [ |

Corollary 3.6 The last job is larger than a.

Proof: At time n, when the last job arrives, there is a machine ¢ whose load is less than 1 by
lemma 3.5. Since the algorithm fails to assign the last job, 1 + w,y1 > 1+ a or wpy1 > o
|

To utilize some of our lemmas for the improved algorithm we use a more general for-
mulation. Consider a subset M’ C M of machines. We define the notion of composed
algorithm D(ALG, M') where ALG is ALG1,, or ALG2, on a sequence of jobs I and a set
of machines M as follows: The algorithm decides on an arbitrary set I’ C I and assigns it to
a machine in M’ and it assigns the rest of the jobs to a machine in M — M’. The assignment
of jobs I’ is done by running algorithm ALG on the set of machines M’. However, the jobs
in I — I' are assigned to a machine in M — M’ in any arbitrary way. Moreover, we make
no assumption on the sequence I, for example, the optimal algorithm may not be able to
assign them in M without exceeding a load of 1 (in particular, jobs of weight larger than 1
may exist).

Note that D(ALG, M) is the same as ALG for M' = M. We already proved that if
ALG1, or ALG2,, fail on the n+1 job of sequence J of jobs then at time n all the machines
are tall and there are two machines whose load is less than 1. Meanwhile, for the composed
algorithms we assume that after a sequence of n jobs I was assigned by D(ALG, M) all the
machines from the set M’ are tall and two of them have loads below 1. This assumption
is used until (including) lemma 3.13. Also, we assume that 0 < a < 1 unless otherwise
specified.

Define the raising job k; of machine ¢ € M’ as the job that raises machine ¢ from being
short to being tall. More formally, {;(k;) > o and [;(k; — 1) < a. The raising jobs are well
defined since we assumed that all machines from M’ are tall. Rename the indices of the
machines in M’ to 1,...,m’ such that k; < k3 < ... < ks i.e., the order of the machines
in M’ is according to the time the machines crossed a. From now on, all the indices are
according the the new order. Note that the set of the raising job is Js. Denote by s1, s9
the two machines in M’ (s; < s3) whose load is less than 1 at time n.

Lemma 3.7 If at time n, the load of some machine ¢ € M’ is at most [ then Wk, > 1+a—-1



fori >4, e M'.

Proof: Both ALG1, and ALG2, assign jobs to machines from Sy only if the two other sets
are empty. By definition of k;, at time k; — 1, job k; arrived and was assigned to machine
i'. By the definitions of Sy and k;s, machine ' was in the set Sy(k;/) and therefore the sets
Si1(k;) and S3(k;) were empty. Machine 7 was already tall at that time since ¢ < ¢’. This
implies that at time k; — 1 machine ¢ was not in Sy(k;/). Hence [;(ky — 1)+ w; > 1 + a or
w;>14+a—Lky—-1)>14+a—-Lin)>1+a-1L |

Since we assumed the load of machine s; is at most 1 at time n, the lemma above
implies:

Corollary 3.8 Jobs k; for s; < 72 < m/ are larger than a.

Let f; = l;(k; — 1) for 1 < ¢ < m'. This is the load of each machine just before it was
raised by the raising job.

I+ex

1 m
[ ]Jobsin the setJ, [7] Jobs in the set J, [lf] Jobs in the set J,

Figure 3: The series f;. Only machines from M’ are shown for clarity.

Lemma 3.9 For ¢ > 4, both in M', f; < lu(k; — 1) < fir.

Proof: At time k; — 1 the load of machine 7 is f; by definition. At this time, by definition
of k;, machine 7 is in the set S3 which means that S; and S3 are empty. Thus, at the same
time, each machine ¢’ > ¢ must be in Sy or not in any of the sets. Note that if the load
of machine ¢’ is below f; at time k; — 1 then it is in Sa(k;) since machine %, whose load is
higher, is in Sya(k;). Therefore, the load of machine ¢’ is at least f; since both algorithms
choose the least loaded machine from S,. Machine ¢’ is still short so its load is at most f;:.
|

Corollary 3.10 The series f; , 1 < ¢ < m/, is non-decreasing.
Lemma 3.11 Fori<s,, f; <1 - a.

Proof: According to corollary 3.8, wg,, > . Since the load of machine s; is below 1 at
time n,

1> lsz (n) > lsz (ksz) = lsz (ksz - 1) + Wk, — fsz + Wk, -



Therefore,
fs, <1-wg, <1-o.

By corollary 3.10, f; <1 — o for ¢ < s3. [

Note that up to now our proof was not specific to one of the algorithms. Now we focus
our attention on the first algorithm. Recall that we still assume that the set of jobs I is
assigned by algorithm D(ALG1,, M') or D(ALG2,, M') to the set of machines M.

Lemma 3.12 At any time of the activity of D(ALG1,, M'), there is at most one non empty
machine in M’ whose load is at most .

Proof: Assume by contradiction that at a certain time there are two such machines. Let j
be the first job that its assignment created two such machines. Thus, job j arrived and was
placed on an empty machine ¢3 while another non empty machine ¢; had a load of at most
5. Clearly w; < § and [;; (j — 1) + wj < a. Therefore 4; € S1(j) and job j should have
been assigned to ;. [

Lemma 3.13 Assume a > 2/3 and D(ALG1,, M') assigns a set of n jobs I to a set of
machines M. Then the weight of each job k;, 1 < ¢ < m/, is more than a.

Proof: We have already seen in corollary 3.8 that jobs k; for s; < ¢ < m’ are larger than a.
Now we show that jobs k; for i < s; are also larger than a.

By lemma 3.11, f,, and f,, are both below 1 — a. According to lemma 3.9, f,, <
lsy(ks, — 1) < fo,. Recall that the load of machine s; at time k,, — 1 is f,,. At that time,
the loads of machines s; and s; are below 1 — a < 5. Thus, by lemma 3.12, the less loaded
machine, s1, is empty, or l,, (ks;, — 1) = fs;, = 0. By corollary 3.10, f; = 0 for all machines
i < s1. A small f; implies that machine ¢ has a large raising job. More formally, for ¢ < s;:

Wk, = lz(kz) — lz(kZ — 1) = lz(kz) - 0> 0.

T

Now we are ready to complete the proof of theorem 3.3. Assume that ALG1,, fails on the
n—+ 1 job of a sequence J of jobs. After the n jobs have been assigned, all the machines are
tall and there are two machines whose load is less than 1 by lemma 3.5. We take M' = M
and therefore I' = I where I is the set of jobs J without the last job. The previously
defined series k; is now defined over all machines since we took M’ = M. By lemma 3.13,
for « > 2/3, this implies that there are m jobs larger than a. Corollary 3.6 shows that
the last job is also larger than a. We showed there are m 4 1 jobs larger than o. This
contradicts the fact that the number of jobs of weight larger than 1/2 is at most m since
the optimal algorithm can assign at most one such job to each machine. This completes
the proof of theorem 3.3.

The proof of theorem 3.4, i.e. ALG2,, has the same stretching factor, is in subsection 7.1
of the Appendix.



4 Improved Algorithm

In this section we present an improved algorithm whose stretching factor is 1.625. The
improved algorithm combines both of the previous algorithms into a single algorithm.

At the arrival time of job j we define five disjoint sets of machines based on the current
load and the job’s weight.

Definition 4.1 When job j arrives, 1 < j < n, define the following five sets:

e S ={ieM|LGHi-)+tw;<q L({G-1)+w; <2a-1}
o SH(N=LieM|L(-1)+wj<o, Li(j-1)<2a-1, L;(j—1)+w; >2a—1}
o Sx(H)={ieM|L(i-1)+wj<o Li(j—1)>2a—1}

e S3)=ieM|(G-1)<a a<l(j-1)+wj<1l+a}

e S2(f)={ieM|LGi-1)>a LE-1)+w; <1+a}

Note that the previously defined S; is split into three sets according to a low threshold
of 2a — 1. We still use the notation S; for the union of these three sets. We omit the indices
j and o when they are clear from the context. The sets Ji, J» and J3 are defined as in the
previous section.

Improved Algorithm: When job j arrives:

Put the job on a machine from the set S; according to:

— Put the job on any machine from the set S;3 or S;; but not on an empty machine
from the set Si; if there is a non-empty machine from the set Si;.

— If 811 = S13 = ¢ then put the job on the least loaded machine from the set Si,.

If §; = ¢ then put the job on the earliest machine from the set S3, that is, the machine
that was the first to cross the threshold « from all machines in Sjs.

If S1 = S3 = ¢ then put the job on the least loaded machine from the set S,.

If S; =S5 = 53 = ¢ then report failure.

This improved algorithm is contained in the family of ALG2, presented in the last
section. QOur algorithm, however, defines the methods used in placing jobs on machines
from the sets S; and S3. The way we choose a machine from S; is by the method presented
in ALG1,. In choosing a machine from S5 we prefer the earliest machine according to the
order of crossing the threshold. The proof of the theorem below appears in subsection 7.2
of the Appendix.

Theorem 4.2 The improved algorithm above never fails for 5/8 < a < 2/3. Thus, for
o = 5/8 it has a stretching factor of 13/8.



5 Fixed number of machines

In this section we present an improvement to ALG1,, when m is fixed. For m > 5 we show
that a can be slightly reduced without causing the algorithm to fail. In order to improve the
performance also for m = 3,4 we use an algorithm called ALG12,, which is the intersection
of ALG1, and ALG2,. For m = 2 we use a simple algorithm that has a 4/3 stretching
factor.

The proof of the theorem below appears in subsection 7.3 of the Appendix.

Theorem 5.1 For m > 5, ALG1,, never fails for gzﬁ < a < 2/3. Therefore, for m > 5, its
bm—1

3m+1-

stretching factor is
We overcome the m > 5 limitation by introducing the following algorithm.

ALG12,: When job j arrives:

e Put the job on any machine from the set S; but not on an empty machine from S, if
there is a non-empty machine from 5;.

o If S; = ¢ then put the job on any machine from the set Ss.
o If S; = S3 = ¢ then put the job on the least loaded machine from the set S,.

o If S = Sy = 53 = ¢ then report failure.

This algorithm is actually a family of algorithms since we have some freedom in choosing
a machine. Notice that this family is the intersection of the two families of algorithms,
ALG1, and ALG2,. Our proof which appears in subsection 7.4 combines both of the
methods used in the proofs of these two algorithms.

Theorem 5.2 The algorithm for small m above never fails for min(%, z—:) >a> gzﬁ for
bm—1

3m+1-

m > 3. Therefore, for m > 3, its stretching factor is

Next, we prove that for two machines the following simple algorithm has a stretching
factor of 4/3: Put each job on machine 1 if the resulting load is at most % and, otherwise,
put the job on machine 2.

Theorem 5.3 The simple algorithm for m = 2 has a stretching factor of 4/3.

Proof: Consider the first job j from a set of n jobs that cannot be assigned to the first
machine. If at time j — 1 the load of the first machine is above 2/3 then all jobs j,...,n
can be assigned to the second machine since the sum of the weights of all jobs is at most
2. Otherwise, job j is larger than 2/3. Thus, the weight of all jobs except j sum up to at
most 4/3 and can be assigned to the first machine. ]

10



6

Lower Bounds

In this section we prove a general lower bound of 4/3 on the stretching factor of deterministic
algorithms for any number of machines. We show a lower bound of 5/3 — ¢ for arbitrary
small € for the family of ALG1, and a lower bound of 13/8 — € for arbitrary small € on
the stretching factor of our improved algorithm. Note that it is impossible to show a lower
bound of 5/3 — € for ALG2, since the improved algorithm is in that family. In these two
cases we assume the number of machines is large enough. The details of all the lower bounds
are in the Appendix.

References

[1]

[2]

8]

[9]

S. Albers. Better bounds for on-line scheduling. In Proc. 29th ACM Symp. on Theory
of Computing, pages 130-139, 1997.

J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing with
applications to machine scheduling and virtual circuit routing. In Proc. 25th ACM

Symposium on the Theory of Computing, pages 623-631, 1993. Also in Journal of the
ACM 44:3 (1997) pp. 486-504.

B. Awerbuch, Y. Azar, S. Plotkin, and O. Waarts. Competitive routing of virtual
circuits with unknown duration. In Proc. 5th ACM-SIAM Symposium on Discrete
Algorithms, pages 321-327, 1994.

Y. Azar, A. Broder, and A. Karlin. On-line load balancing. In Proc. 33rd IEEE Sym-
postum on Foundations of Computer Science, pages 218-225, 1992. Also in Theoretical
Compute Science 130 (1994) pp. 73-84.

Y. Azar and L. Epstein. On-line load balancing of temporary tasks on identical ma-
chines. In 5th Israeli Symp. on Theory of Computing and Systems, pages 119-125,
1997.

Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs, and O. Waarts. On-line load
balancing of temporary tasks. In Proc. Workshop on Algorithms and Data Structures,
pages 119-130, August 1993.

Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New algorithms for an ancient scheduling
problem. In Proc. 2{th ACM Symposium on Theory of Algorithms, pages 51-58, 1992.
To appear in Journal of Computer and System Sciences.

B. Chen, A. van Vliet, and G. Woeginger. A lower bound for randomized on-line
scheduling algorithms. Information Processing Letters, 51:219-222, 1994.

B. Chen, A. van Vliet, and G. J. Woeginger. New lower and upper bounds for on-line
scheduling. Operations Research Letters, 16:221-230, 1994.

11



[10] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin
packing: a survey. In D. Hochbaum, editor, Approzimation algorithms. 1996.

[11] U. Faigle, W. Kern, and G. Turan. On the performance of online algorithms for
partition problems. Acta Cybernetica, 9:107-119, 1989.

[12] G. Galambos and G. J. Woeginger. An on-line scheduling heuristic with better worst
case ratio than graham’s list scheduling. SIAM J. Computing, 22:349-355, 1993.

[13] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman and
Company, San Francisco, 1979.

[14] R.L. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical
Journal, 45:1563-1581, 1966.

[15] R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math,
17:263-269, 1969.

[16] D. Hochbaum and D. Shmoys. A polynomial approximation scheme for scheduling
on uniform processors: Using the dual approximation approach. SIAM Journal on
Computing, 17(3):539-551, 1988.

[17] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for schedul-
ing problems: Theoretical and practical results. J. of the ACM, 34(1):144-162, January
1987.

[18] D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis, MIT, Cambridge,
MA, 1973.

19] D. R. Karger, S. J. Phillips, and E. Torng. A better algorithm for an ancient schedulin
g g g g
problem. In Proc. of the 5th ACM-SIAM Symposium on Discrete Algorithms, pages
132-140, 1994.

[20] H. Kellerer, V. Kotov, M. G. Speranza, and Zs. Tuza. Semi on-line algorithms for the
partition problem. Operations Research Letters. To appear.

[21] J. Sgall. On-line scheduling on parallel machines. Technical Report Technical Report
CMU-CS-94-144, Carnegie-Mellon University, Pittsburgh, PA, USA, 1994.

12



7 Appendix

7.1 Upper bound for ALG2,

We prove theorem 3.4. We show that there are many large jobs here as in the proof of
theorem 3.3. We first assume that o > 1/2.

Definition 7.1 Let so be the smallest non-negative integer such that wy, > o for all ¢ > so.

I+ex
o
1 S, m
[ ]Jobsinthe setJ, [7] Jobs in the setJ, [ Jobs in the set J,

Figure 4: Machine sq

Note that sq is always defined and 0 < so < m. As a matter of fact, 1 < sg. Otherwise,
the m jobs k; are larger than o and by corollary 3.6 the last job is also larger than a. This
is a contradiction since we assumed a > 1/2 and as we saw before, there are at most m
jobs larger than 1/2.

Lemma 7.2 f; <1 —aforall 1 <7< sg.

Proof: By corollary 3.8, all jobs k; for ¢ > s; are larger than o and therefore, from the
definition of sg, so < s1. By lemma 3.11, f; <1 — « for 7 < s¢. [ |

Lemma 7.3 For all 1 < i < m, the weight of every job from the sets J, and J3 that arrived
before k; is larger than o — f;. Job k; itself is also larger than o — f;.

Proof: Consider a job j that arrived before k; and is in one of the sets J, and J3. By the
description of ALG2,, the fact that the job was assigned to a machine from the sets S, or
S3 means that the set S; was empty when job j arrived. At that time, the load of machine
i is at most f; since k; has not arrived yet and therefore w; > o — f;. Job k; is the raising
job and therefore must also be larger than the difference between f; and the threshold o.. m

Lemma 7.4 Each machine ¢ < sq either contains a job that is larger than 1 — f,, or two jobs
each is larger than a — f,,. Machine sq itself contains a job that is larger than o — f,.

Proof: Fix a certain ¢ < sg. At time k,, — 1 machine ¢ is already tall since ¢ < s9. By
definition of sq, the weight of k,, is at most a. At time k,, — 1 the sets S; and S3 are empty
since the job k,, is assigned to a machine in Sy. In particular, machine ¢ is not in Ss. Thus,
at time k,, — 1, the load of machine ¢ is larger than 1 + o — wg, > 1.

13



If the raising job of machine ¢ also raised it above 1 then by corollary 3.10 the weight
of the raising job must be larger than 1 — f; > 1 — f,,. Otherwise, there was another job
that arrived after the raising job which raised the machine above 1. Those two jobs arrived
before k,, and by lemma 7.3 they are both larger than o — f,,. [ |

Lemma 7.5 Assume that there are n; jobs larger than 8 and other ny jobs larger than 1 — 3
such that 1/2 < 3 <2/3. Then n; + 72 <m.

Proof: The optimal algorithm can assign to one machine at most one job that is larger than
B or at most two jobs each is larger than 1 — 4. The n; jobs are assigned to m; machines
and the remaining m — n; machines can hold at most 2 jobs, each is larger than 1 — 3. This
implies that 2(m — n;) > ny, or n; + %2 < m. [

Now we complete the proof of theorem 3.4. Assume that ALG2, fails. By lemma 3.5
at time n all the machines are tall and there are two machines whose load is below 1. By
definition of sg, all jobs k; for ¢ > sg are larger than o. Lemma 7.2 implies that f,) < 1—a.
Therefore, by lemma 7.4, each machine 7 < sg either contains a job that is larger than o or
two jobs each is larger than o — (1 — @) = 2a — 1 and machine s¢ contains a job larger than
2a — 1. The last job is larger than o by corollary 3.6.

Thus we proved that there are certain numbers m; and ms such that m; +ms = m and
there are m; + 1 jobs larger than a and 2my — 1 jobs larger than 2a — 1. For o > 2/3, this
contradicts lemma 7.5 with a choice of = 2/3 since

2m2 -1

1
m1+1+T:m1‘|‘m2—|—§>m-

7.2 Upper bound for the improved algorithm

We prove theorem 4.2. From now on, we assume 1/2 < o < 2/3. Since our algorithm is a
special case of ALG2, we can use the lemmas in the previous section. As before, we begin
by assuming the algorithm fails on the last job of some sequence of n+1 jobs, J. According
to lemma 3.5 at time n there are two machines whose load is less than 1, denoted s; and
sy, and all machines are tall which implies that we can define an order on the machines and
rename them according to that order. The series k; and the series f; are defined as before.
Note that by this order the earliest machine in S3 is the one with the minimal index.

Lemma 7.6 As long as the load of a certain tall machine ¢ is at most [, all arriving jobs in the
sets Jo and J3 that are assigned to machines ¢’ > ¢ are larger than 1 + o — [.

Proof: Take a certain job j € J, assigned to a machine ¢’ > ¢. It was placed on a machine
in Sy and therefore the set S3 was empty when it arrived. In particular, 7 ¢ S and since
machine ¢ is tall, w; > 1+ o —[;(j —1) > 1+ o — . In case job j is in J3, we know the
algorithm placed it on the earliest machine from the set S3. Since 7 < ¢, machine 7 was not
in the set S3 and as before, w; > 14 a —[. [

Recall that sg is the minimum index such that wg, > a for all 2 > sg and 1 < 59 < m.

Lemma 7.7 f,, > 2o — 1.

14



Proof: Assume by contradiction that f,, < 2a—1. By definition of s, all jobs k; for i > sq
are larger than . According to lemma 7.4 every machine ¢ < sg either contains a job that
is larger than 1 — (2a0—1) = 2(1 —a) > « or two jobs each is larger than o — (2a—1)=1-«
and machine sg contains a job that is larger than 1 — a. The last job is larger than o by
corollary 3.6. Since 1/2 < a < 2/3 this contradicts lemma 7.5. [

Definition 7.8 Define the following three disjoint sets of machines that include all machines
except sg:

e Mi={ieM|f; <2a-1}
o My={ie M|i<so,fi>2a—1}

° MgZ{ZEM|Z>30}

l+e¢

20¢-1

L0
%‘} 1 i So s, s, m

Figure 5: The sets My, My, M3 and R.

Lemma 7.9 Assuming that a > 5/8, every machine from the set R = MyU{so}UM3 contains
a job that is larger than 2o — 1 in J;.

Proof: Let i; be the first machine in the set R. We look on the set of jobs I = {1, ..., k;, —1}
and a subset of jobs I’ C I that are assigned to a machine in R. Notice that I’ C J; since
until time k;, — 1 all machines from R are short. Thus, it is enough to show that every
machine from R contains a job in I’ that is larger than 2a — 1.

We prove that for the set I our improved algorithm is a scale down by 1 — a of an
algorithm in the family D(ALG1g, R) for 8 = % Recall that an algorithm in the family
D(ALG1g, R) only specifies the method used in placing jobs to machines from R. The scale
down by 1 — a of ALG1g defines the three scaled down sets of Sf, Szﬂ and Sf. Notice that
the three scaled down sets are exactly S¢y, ST and S§ used in the improved algorithm.
Since the improved algorithm assigns all the jobs in I’ to one of the sets S¢y, S5 or Sy it
is equivalent to a scaled down version of D(ALG1g, R).

15



By definition 7.8, f;, > 2a—1 and by lemma 3.9, at time k;, — 1 the load of each machine
from the set R is also above 200 — 1 = B(1 — ). According to corollary 3.8, so < s1 < 82
and therefore both s; and sy are in R. Lemma 3.11 implies that at time k;, — 1 the loads
of both machines s; and sy are below 1 — o = 1(1 — ). Thus, both of the scaled down
assumption of lemma 3.13 hold here. Thus, by lemma 3.13 we conclude that there is a job
of weight larger than (1 — o) = 2a — 1 from the set I’ in every machine from the set R. m

Definition 7.10 A job is said to be of type 1 if it is larger than a. Jobs of type 2 are larger
than 1 — o and type 3 are larger than 2o — 1.

Using this definition, lemma 7.9 implies that every machine from the set R contains a
job of type 3 in J;. Next we prove that there are additional large jobs in the sets J, and J3.
We consider in lemma 7.11 and lemma 7.12 two possible cases according to the minimum
load of machines of M; at time k,, — 1.

Lemma 7.11 Assume that at time k,, — 1 there is a machine from the set M; whose load is
at most 2. Then every machine must hold the following large jobs from the sets Js and J3:

o All machines in M; contain one of the following:

a. A job that is larger than 2(1 — «),
b. Two jobs, the first of type 1 and the second of type 3,
c. Two jobs of type 2,

d. At most one machine contains two jobs: the first of type 2 and the second of type 3.
e Each machine from the set M, either contains a job of type 1 or two jobs of type 2.
e Machine sy contains a job of type 2.
e All machines in M3 contain a job of type 1.

Proof: First, the raising jobs of machines from the set M3 are of type 1 by the definition of
the set. Denote by ¢, a machine from the set M; whose load is at most 2a at time k,, — 1.
By definition of sg, ks, < a and thus at time k,, — 1 the loads of all machines ¢ < s¢ are
already larger than 1. Fix a certain ¢ € Mj. Since ¢ < sg, by time k,, — 1 the load of
machine ¢ is already above 1. If it is raised above 1 by its raising job, then the raising job
is larger than 1 — (1 — &) = o by lemma 7.2. Otherwise, it is raised above 1 by at least two
jobs. These two jobs arrive before k,, and therefore the load of machine i, is still below 2«
at their arrival time. Since ¢, € My, i, < ¢ and by lemma 7.6 both of the jobs are larger
than 14+ o — 2o = 1 — a. When job k,, arrived, the load of machine i, was still below 2o
and by the same lemma, wg,, > 1 — a.

Next we look on machines from the set M;. As before, at time k,, — 1 the loads of all
machines ¢ < sp are already larger 1. If a certain machine ¢ was raised by its raising job
above 1 then it satisfies case a since the weight of its raising job is wg, > 1 — f; > 2(1 — )
by definition 7.8. All other machines are raised above 1 by at least two jobs. The second
job entered before k,, and by lemma 7.3 and lemma 3.11 its weight is above 2ac — 1 i.e., it

16



is of type 3. If a machine contains a raising job that is larger than o (of type 1) then it
satisfies case b.

We are left with a set of machines that are raised to 1 by at least two jobs, with the
raising job’s weight being at most a. Let i3 be the last machine from this set assuming it is
not empty. Thus, as the raising job k;, arrives, the loads of all previous machines are already
above 1 since wg,;, < . That means that both the raising and the second jobs of all previous
machines have already arrived and they are larger than a — f;;, > o — (2a—1)=1— a by
lemma 7.3. Hence, they satisfy case ¢. The only machine that may not satisfy a, b or c is
2. It contains two jobs, by lemma 7.3 the raising job, k;,, is of type 2 and the second is of
type 3 since it entered before k,,. Thus, it satisfies case d.

Note that all jobs in the proof are from the sets Jy and J3, as required. [ |

Lemma 7.12 Assume that at time k,, — 1 the loads of all machines from the set M; are more
than 2a. Every machine must hold the following large jobs from the sets J, and Js:

o All machines in M; contain one of the following:

a. Two jobs that the sum of their weights is above one,
b. Three jobs, one of type 1 and two of type 3,
c. Three jobs, two of type 2 and one of type 3,

d. At most one machine contains three jobs: one of type 2 and two of type 3.
e Each machine from the set M, either contains a job of type 1 or two jobs of type 3.
e Machine sg contains a job of type 3.
e All machines in M3 contain a job of type 1.

Proof: All jobs from the sets Jy and J; that arrived before k,, are of type 3 according to
lemma 7.3. This fact will be used throughout the proof.

The raising job of all machines from the set M3 is of type 1 by definition of the set.
If a machine in M, is raised above 1 by its raising job then the raising job is of type 1.
Otherwise, there are at least two jobs, both arriving before k,, and therefore both are of
type 3. The raising job of machine s¢ is also of type 3.

We assumed that at time k,, — 1 the loads of all machines from the set M; are above
2a. Notice that f; < 2a —1 for all ¢ € M; and therefore the raising job itself cannot raise a
machine from M; above 2a. In case there are two jobs that raise a machine above 2o then
the sum of their weights is above 1 which satisfies case a. All other machines in M; are
raised above 2a by at least three jobs. The first is the raising job and at least two other
jobs from J3, all arriving before k,,. If the raising job of some machines is of type 1 the
machine satisfies case b since the two other jobs are of type 3.

We are left with a set of machines that contain a job in the set J; whose weight is at
most o and at least two jobs from the set J3. Let i3 be the last machine from the above
set, assuming it is not empty. Since wg,;, < o, the loads of all previous machines are above

17



1 when k;, arrives. Fix a certain machine ¢ < %5. Since the weight of its raising job is at
most o and (2a — 1) + & < 1, it cannot raise the machine above 1. Therefore, machine ¢
contains at least two jobs that arrive before k;, and by lemma 7.3 they are both larger than
a— (20— 1) =1 — a. As before, the third job is of type 3 and therefore machine ¢ satisfies
case c. Machine ij itself contains a raising job of type 2 since f;, < 2o — 1 and two other
jobs of type 3.

Note that as in the previous proof, all the indicated jobs are from the sets J; and J3. m

Next we prove that the combinations of jobs presented in the previous lemmas together
with the last job cannot be assigned by an optimal algorithm. The number and types of
jobs are taken from lemmas 7.9, 7.11 and 7.12 as indicated in parenthesis.

Lemma 7.13 Each of the following two sets of jobs cannot be assigned by an optimal algorithm
assuming 5/8 < a < 2/3:

e m; times a job that is larger than 2(1 — a), (M, case a)
ms times a job of type 1 and a job of type 3, (M, case b)
mg3 times two jobs of type 2, (M, case c)
my < 1 times a job of type 2 and a job of type 3, (M, case d)
ms times a job of type 1, (M3, first case)
mg times two jobs of type 2, (M>, second case)
a job of type 2, (so0)
my times a job of type 1, (M3)
ms + mg + 1 4+ my times a job of type 3, (R, jobs from Jp)
a job of type 1, (the last job)

suchthat m;y +mo+mg+my+ms+mg+1+mr=m

e m; times two jobs that the sum of their weights is above 1, (M, case a)
msy times a job of type 1 and two jobs of type 3, (M, case b)
mg times two jobs of type 2 and a job of type 3, (M, case c)
my < 1 times a job of type 2 and two jobs of type 3, (M, case d)
ms times a job of type 1, (M3, first case)
meg times two jobs of type 3, (M>, second case)
a job of type 3, (so0)
my times a job of type 1, (M3)
ms + mg + 1 4+ my times a job of type 3, (R, jobs from Jp)
a job of type 1, (the last job)

suchthat m;y +mo+mg+my+ms+mg+1+mr=m

Proof: We begin by determining all the combinations of jobs of types 1,2,3 an optimal
algorithm can assign to a single machine. The optimal algorithm can assign a job of type 1
with at most one job of type 3. It can assign two jobs of type 2 to a single machine, but no
other job can be assigned with them. Another possibility is to assign only one job of type
2 and at most two jobs of type 3 with it. It can assign at most 3 jobs of type 3 to a single
machine.

18



We first prove that the first set cannot be assigned by the optimal algorithm. Since
jobs larger than 2(1 — a) cannot be assigned together with any of the other jobs, m — m;
machines are left for the other jobs. The other jobs are ms 4+ mys + m7 + 1 jobs of type 1,
2mga+my+2mg+1 jobs of type 2 and mo+my+ms+mg-+mz+1 jobs of type 3. Each machine
can hold at most one job of type 1. A machine that holds a job of type 1 can hold at most one
job of type 3 and no jobs of type 2. That leaves m—m; — (ma+ms+mr+1) = mg+my+me
machines that are supposed to hold at least 2mgz + m4 + 2mg + 1 jobs of type 2 and
me + mg + ms + mg + mr + 1 — (ma + mz + my + 1) = my + mg jobs of type 3. In case
my4 = 0 we reach a contradiction because the number of jobs of type 2 in more than twice
the number of machines and each machine can hold at most two jobs of type 2. In case
my4 = 1, the number of jobs of type 2 is exactly twice the number of machines. That means
each machine holds 2 jobs of type 2. However, the number of jobs of type 3 is at least 1
but none of the machines can hold a job of type 3 since it already holds two jobs of type 2.
This completes the proof of the first case.

Next we prove that the second set cannot be assigned by the optimal algorithm. We
begin by showing that the m; pairs of jobs that the sum of their weight is above 1 can be
ignored. More formally, assume that a set of jobs J contains two jobs, j; and js that the
sum of their weights is above 1. We show that if J can be assigned by an optimal algorithm
to m machines then the set of jobs J — ({j1}U{j2}) can be assigned by an optimal algorithm
to m — 1 machines. Consider the assignment of the set J. Denote by i; and iy the two
machines to which j; and j; are assigned. i; # iy since the sum of their weights is above
1. Thus, the sum of the weights of the other jobs in #; and 4y is less than 1 and can be
assigned to one machine.

The last paragraph implies that if the entire set of jobs can be assigned by the optimal
algorithm to m machines then the set of jobs without the m; pairs of jobs can be assigned
to m — m; machines. There are ms + ms + my¢ + 1 jobs of type 1, 2mg3 + my4 jobs of type 2
and 2my + mg3 + 2my + my 4+ 3me + mr + 2 jobs of type 3 that are supposed to be assigned
to m — m; machines. Each machine can hold at most one job of type 1. Together with
that job, only one job of type 3 can be assigned. That leaves 2mg + my4 jobs of type 2
and at least my + mg3 4+ 2my4 + 3mg + 1 jobs of type 3 that are supposed to be assigned to
m — my — (mg + ms + my + 1) = mg + m4 + mg machines. Out of these machines assume
m’ machines contain two jobs of type 2 and all other machines contain at most one job of
type 2. Obviously, 0 < m' < LZW‘%J = mgz. The m' machines cannot hold any other
job so we are left with 2ms + m4 — 2m’ jobs of type 2 and my + m3 + 2m4 + 3mg + 1
jobs of type 3 that are supposed to be assigned to mgz + my4 + mg — m’ machines. These
machines hold at most one job of type 2, and thus 2mg3 + m4 — 2m’ machines hold a job of
type 2. The optimal algorithm can assign at most two jobs of type 3 with the job of type
2 so we are left with my + mg + 2m4 + 3me + 1 — 2(2m3 + my — 2m/') jobs of type 3 and
mg + mg + mg —m’ — (2m3 + my4 — 2m') machines. Since each machine can hold up to three
jobs of type 3,

3(m3+mq+mg—m' — (2mz+mg —2m')) > my +maz+2my +3me +1—2(2m3z +my — 2m’)

3mg — 3ma +3m' > my — 3mz + 3mg +4m’' +1
0>my+1+m

19



which is impossible since all the variables are non-negative. [

Now we complete the proof of theorem 4.2. Assume that the improved algorithm fails.
Note that the jobs of lemma 7.9 are from the set J; while jobs of lemmas 7.11 and 7.12 are
from J, and J3 and thus, they are disjoint. Therefore, one of the two cases of lemma 7.13
occurs. That contradicts the assumption that the algorithm fails.

7.3 Upper bound for ALG1, for fixed m >5

We prove theorem 5.1. Our proof is very similar to the original proof of theorem 3.3 with
some minor changes. Again, we begin by assuming the algorithm fails on the last job of
some sequence of n+ 1 jobs. By lemma 3.5, all the machines are tall at time n and we can
define the jobs k; for 1 < ¢ < m and the series f;. The following lemma somewhat improves
lemma 3.5:

03

Lemma 7.14 At time n there are two machines whose load is below 1 — e

Proof: Assume by contradiction that the loads of all machines except machine i are at least
1- ﬁ Since the algorithm failed when job n 4 1 arrived, l;(n) + wny1 > 1 4+ o and the

total load of all machines is above 1+ o+ (m — 1)(1 — ~%7) = m which is a contradiction.
|

Let s; and s, be two machines whose load is below 1 — —2-. According to lemma 3.7

all jobs k; for i > s; are larger than a + —%5. In particular Wg,, > o+ —2-. Since the load

of machine s, is below 1 — % at time n,

1- m— 1 > lsz(n) > lsz(ksz) = lsz(ksz - 1) + Wk, — fsz + Wk, -
Therefore,
o 2c
fsz <1_m—wksz <1—a—m_1

and by corollary 3.10 f; < 1 — a — % for all ¢ < ss.

According to lemma 3.9, at time k,, — 1, the load of machine s; was at most f,, but

more than the load of machine s;. Therefore, at that time, the loads of both machines are

below 1 — a — % and by our choice of «, this is at most 5. By lemma 3.12 this implies

that f; = 0 for ¢ < s;. Therefore, the raising jobs of machines %, for 1 < i < g4, is larger
than o.

We proved that all the m raising jobs are larger than . The last job is also larger than

a by corollary 3.6. Note that o > gzﬁ > 1/2 for m > 5. Thus, we reached a contradiction.

7.4 Upper bound for ALG12, for fixed m > 3

We prove theorem 5.2. Assume the algorithm fails on the last job of some sequence of n+1

03

jobs. By lemma 7.14, at time n there are two machines whose load is below 1 — —2—. Let s;

20



and sz be two machines (s; < s2) whose load is below 1 — —2-. By the discussion following
lemma 7.14 all jobs k; for ¢ > s; are larger than o + %5 and f; = 0 for 7 < s;.

The next lemma improves corollary 3.6:

Lemma 7.15 The last job is larger than o + ﬁ

Proof: By lemma 7.14, at time n there was a machine ¢ whose load is less than 1 — 2.
Since the algorithm failed to assign the last job 1 — %=+ w1 > 1+aor wpyr > a+ %5

Definition 7.16 Let so be the smallest non-negative integer such that wg; > o+ 25 for all
i > Sg.

Note that the definition of s is slightly different from the original definition. As before,
Sg 1s always defined and 0 < sg <m. If s =0 then there are m jobs of weight larger than
o+ = . The last job is also larger than o + 2 by lemma 7.15. This is a contradiction
smce We found m + 1 jobs larger than o + m—_ > 1/2 for our choice of m and o.

By definition of sg, so < s1 and therefore f,, = 0. Now we present an improvement to
lemma 7.4.

Lemma 7.17 Each machine i < so either contains a job that is larger than 1 — % or two
jobs each is larger than . Machine sg itself contains a job that is larger than a.

Proof: Fix a machine 1 < sg. Since wk_, <a+ 2, at time k,, — 1, the load of machine ¢
was already larger than 1+ o — (a+ %7) =1- -2y > a by our ch01ce of a. This implies
that machine z' is tall before job k,, arrives If the ralslng job of machine ¢ raised it above
< since f; = 0. Otherwise, there are at least two jobs,
one from the set Jy and the other from Js that both arrived before k,,. By lemma 7.3, this

implies that both of these jobs are larger than a. [ |

By our choice of o, 1 — %5 > o+ ~%5. Therefore, by definition 7.16 and lemmas 7.17,
7.15 there are 2m; — 1 JObS larger than 5" and my + 1 jobs larger than o + 2 for certain
numbers my, ms such that m; + my = m. By our choice of o and m, a + (a e 1) > 1.

This contradicts lemma 7.5.

7.5 General Lower Bound

Theorem 7.18 The stretching factor of any deterministic on-line algorithm for the bin-stretching
problem is at least 4/3 for any number m > 2 of machines.

Proof: Look at the following two sets jobs:

e m jobs of weight 1/3 and another m jobs of weight 2/3.
e m jobs of weight 1/3 and a job of weight 1.

Obviously, these two sets can be assigned to m > 2 machines by an optimal off-line
algorithm.

21



Assume a certain deterministic on-line algorithm receives m jobs of weight 1/3. If the
algorithm assigns the m jobs on m different machines then the algorithm receives a job of
weight 1 as in the second set. Since the loads of all the machines are 1/3, the load of the
machine to which the algorithm assigns the last job is 4/3.

Otherwise, there is a machine to which the algorithm assigned two jobs of weight 1/3.
Then we continue with m jobs of weight 2/3 as in the first set. The algorithm can either
put all the m last jobs on m different machines or put at least two of the last m jobs on a
single machine. In both cases, there is a machine whose load is 4/3. |

7.6 Lower bound for ALG1,

In this section we show that ALG1, does not have a stretching factor of 1 + o for a fixed
a < 2/3. For any fixed o < 2/3 we show an example in which the algorithm fails. The
number of machines increases as « is closer to 2/3 and therefore the lower bound is valid
for a large number of machines. From now on we fix a < 2/3.

In phase 1 a sequence of infinitesimal jobs of total weight am arrives where m; will be
chosen later. By the description of ALG1,, the algorithm fills each machine up to a load
of a and then continues to the next machine. Therefore, m; machines have loads of @ and
all other machines are empty.

In phase 2 a sequence of jobs whose weight is § + ¢ arrives. We choose a very small
constant € > 0. Recall that the algorithm assigns a job to a machine in S3 only if §; = 53 =
¢. Therefore, the algorithm assigns the first m — my jobs to the empty m — m; machines.
As the next job arrives, all the machines are in Sy and the algorithm assigns it to the least
loaded machine which is a machine with one job of weight % + €. Denote this machine ;.
The next few jobs are assigned to i; since it is in S3 and all other machines are in S5. The
number of jobs is so that the load of ; is at least 1 + o — (% +e)=1+ 5 — €

In phase 3 a sequence of m jobs of weight % + 7 arrives. Notice that the minimal load
before placing these jobs is 5 + ¢ and therefore the algorithm cannot place two of these jobs

on the same machine. The algorithm cannot place any of these jobs on machine #; since
I L !
——€e+ -+ —-—==—4+——c¢ o
2 2 4 2 4
for small e. Thus, the algorithm cannot assign these m jobs.

Now we show that the optimal algorithm can assign the same set of jobs for an appro-
priate choice of m;. We choose m; to be the number of excessive jobs of machine ¢;. It is
important to see that this number is constant and does not depend on m since it is bounded

by 1‘:_06‘ Note that the number of jobs of size § + € is exactly m by our choice of m;. The

3
2
o7

optimal algorithm assigns each machine with a job of weight % + 4 and a job of weight

% 4+ €. This results in a load of
1+a+a+ _1+3a+ <1
2 T4 T2 T T T T

on each machine by our choice of ¢ and a.

22



I+ex

H —_—
1, m,

[ ] Jobs of the previous phase [] Jobs of weight % +%

Figure 6: After phase 3

This leaves only the infinitesimal jobs. Their total weight is m;a and therefore constant.
Each machine can hold a load of 1 — (% + 3T°‘ + €) > 0 infinitesimal jobs. Since this is a
positive constant, we can choose m to be large enough for all the infinitesimal jobs to fit.

7.7 Lower bound for the improved algorithm

In this section we show that the improved algorithm does not have a stretching factor of
1+ o for a fixed o < 5/8. For any fixed oo < 5/8 we show an example in which the algorithm
fails. The number of machines increases as « is closer to 5/8 and therefore the lower bound
is valid for a large number of machines.

In phase 1 a sequence of infinitesimal jobs of total weight m,(2a — 1) arrives where m;
will be chosen later. The algorithm fills each machine to a load of 2o —1 and then continues
to the next machine. Therefore, m; machines have loads of 2a — 1 and all other machines
are empty.

In phase 2 a sequence of jobs of weight o — % + € arrives. We choose € > 0 to be a
very small constant. The algorithm assigns the first m — m; jobs to the empty machines
since it prefers a machine from S;; over a machine from S;3. The next job must cross the
lower threshold, and therefore it is assigned to the least loaded machine. The following jobs
fill the machine that crossed the lower threshold until no other job can be assigned to it
without crossing the upper threshold. We continue with these jobs until m, machines are

filled.

In phase 3 jobs of weight % arrive. The first m — my are assigned to m — my different
machines. The next job must cross the upper threshold and therefore it is assigned to the
least loaded machine. We continue until the load of the first machine i; that crossed the

3

upper threshold is above 1 + a — % =3+a

The minimal load is above o« — % 4+ ¢ and the maximal load is above % + «. In phase
4 m jobs of weight g arrive. Assigning two of these jobs to the same machine results in a
load above o — % +et+2- g = 14 o+ € and therefore all jobs must be assigned to different

23



1+e¢

20¢-1

m, m,

. . . 5
[ ] Jobs from previous phases [ ] Jobs of weight T

Figure 7: After phase 4

machines. However, that results in a load of at least %—I— o+t g > 14 . Thus, the algorithm
for a < g fails.

Next we show that by choosing m; and m, appropriately, the jobs can be assigned by
an optimal algorithm. Each machine in the optimal algorithm assignment contains a job of
weight g, a job of weight %, a job of weight oo — % + ¢ and a certain part of the infinitesimal
jobs.

There are m — my machines which contain one job of size 1/4 except one machine which
contains several excessive jobs of size 1/4. Clearly, the number of excessive jobs is at most
6 since (6 +1) - % > 14 a. We choose my to be this number of excessive jobs.

There are m —m; —my machines which contain one job of size o — %—I—e and my machines
that contain an extra number of these jobs. The number of these excessive jobs is bounded

‘}‘_l_ which is constant. We choose m; to be this number of excessive jobs.
a—E €

by ms -

Choosing m; and my in that way allows the optimal algorithm to assign one job of each
weight to each machine: one of weight 5/8, one of weight 1/4 and another one of weight
o — % + €. Therefore, the load of each machine is o + % + € < 1, by our choice of a. The
total weight of the infinitesimal jobs is m;(20c — 1) which is constant. We choose m to be

large enough so that this weight of infinitesimal jobs can be spread over all m machines.
mi(2a—1

The exact number of machines should be at least -,
1—(at+g+e)

24



