
Competitive Multicast RoutingBaruch Awerbuch � Yossi Azar yAbstractIn this paper, we introduce and solve the multicast routing problem for virtual cir-cuit environment without making any assumptions about the communication patterns,or about the network topology. By multicast we refer to the case were one sourcetransmits to several destination the same information. Also, we allow arbitrary in-terleaving of subscription patterns for di�erent multicast groups, i.e. the destinationsfor each group arrive at an arbitrary order and may interleaved with destinations ofother groups. Our goal is to make route selection so as to minimize congestion ofthe bottleneck link. This is the �rst analytical treatment for this problem in its fullgenerality.The main contribution of this paper is an online competitive routing strategy thathas an O(logn log d) competitive factor where n is the size of the network and d(� n)is the maximum size of a multicast group.
�Lab. for Computer Science, MIT. Supported by Air Force Contract TNDGAFOSR-86-0078, ARO con-tract DAAL03-86-K-0171, NSF contract 9114440-CCR, DARPA contract N00014-J-92-1799, and a specialgrant from IBM.yDepartment of Computer Science Tel-Aviv University. E-mail: azar@math.tau.ac.il0

1 Introduction1.1 Informal statement of the problem and the resultBandwidth utilization is the bottleneck resource for communication-intensive applicationssuch as multicast. The problem could be particularly acute in low-bandwidth wireless net-works. In this paper, we show how to cleverly select the multicast routes, so as to satisfyall the multicast subscription requests, while minimizing the \bottleneck congestion", i.e.maximal tra�c over a network link. Performance of wireless network in terms of quality ofservice, delay, and reliability would de�nitely improve if we could reduce the packet load.For the sake of simplifying the arguments, the discussion in this paper applies to source-routed circuit switching environments with permanent virtual circuits; using the methodsin [AKP+93] it can be extended to either temporary virtual circuits or packet-switchedenvironments. However, the performance guarantee of the latter cases deteriorates by afactor of O(log T).We assume the most general case of arbitrarily interleaved subscription patterns fordi�erent multicast groups. That is, the subscription requests are of the form:1. Bill Clinton (White House) subscribes to CNN Headline News, from 6 to 6.30,2. Bob Dole (DC) subscribes to CNN Headline News, from 6 to 6.30,3. Madonna (LA) subscribes to MTV, from 6 to 7,4. Saddam Hussein (Baghdad) subscribes to CNN Headline News, from 6 to 6.30, etc.Clearly, at the time Bob Dole makes his request for CNN, we can save bandwidth andavoid routing CNN tra�c all the way from Atlanta, by forwarding to him CNN tra�c fromthe White House, since Clinton's subscription has already been accommodated.Also, note that in between two subscriptions to CNN (Clinton, Hussein) other userssubscribe to di�erent groups and the communication path established for Madonna mayblock the future subscription for CNN by Hussein. This is in fact one of the complicationsof the \interleaved" subscription pattern.In reality, subscription patterns will not be predictable. Therefore, this paper introducesand solves the multicast routing problem for virtual circuit environment without making anyassumptions about the communication patterns, or about the network topology. Also, weallow arbitrary interleaving of subscription patterns for di�erent multicast groups. Our goalis to make route selection so as to minimize congestion of the bottleneck link. This is the�rst analytical treatment for this problem in its full generality.The main contribution of this paper is an online routing strategy which performs withina O(log n log d) factor away from optimal prescient strategy, on each input instance, wheren denote the size of the network and d � n is the largest size of a broadcast group in thenetwork. 1

1.2 The complications of online decision makingIf we knew ahead of time the set of all users in all multicast connections, then, in principle,we could have solved this o�ine problem. Unfortunately, this combinatorial optimizationproblem is very complex (NP-hard). In other words, exact solution, in all likelihood, willrequire an equivalent of an exhaustive search. The best known approximation schemesguarantee worst-case performance ratio that is at least logarithmic (O(log n)) in the numbern of network nodes.In addition to the inherent algorithmic complexity, the situation is further complicated bythe aforementioned fact that the knowledge of future subscriptions to multicast connectionsis not available at the time when routing decisions are performed.Much of the existing analytical work in the area of networking, both in virtual circuitand packet-switched models, deals with these kind of problems by imposing statistical as-sumptions on the tra�c patterns, e.g. see [Kel86]. Some of these assumptions, e.g. tra�cindependence assumption [Kel86], is particularly inaccurate for the virtual circuit setting.Other assumptions, typically used in the telecommunications context, e.g. Poisson arrivalrate, exponential etc. may or may not be applicable to new high-speed environments. Inany case, even if perfect statistical knowledge about communication pattern were available,the corresponding combinatorial optimization problem is still computationally hard.Another complication here is that once a speci�c user joins the group and starts re-ceiving tra�c over a certain path, it is di�cult, if not impossible, to reroute a di�erentcommunication path, without disruption of the real-time service and thus violating theperformance guarantees. Even in somewhat easier case of uni-cast (point to point) com-munication rerouting is considered di�cult [GKR94] and it is not used in the current ofGigabit rate networks (e.g. PARIS/plaNET [ACG+90, CG88, CGG91, CGG+93] or in ATMstandards [XVI88, Bou92]). We also will not consider preemption or rejection of connections[GG92, GGK+93].Because of the unfeasibility of the rerouting or preemption options, the routing decisionsare in e�ect \irreversible". Since connections arrive in an online manner, knowledge aboutfuture connections is not available at the time decisions are made about routing of previousconnections. [GG92, GGK+93].For example, at the time the connection was routed over a speci�c link, that link may belightly loaded, and yet, in the future, this link may turn out to be the \bottleneck" link, thatmust be used for most of the subsequent connections. Thus, our earlier decision to routealong that link has proved to be a grave mistake.This is exactly the problem with the \natural" online heuristics, both from the theoret-ical and the experimental perspective [GKR94]. These \natural" heuristics include, amongothers,� min-hop: the new subscription is established on the shortest path, in terms of thenumber of links (\hops"), from the requesting node to any node previously subscribedto the requested multicast group.� min-max: the new subscription is established on any path, from the requesting nodeto any node, previously subscribed to the requested multicast group, so as to minimizethe tra�c over the most congested (\bottleneck") link.2

1.3 Competitive algorithmic designRecently, network implementors and architects have embraced a di�erent design philosophy[GKR94], that can be characterized as \competitive algorithmic design". Namely, in contrastto existing work, one seeks algorithms whose performance does not depend on statistical orother assumptions about the communication patterns, network topology, etc. Rather, thealgorithms we are seeking ought to be \uniformly-e�cient" on all inputs, not just on some\benchmarks" or \typical cases".More precisely, the standard way to measure performance of online algorithms is to con-sider their \competitive ratio", which is the worst-case performance ratio between online andoptimal o�ine algorithms on a speci�c input instance (maximized over all input instances).In our case, the performance measure is the maximum edge congestion, which was also stud-ied, in the context of uni-cast communication, in [ANR92, ABK92, AAF+93, AAPW94]. Thelatter work provided also O(log n) competitive algorithms for the uni-cast communication,which forms the basis for the work in this paper. In the multicast setting, this work can bedirectly applied to yield competitiveness results in the special case in which all the users ofa speci�c multicast group are known at the time that the group is formed. In contrast, inthis paper, we consider the general case of unconstrained subscription pattern.An algorithm with \small" competitive ratio is e�cient in a very robust mathemati-cal sense. Also, such \uncertainty-tolerant" algorithms tend to use natural \greedy-like"heuristics, which are attractive to implementors because of their computational simplicity.Even though the \algorithmic theory" only guarantees logarithmic performance ratio,which may seem excessive in practice, one should remember that logarithmic performancegap is w.r.t. o�ine, i.e. optimum prescient strategy, with complete knowledge of the future,and in�nite computational resources, which, in fact, is a non-option. The correct interpreta-tion of logarithmic competitive ratio is that the algorithm cannot be \embarrassed" on anyparticular instance. In order to evaluate performance of the algorithm in practice, one needsto compare it against other online heuristic by experimentation on realistic topology andtra�c patterns. In fact, the experimental evidence obtained by considering topologies andcommunication patterns from real commercial networks [GKR94] indicates that the naturalheuristics (min-max and a number of variations of min-hop) are inferior to logarithmically-competitive algorithms in terms of performance.1.4 Our approach to multicastOur goal in this paper is to extend the \competitivemethodology" to the setting of multicast.We are suggesting a new competitive multi-cast routing strategy for circuit switched networkenvironments, with O(log n log d) competitive ratio, where n denote the size of the networkand d � n is the largest size of a broadcast group in the network. That is, the bottleneckcongestion of our online strategy is within O(log n log d) factor away from optimal prescientstrategy, on each input instance. Note that the case d = 2 (i.e. two participants in eachmulticast group) reduces to the uni-cast connections (one the participants is source andanother is destination), in which case O(log n) competitiveness is achieved, as in [AAF+93,AAPW94]. Based on experimental results with analogous uni-cast algorithms in [GKR94],we expect our work to be of signi�cant practical value.3

Our algorithm works as follows. A cost is associated with each network edge, that growswith utilization of each link. Subscription request will be connected to the closest node thathas issued previous request, along the shortest path based on the above edge costs. Thus, inan unloaded network, we simply use min-hop strategy. As the link congestion grows, the costof that link \sky-rockets", so that in the highly loaded network, we use min-max strategy.In between, a certain \pricing function" 	 is used to trade o� the number of hops with thebottleneck link congestion. For example, a constant function reduces the min-hop strategyand a very fast growing function reduces to the min-max strategy. We examine the set of allpossible pricing functions 	, and establish the su�cient conditions on such a function thatmake the resulting algorithm competitive. As a corollary, we deduce that the exponentialfunction 	(x) = e�x (� is a constant) and delay function 	(x) = 1=(c � x) (c is a constantrelated to edge capacity) previously used in PARIS/plaNET network [CGG91, CGG+93],both work for our purposes.It is worth mentioning that our scheme can be easily extended for the case in which groupcommunication is restricted to a sub-network (e.g. some links will admit one type of tra�c,some will admit all, etc.). In this case, the shortest paths would be restricted to appropriatesets of nodes and edges.1.5 Other settings considered in literatureIn [VG93], the existence of multiple multi-cast groups is modeled by introducing the notionof link cost, and considering single group decision making when all the users subscribesimultaneously. In [BFC93], di�erent (TCP/IP packet-switched) network environments isassumed, without explicit real time guarantees. More results about statistical models canbe found in [BFC93, CESZ91, Raj92].An alternative measure of network performance is the amortized throughput de�ned asthe average over time of the number of bits transmitted by the accepted connections. In thissetting, the network's bandwidth is assumed to be insu�cient to satisfy all the requests sosome of the requests may need to be rejected upon their arrival. An online algorithm in thissetting is a combination of a decision mechanism that determines which requests to satisfytogether with a strategy that speci�es how to route these requests. The goal is to maximizethe amortized throughput.Competitive algorithms to maximize the throughput were provided by Garay and Gopal [GG92](for the case of a single link); by Garay, Gopal, Kutten, Mansour and Yung [GGK+93] (for aline network); and by Awerbuch, Azar and Plotkin [AAP93] (for general network topologies).The latter work also provided O(log n) competitive algorithm for the multicast setting, butonly when all the users for a speci�c multicast are known at the time that the group formedand when all the group has to be accepted or all the group has to be rejected. Some resultsabout selective multicast in the throughput model can be found in [AAG94].2 The modelTo simplify, we are considering here the case of permanent subscription, or, equivalently,case in which all subscriptions are for identical slots of time, say, 1/2 hour slot for ABC4

news from 7 till 7.30 p.m., and the customers can tune in at any time, even in the middleof the broadcast. We comment that our algorithms can be easily extended to the case inwhich di�erent broadcast groups subscribe for di�erent time slots, e.g. there is ABC newsslot from 7 till 7.30 and MTV slot from 7 till 8. In the rest of this paper, we only deal withthe case of permanent subscription, and delay the generalizations to the �nal version of thispaper.Formally, consider an (arbitrary) undirected graph G(V;E; cap) with (arbitrary) capacitycap(e) assigned to each edge e 2 E. We assume a collection of K di�erent broadcast groups,with rates Ratei, 1 � i � K assigned to each group, and with a di�erent source si for eachgroup. In fact, the algorithm can be easily adapted to the case in which groups can beinitiated in an online manner.The \subscription requests" consist of pairs (i; v) with the meaning that node v 2 Vneeds to subscribe to broadcast group i, 1 � i � K. We consider the most general casewhere requests of di�erent groups can be interleaved in an arbitrary way.Algorithm's output is the collection of trees P = [i Pi, where Pi is a tree consisting ofthe collection of paths currently existing to route tra�c of group i, that must span si as wellas all nodes Si that requested to join the group until the current time.The output is updated incrementally, i.e. the algorithm responds to subscription request(i; v) by adding to tree Pi a path P connecting node v to any one of nodes in Pi and reservingbandwidth of Ratei along all edges on that path. Note that we somewhat abuse notationand treat Pi as a tree and as a collection of paths that created the tree.The algorithm's decision are centralized, i.e. based on global knowledge, in the sensethat any subscription request is granted with full knowledge of the previous requests, and thecurrent network utilization, i.e. amount of committed bandwidth on each network link. Thiscan be implemented by either making all decisions at some \center" node, or by broadcastingall routing decisions thru-out the network.The algorithm's goal is to minimize the \bottleneck link" utilization, i.e.load(P) = maxe2E 1cap(e) Xi:e2Pi RateiIn the competitive framework, the goal is to achieve the best (smallest) \competitiveratio", namely, the maximum (supremum), over all possible sequences, of the ratio of thebottleneck load for o�ine and online algorithms:load(P)load(R)where the set of trees R = [i Ri is chosen by o�ine (optimum prescient) algorithm for thesame sequence of requests. 5

3 Routing Algorithm3.1 NotationsWe denote the \normalized" contribution of i's group to \utilization" of link e asutili(e) = Rateicap(e)For convenience, we assume that, a certain parameter, Util(Q) is known to the online al-gorithm. This parameter is an upper bound on the load of a best restricted o�-line algorithm,which will be de�ned later. We can easily dispense of this assumption by standard doublingtechnique: starting with some lower bound and then doubling this value when necessary. Inthe future, we will normalize all tra�c by Util(Q). In particular, we will denote�i(e) = utili(e)Util(Q)Also denote`(e) = Xi:e2Pi �i(e) (1)and for the load induced by an algorithm A`(A) = maxe2E �i(e) (2)3.2 The algorithmTo serve a request (i; v) the algorithm �nds a (weighted) shortest path from v to the tree Piin the weighted graph (G;V;weight) with weightsweight(e) = �	e = 	(`(e) + �i(e))�	(`(e)):Here, 	(`) is any positive in�nitely di�erentiable function, with all of its derivativesde�ned for ` � 0, and positive in that range.Also de�ne def= max0�` 	(k)(`)	(`) !1=k (3)We also require that < ln 2. In particular, for a given , we choose the \fastest growing"function with the derivative property, namely	(`) = e`:The algorithm is formally presented in Figure 1. The main theorem, which we prove, isthe following.Theorem 3.1 The on-line algorithm is O(log n log d) competitive.6

Subscribe(v; i) /* subscription request */8e 2 E : �	e = 	(`(e) + �i(e))�	(`(e)) /* compute weights */P shortest path from v to closest node in Pi in weighted graph (V;E;�)route group i to v along PPi Pi[P8e 2 P; `(e) `(e) + �i(e) /* load increase update*/Figure 1: The Shortest-Weighted-Path Algorithm.4 Competitive analysis4.1 Structure of the proofThe on-line algorithm has to maintain for each i a connected subgraph (a tree) Pi that spansthe current vertices that belong to group i with a reserved bandwidth Ratei on each of itsedges. Since the decisions are made in an on-line fashion, Pi evolve in time such that edgesare only added to the tree and none of the edges are deleted. For a request (i; v) we denoteby Pi;v the path that the on-line augmented to the tree in order to connect vertex v to theprevious tree of group i. Let Si be the set of vertices that join group i up to the current time.Clearly, in this way the collection of paths Pi de�nes the broadcast tree Pi: Pi = [v2Si Pi;v.The o�-line knows the whole sequences of requests in advance and thus can construct atree Ri = [v2Si Ri;v that spans all the vertices of group i in the sequence such that each edgeof that tree has bandwidth Ratei reserved for this group.Observe that, in principle, both the online and the optimal o�ine solution may use\relay" points to serve subscription request (i; v), e.g. path Ri;v from requesting vertex v(generated by optimal o�ine) may end in the middle of existing communication path. (SeeFigure 2.)For the purpose of the proof, we de�ne the notion of restricted o�ine. The restrictedo�ine must connect v via path Qi;v of bandwidth Ratei to one of the (previously subscribed)vertices (Si), rather than to an intermediate \relay point" on one of the existing paths. Ifthis path intersects other paths of optimal o�ine, restricted o�ine is not allowed to mergethese paths together. Also, restricted o�ine is only allowed to use such paths Qi;v thatbelong to the spanning tree Ri of the optimal o�ine. The essence of the restriction is thathooking into the middle of existing communication paths is disallowed.Note that such an o�-line may need to use the same edge of Ri several times. In thiscase Qi = [v2Si Qi;v where Qi is a \generalized tree", i.e. tree such that each edge has somemultiplicity. Thus the load on an edge increases by the rate of the tree multiple times. InFigure 3 we show output of restricted o�ine, which corresponds one of the multicast groupsof optimal o�ine in Figure 2.In fact, our proof of competitiveness will assume that online is operating under analo-7

Figure 2: The collection of trees tree R = [i=1;2Ri constructed by optimal o�ine for two di�erent multicastgroups. The two di�erent spanning trees for each group are represented by solid and dashed arrows, accordingly.The underlying topology is a grid. The congestion is caused by overlap between trees of di�erent groups, e.g. onlink from I to N . Double-circles represent subscription requests, e.g., N and Q are locations of requests for �rstgroup, with source at A, and L; T are locations of requests for second group, with source at R. Single circlesrepresent relay points. Note that optimal o�ine connects request from N to intermediate relay point (D) onexisting communication path from A to Q.gous \no-relay-points" restriction, and must maintain separately intersecting communicationpaths, thus paying higher load penalty. (This only strengthens our result.) In Figure 4 weshow output of restricted o�ine, which corresponds to the same subscription request se-quence as in Figure 2.The proof of performance of the algorithm is divided into two parts.� We show that, for any subscription pattern,`(P)`(Q) = O(log n) (4)i.e. the on-line algorithm is O(log n) competitive to the restricted o�-line, where n isthe number of network nodes.� We show that, for any sub-scription pattern,`(Q)`(R) = O(log d) (5)i.e. the restricted o�-line generates a load which is at most log d times the optimalo�-line, where d is the maximum number of users in any given broadcast group.Combining these two parts we get the desired result:`(P)`(R) = O(log n log d) (6)i.e. our online algorithm in Figure 1 is O(log n log d) competitive.8

Figure 3: The tree Q1 constructed by restricted o�ine. Uses paths belonging to tree R1 of optimal o�ine.Now, request from N cannot be accommodated by connecting to D, since D was not a previously requestedvertex, and thus connection is made thru Q. Paths from N to Q and from A to Q intersect, yet they cannot bemerged together, thus leading to twice higher load.
Figure 4: The tree P1 constructed by restricted o�ine that is completely di�erent from optimal o�ine tree R1.Note that the restricted o�ine cannot use any relay points, either. Thus, edge multiplicity is possible, e.g., edgefrom S to Q is counted twice.4.2 Online is competitive with Restricted o�ineTheorem 4.1 The on-line algorithm is O(log n) competitive to the restricted o�-line.The proof uses the methods developed in [AAF+93; AAPW94] for point to point con-nection. We present here a proof which is an extension of the proof in [AAPW94].We start �rst with the following useful fact.Fact 4.2 For all 0 � � � 1 	(x+ �)�	(x) � 	(x)�(e � 1)Proof: Taking advantage of Equation (3), and expanding 	(x+ �) into Taylor series aroundx, we get 9

	(x+ �)�	(x) = 1Xk=1	(k)(x)�kk! (7)� 1Xk=1	(x)�kkk! (8)� 	(x)� 1Xk=1 kk! (9)� 	(x)�(e � 1) (10)We now showLemma 4.3 At any time Xe2E	(`(e)) � jEj=(2 � e):Proof: Let hP (e) be the load on edge e at the arrival time of vertex v. The on-line algorithmconnects v to its group i through a path P . The restricted o�-line connects v to a vertex inthe current Si by a path Q.In order to connect v to the current Pi, the on-line algorithm uses P the shortest pathwith respect to the weight �	 at the time of arrival of v. The restricted o�-line connectsv to some vertex in the current Si. All these vertices are also on the tree Pi of the on-line.ThereforeXe2P ((hP (e) + �i(e))�	(hP (e))) � Xe2Q ((hP (e) + �i(e))�	(hP (e)))� Xe2Q(e � 1)	(hP (e))�i(e)� Xe2Q(e � 1)	(`(e))�i(e)The second inequality above follows from Fact 4.2 with � = �i(e), and hP (e). Note thateach e 2 Q we have 0 � �i(e) � 1 since the restricted o�ine algorithm connects the i'threquest through Q.Summing over all subscription requests of all groups yieldsXi XP2Pi Xe2P((hP (e) + �i(e))�	(hP (e))) � (e � 1)Xi XQ2Qi Xe2Q	(`(e))�i(e) (11)BY exchanging the order of summation we getXe2E Xi;e2Pi((hP (e) + �i(e))�	(hP (e))) � (e � 1)Xe2E	(`(e)) Xi;e2Qi �i(e)10

Clearly, the sum of left hand-side is a telescopic sum for each edge e. Observe that the factthat the normalized load of the restricted o�ine algorithm never exceeds 1, implies thatXi;e2Qi �i(e) � 1:Thus we conclude that Xe2E((`(e))�	(0)) � (e � 1)Xe2E	(`(e))Using the fact that e < 2, we getXe2E	(`(e)) � jEj	(0)=(2 � e):The above lemma immediately implies that`(P) = O(�1(jEj	(0)=(2� e)))For our choice of 	(`) = e`, we get `(P) = O(log jEj):Now, recall that ` is the normalized load of online, and thusload(P) = O(load(Q) log jEj) = O(load(Q) log n)which implies the Theorem.4.3 Restricted o�ine is competitive with optimal o�ineNext we relate the load of the restricted o�ine, that is only allowed to connect to previouslyconnected vertices, to the optimal o�ine, that may connect to \relay points" of existingcommunication paths, and not just to the terminal points.We will denote by R the tree computed by optimal o�ine and by Q the tree computedby restricted o�ine.Theorem 4.4 At any time `(Q) � 2`(R) log dProof: We construct a restricted o�-line solution such that for serving group i uses onlyedges of Ri and each such edge is used at most 2 log d times. Recall that the total load onan edge is just the sum of the bandwidth of all the trees which use this edge and thus thetheorem will follow from the above construction.11

Figure 5: Generating the line graph for the restricted o�ine. Vertices are numbered (0,1,2) according to theorder of their appearance, and then laid out from left to right, in the increasing order of DFS numbers in theinduced line graph. The arrows represents the connections made by restricted o�ine. Notice that the path fromN to Q is shorter than the path from N to A is this line graph, and thus the former path is chosen. The segmentsrepresenting the connections from N to Q, and from A to Q, overlap. We prove that total overlap is at mostlogarithmic in the size of a group.Given a tree T = Ri rooted at v0 with vertices v1; v2; : : : vl, l � d which joined the groupin this order, we �rst traverse the tree T in a DFS fashion. This de�nes an ordered listvi0(= v0); vi1; : : : ; vil of the vertices. We add to the end of this list vil+1 = v0. We build aline which consists of the vertices in the order of their DFS numbering. That is the DFSnumbers grow as we scan this line from left to right. Figure 5 illustrates this graphically forthe restricted o�ine in Figure 3 corresponding to optimal o�ine in Figure 2.The restricted o�ine needs to connect each vertex vj to some vertex vj00 where j00 < j.To do so the restricted o�-line �nds the nearest neighbor among vj00 in the line to its rightand to its left. Note that v0 appears both as the �rst and the last element in the list. Thuseach vertex has always nearest neighbor to its right and to its left. Denote by vj0 the nearestelement to vj among these two (ties are broken arbitrary).We emphasize that the list is unweighted i.e., the distances between any two consecutiveelements is de�ned to be 1. Then, if vj0 is to the right of vj it connects vj to vj0 by the partialpath of the DFS from vj to vj0 and otherwise by the partial path of the DFS from vj0to vj.We call this path the augmenting path of vertex vj.Clearly, the paths constructed is not necessarily simple but it must contain the simpleunique path between vj and vj0.The proof of the Theorem immediately follows from the followingClaim 4.5 The above construction uses each edge at most log d times in each direction.Proof: (of the claim): The DFS de�nes a path in the original graph between any two con-secutive nodes in the line. The union of these paths covers each edge of the tree preciselyonce in each direction (by the de�nition of DFS).Consider an edge e of the original graph in one direction. In the DFS traversal the edge isbetween some consecutive vertices of the line vij to vij+1 . Each augmenting path to the treecorresponds to a segment in the line such that any two segments are either disjoint (excludingendpoints) or one is contained in the other. Clearly, in the latter case the augmenting pathof the vertex with the higher index (i.e the one which arrived later) is contained in theaugmenting path of the vertex with the smaller index. Moreover, given two consecutivevertices in the line, every segment that contains both of them has (unweighted) length (inthe line) of at most half the previous segment. Otherwise, the augmenting path of the latervertex would have been connected to the other endpoint of the earlier segment. Thus, thereare at most log d segments which contain both vi and vi+1. Since these are precisely all the12

segments that contains e the proof of the claimed is completed. As we already mentionedthat completes the proof of the Theorem.References[AAF+93] JimAspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts. On-line loadbalancing with applications to machine scheduling and virtual circuit routing.In Proc. 25th ACM Symp. on Theory of Computing, pages 623{631, May 1993.[AAG94] B. Awerbuch, Y. Azar, and R. Gawlick. Dense trees and competitive selectivemulticast. Unpublished manuscript, 1994.[AAP93] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput competitive on-line routing.In focs34, November 1993.[AAPW94] Baruch Awerbuch, Yossi Azar, Serge Plotkin, and Orli Waarts. Competitiverouting of virtual circuits with unknown duration. In Proc. 5'th ACM-SIAMSymp. on Discrete Algorithms, pages 321{327, 1994.[ABK92] Yossi Azar, Andrei Broder, and Anna Karlin. On-line load balancing. In Proc.33rd IEEE Symp. on Found. of Comp. Science, pages 218{225, October 1992.[ACG+90] Baruch Awerbuch, Israel Cidon, Inder Gopal, Marc Kaplan, and Shay Kutten.Distributed control for PARIS. In Proc. 9th ACM Symp. on Principles of Distrib.Computing, pages 145{160, 1990.[AKP+93] Yossi Azar, B. Kalyanasundaram, Serge Plotkin, K. Pruhs, and Orli Waarts.On-line load balancing of temporary tasks. In Proc. Workshop on Algorithmsand Data Structures, pages 119{130, August 1993.[ANR92] Yossi Azar, Joseph Naor, and Raphael Rom. The competitiveness of on-lineassignment. In Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms, pages 203{210, 1992.[BFC93] Tony Ballardi, Paul Francis, and Jon Crowcroft. Core based trees (cbt). In Proc.of the Annual ACM SIGCOMM Symposium San Fransisco, CA, pages 85{95,September 1993.[Bou92] J.Y. Le Boudec. The asynchronous transfer mode: a tutorial. Computer Net-works and ISDN Systems, 24:279{309, 1992.[CESZ91] Ron Cocchi, Deborah Estrin, Scott Shenker, and Lixia Zhang. A study of pri-ority pricing in multiple service class networks. In Proc. of the Annual ACMSIGCOMM Symposium on Communication Architectures and Protocols, Zurich,Switzerland, 1991. 13

[CG88] I. Cidon and I. S. Gopal. PARIS: An approach to integrated high-speed privatenetworks. International Journal of Digital & Analog Cabled Systems, 1(2):77{86,April-June 1988.[CGG91] I. Cidon, I. Gopal, and R. Gu�erin. Bandwidth management and congestioncontrol in plaNET. IEEE Commun. Mag., 29(10):54{63, October 1991.[CGG+93] I. Cidon, I. Gopal, P. M. Gopal, R. Gu�erin, J. Janniello, and M. Kaplan. TheplaNET/ORBIT high speed network. Journal of High Speed Networks, 2(3):1{38, September 1993.[GG92] J.A. Garay and I.S. Gopal. Call preemption in communication networks. InProceedings of INFOCOM '92, volume 44, pages 1043{1050, Florence, Italy,1992.[GGK+93] Juan Garay, Inder Gopal, Shay Kutten, Yishay Mansour, and Moti Yung. E�-cient on-line call control algorithms. In Proceedings of 2'nd Annual Israel Con-ference on Theory of Computing and Systems, 1993.[GKR94] Rainer Gawlick, Charles Kamanek, and K.G. Ramakrishnan. On-line routingfor virtual private networks. unpublished manuscript, February 1994.[Kel86] F.P. Kelly. Blocking probabilities in large circuit-switched networks. Advancesin Applied Probablity, 18:473{505, 1986.[Raj92] Bala Rajagopalan. Reliability and scaling issues in multicast communication. InProc. of the Annual ACM SIGCOMM Symposium on Communication Architec-tures and Protocols, Baltimore, MD, pages 188{197, August 1992.[VG93] Dinesh C. Verma and P.M. Gopal. Routing reserved bandwidth multi-pointconnections. In Proc. of the Annual ACM SIGCOMM Symposium San Fransisco,CA, pages 96{105, September 1993.[XVI88] CCITT SG XVIII. Special issue on asynchronous transfer mode. InternationalJournal of Digital & Analog Cabled Systems, 1(4), 1988.
14

