
Chapter 1On-line Choice of On-line AlgorithmsYossi Azar � Andrei Z. Broder� Mark S. Manasse�AbstractLet fA1; A2; : : : ; Amg be a set of on-line algorithms fora problem P with input set I. We assume that P canbe represented as a metrical task system. Each Ai hasa competitive ratio ai with respect to the optimum o�-line algorithm, but only for a subset of the possible inputssuch that the union of these subsets covers I. Given thissetup, we construct a generic deterministic on-line algorithmand a generic randomized on-line algorithm for P that arecompetitive over all possible inputs. We show that theircompetitive ratios are optimal up to constant factors. Ouranalysis proceeds via an amusing card game.1 IntroductionA common trick of the trade in algorithm design is tocombine several algorithms using round robin execution.The basic idea is that, given a set of m algorithmsfor a problem P , one can simulate them one at atime in round robin fashion until the fastest of themsolves P on the given input. It is easily seen thatround robin execution is optimal among deterministiccombining algorithms that have no speci�c knowledgeof the problem domain and input. (As an aside, weshow in Appendix A that randomization helps very littlein this context; for any randomized combining scheme,and any � > 0, there is an input set of algorithms, suchthat the expected cost is greater than (m� �) times theminimum cost, versus m times the minimum cost forround robin execution.)For on-line algorithms the situation is more com-plicated: We are given a set S = fA1; A2; : : : ; Amg ofon-line algorithms (deterministic or randomized { seebelow) for a problem P with input set I. Each algo-rithm Ai has a known competitive ratio ai with respectto the optimum o�-line algorithm, but only for a sub-set of the possible inputs, such that the union of thesesubsets covers I. We assume that P can be representedas a metrical task system (see [2] for de�nitions). Our�DEC Systems Research Center, 130 Lytton Ave. Palo-Alto, CA 94301. E-mail: azar@src.dec.com, broder@src.dec.com,msm@src.dec.com .

goal is to construct an on-line algorithm for P that iscompetitive over all possible inputs.Again, we are interested in algorithms that have nospeci�c knowledge of the problem domain and input.More precisely, let �t be the sequence of requests upto time t. Let Ci(�t) and ci(�t) be the con�guration(respectively the cost) associated to Ai serving �t. Attime t, the con�guration associated to the combiningalgorithm must be one of the Ci(�t)'s. The decision toswitch from Ci(�t�1) to Cj(�t) can be based only onthe values ci(�t0) for 1 � i � m and 0 � t0 � t and onno other domain or input speci�c information.If the algorithmsAi and the combining constructionare deterministic, then we call the new algorithm on-line combine and denote it minS . If the constructionuses random bits, we call the algorithm randomized on-line combine, denoted rminS . In this later case the Ai'smight be randomized as well.Fiat et al. [3] addressed the question of on-line com-bine in a context restricted to paging algorithms. Fiat,Rabani, and Ravid [5] considered the general case andshowed that constructing a minS algorithm for an ar-bitrary set of on-line algorithms is equivalent to thelayered graph traversal problem analyzed by Papadim-itriou and Yanakakis [6] and Baeza-Yates, Culberson,and Rawlins [1]. Using the results of these analyses,they obtained a minS algorithm with competitive ratioO(m �maxifaig), which is optimal up to a constant fac-tor when all the ai's are equal, but not in general. Inthis paper we completely solve the general case, whenthe ai's are arbitrary. This immediately yields a bettercompetitive ratio for the k-server algorithm of [5].In this paper, we show that the problem of combin-ing on-line algorithms is equivalent, up to a small con-stant factor, to �nding the value of a very simple two-player card game1. In this game, two identical decksof cards are given to two players. Simplifying slightly,the �rst player (corresponding to the on-line combiningalgorithm) places a card face-down on the table. Thesecond player (the adversary) chooses a card from hishand, and turns it face up on the table. The �rst player1Field experiments show that 5-year olds can easily play it...1



2 Y. Azar, A. Z. Broder, and M. S. Manassethen exposes the matching card, either from her hand,in which case no score is recorded, or by showing thecard on the table, in which case the second player winsthe value of the card. The pair is removed from play,and the players play another round with the reduceddecks, until both players run out of cards.A few variations exist, all of which turn out to beequivalent in terms of optimal strategy: the �rst playercan be required to pick the same card to place facedown for each round until it is matched by the secondplayer, or not; the second player is required to arrangethe order in which he will play cards in every roundbefore play commences; one can even require the �rstplayer to select a schedule in advance for which card shewill place face down next, except for those cards thatare matched before their turn comes. It turns out thatoptimal play for all these variants results in the sametotal or expected score for the second player. In thedeterministic case, the total is clearly the value of allthe cards, since the second player can inspect the �rstplayer's strategy, and play cards in exactly the sameorder.The randomized case has the following optimalstrategy for building a schedule: let each card have aprobability proportional to the inverse of its value, andchoose a card using that distribution. That card is thelast card in the schedule. Repeat this procedure on theremaining cards to �nd the schedule in reverse order.By analyzing the card game, we obtain the followingresults:Theorem 1.1. Let S = fA1; A2; : : : ; Amg be a setof deterministic on-line algorithms for a metrical tasksystem P with input set I. Assume that each Ai has acompetitive ratio ai with respect to the optimum o�-linealgorithm for a subset of the possible inputs such thatthe union of these subsets covers I. Then there existsa deterministic minS algorithm with competitive ratioO(P1�i�m ai), and no deterministic on-line algorithmcan do better in general, except for a constant factor.The improvement with respect to the previousbounds is relevant when the average of the ai's is sub-stantially smaller than their maximum. In particular,our minS algorithm reduces the competitive ratio of thek-server algorithm of [5] by a factor of k!=2O(k). (Seesection 6.)For the randomized case we need �rst to discuss afunction that will play an important role in what follows.Let a1; a2; : : : be a sequence of positive numbers. Forany set T of natural numbers we de�ne f(T ) by the

recurrencef(;) = 0f(T ) = 1 +Pi2T f(T n fig)=aiPi2T 1=ai ; T 6= ;:(1.1)Let [m] stand for the set f1; 2; : : : ;mg. Note thatf([m]) is a symmetric rational function of a1; : : : ; am.In particular f(f1g) = a1;f(f1; 2g) = a21 + a22 + a1a2a1 + a2 ;but the numbers of terms grows very fast: f(f1; 2; 3g)has 19 terms, and f(f1; 2; 3; 4g) has 390. Nevertheless,we can crudely bound f(T ) byHmmini2T ai � f(T ) � Hmmaxi2T ai;(1.2)where m = jT j, and Hm is the m'th harmonic number.Better but more complex bounds will be presented inSection 3.1.Now we can state our result for randomized on-linecombine.Theorem 1.2. Let S = fA1; A2; : : : ; Amg be a setof deterministic or randomized on-line algorithms for ametrical task system P with input set I. Assume thateach Ai has a competitive ratio ai with respect to theoptimum o�-line algorithm for a subset of the possibleinputs such that the union of these subsets covers I.Then there exists a randomized rminS algorithm withcompetitive ratio O(f([m])), and no randomized on-linealgorithm can do better in general, except for a constantfactor.Plugging equation (1.2) into the theorem yields theweak upper bound O(logn�maxi ai) which was obtainedin [4].2 The layered graph traversal problemThis problem was introduced and analyzed in [1] and[6]. A layered graph is an undirected graph with theproperty that its vertices can be divided into layersL0; L1; L2; : : :, such that all edges run between consec-utive layers. Each edge e, has a certain non-negativelength l(e). A disjoint-paths layered graph consists ex-actly ofm paths with a common�rst vertex s, called thesource, but otherwise vertex disjoint. Thus, the graphcan be divided into layers L0 = fsg; L1; L2; : : :, suchthat layer i for i > 0 consists of the m vertices that arei edges away from the source on each path.



On-line Choice of On-line Algorithms 3An on-line layered graph traversal (lgt) algorithmstarts at the source and moves along the edges of thegraph. Each time it moves along an edge (in anydirection), it pays a cost which is the length of the edge.Its goal is to reach a target which is a vertex in the lastlayer. The lengths of the edges between layer Li�1 toLi are revealed to the algorithm only when a vertex inLi�1 is reached for the �rst time. (The lengths do notchange over time.) The target vertex becomes knownonly when the algorithm reaches a vertex in the next-to-last layer.The competitive ratio of the on-line traversal al-gorithm is the worst case ratio between the distancetraveled by the on-line algorithm and the length of theshortest path from the source to the target. (For disjointpaths graphs, this path is unique. Also in this case anylgt algorithm must advance one layer at a time eitherby continuing on its current path, or by backtracking tothe source and choosing a di�erent path.)For general layered graphs, the competitive ratiois exponential for deterministic algorithms, but poly-nomial for randomized ones [4, 7]. For disjoint-pathslayered graphs the optimal deterministic algorithm hascompetitive ratio 1 + 2m(1 + 1m�1 )m�1 � 2em (see[6] and [1]). For randomized algorithms Fiat et al. [4]showed that the competitive ratio is �(logm).For the remainder of this paper we will consideronly disjoint-paths layered graphs. We need a slightgeneralization of the model above: we assume that eachpath Pi has a known associated waste factor ai. Foreach edge e on Pi, the o�-line algorithm pays l(e)=ai,while the on-line algorithmpays l(e) as before. Thus thecompetitive ratio becomes a function of a1; : : : ; am, andthe preceding model corresponds to a1 = a2 = � � � =am = 1.Following [5] we show now that constructing a minSalgorithm is equivalent to an algorithm for the modi�edlgt with the same competitive ratio.First assume that a (modi�ed) lgt algorithm isgiven. To construct a minS algorithm, we constructa disjoint-paths layered graph which associates a pathPi with each algorithm Ai. We set the waste factorsto be the competitive ratios a1; : : : ; am and simulateA1; : : : ; Am on the sequence of requests as follows.When a request is made, the minS algorithm com-putes the costs of the edges to the next layer; the costof the edge on Pi is the cost of serving the request byAi, as if Ai had been continually simulated from thebeginning.Then, the minS algorithm applies the lgt algo-

rithm in order to decide how to serve the request. Ifthe lgt algorithm continues with the current path Pi,then minS continues to simulate the current algorithm,Ai. On the other hand, if the lgt algorithm backtracksand moves to a vertex v (in the next layer) via anotherpath, Pj, then the minS algorithm switches to the con-�guration corresponding to v, and Aj becomes the cur-rent algorithm. Since we assumed that the underlyingproblem is a metrical task system, the triangle inequal-ity holds for the cost of switching between con�gura-tions; thus the cost of minS is bounded by the cost oflgt. Clearly then, a competitive lgt algorithm yieldsa minS algorithm with the same competitive ratio, orbetter.Conversely, one can easily use a minS algorithm toconstruct an lgt algorithm with the same competitiveratio: Let the metrical task system P be the disjoint-paths layered graph traversal, where the states cor-respond to vertices in the graph, with the transitioncost between states equal to the total distance in thegraph. (It is readily seen that P is well de�ned.) LetA1; A2; : : : ; Am be the m algorithms that correspond tosticking to path Pi and let a1; : : : ; am be the waste fac-tors. Clearly, the lgt algorithm that follows minS inthe obvious manner has the same competitive ratio.3 The Guess GameIn this section we de�ne and analyze a certain two playerzero-sum game, called the Guess Game. Later we willuse this analysis to derive upper and lower bounds forthe disjoint-paths layered graph traversal problem.One participant is called the player and the otheris called the adversary. Both start with the same setof cards T = [m] = f1; : : : ;mg. The value of card i isai > 0.The game starts with the adversary putting all hiscards face-down on the table in a certain order, thathe will be unable to change during the game. Thenthe player chooses one of her cards and puts it face-down on the table. We call this the hidden card. Theadversary then turns up the �rst of his cards and theplayer has to match it. If the card matches the hiddencard (a hit) then the adversary wins the value of thecard, the matched pair is discarded, and the player mustpick a new card face down. If not (a miss), then theplayer matches the adversary's card with a card fromher hand and the matched pair is discarded withoutfurther ado.Hence, there are m rounds. The value ofthe game is the sum of the values of the cards that theadversary wins.Observe that the player pays ai if and only if she



4 Y. Azar, A. Z. Broder, and M. S. Manassehides card i before she hides any card that comes after iin the adversary's order. In particular the player alwayspays for the last card in the adversary's order.Let's assume that that the player selects her algo-rithm �rst, and that the adversary is aware of the se-lection made. If the player's algorithm is deterministic,then the adversary's best strategy is obvious: he choosesthe order of his guesses to be the same order as the hid-den cards of the player and thus he wins at every round.Hence, the value of the game is exactly P1�i�m ai.In the randomized case the situation is more compli-cated. The player can choose her hidden cards accordingto distributions that might depend on the history of thegame. On the other hand, basic game theory impliesthat, given the probability distribution on the playerstrategies, there is a deterministic strategy for the ad-versary, that is, a �xed order of guesses, that maximizeshis pro�t.In order to analyze the value of the game we de�netwo other models for players. A strong player is a playerwhich, after each miss, is allowed to replace the hiddencard by a card which is still in her hand. This, ofcourse, can only help the player and does not increaseher expected cost with respect to a standard player. Aweak player is one that chooses the order of her hiddencards in advance (using random bits) and is not allowedto change this order later in the game. More precisely,the weak player chooses an order for her cards at thebeginning of the game and then, whenever there is a hit,she replaces the hidden card by the lowest ordered cardwhich has not been discarded yet. Clearly the expectedcost for a weak player is no lower than the expected costfor a standard player.Let f(T ) be de�ned by equation (1.1). Our mainresult in this section isTheorem 3.1. The value of the game with a set ofcards T is at least f(T ), even against a strong player,and is at most f(T ) even against a weak player. Thusthe game value is exactly f(T ) for all three types ofplayers.Proof. We start with the lower bound and assumea strong player. Let g(T ) be the value of the game.We have to show that g(T ) � f(T ) for any set T .We use induction on the size of T . If T = fig, theng(T ) = ai = f(T ) and we are done. For the general case,let pj be the probability that the player chooses card jas her �rst hidden card. Now, if the adversary choosescard i to be his �rst guess, and then chooses the bestorder for the remaining cards as if the game started withT n fig, he can clearly guarantee, even against a strong

player, an expected cost of at least piai + g(T n fig).The adversary can choose the i which maximizes thisexpression. That implies that for all ig(T ) � piai + g(T n fig);or g(T ) � g(T n fig)ai � pi:But Pi pi = 1, and thereforeXi g(T )� g(T n fig)ai � 1or g(T ) � 1 +Pi2T g(T n fig)=aiPi2T 1=aiThus g(T ) � f(T ).We now turn to the upper bound and assume aweak player. Again the proof is by induction on thesize of T . The case T = fig is trivial. For the generalcase, recall that a weak player hides her cards in a�xed order. Assume that the player constructs herorder as follows: Among all cards she picks a card withprobability inversely proportional to its value. Let thecard so chosen be the last card in her order. From theremaining cards she picks again a card with probabilityinversely proportional to its value. Let it be the next-to-last card in her order. And so on. (That is, if afterk choices the set of remaining cards is T and i 2 T , theprobability that i becomes the m� k card in the orderis (1=ai)=Pj2T 1=aj.)2Let h(T ) be the value of the game when the adver-sary knows that the player has chosen this particularstrategy. Let j be the card chosen by the adversary tobe last in his order. Let i be the last card of the player.Note that j is �xed, but i is a random variable.� If i = j, an event whose probability is proportionalto 1=aj, then the player has to pay aj in the lastround. Furthermore, the distribution used by theweak player with respect to the set of remainingcards (that is, T n fjg) is exactly the same as ifshe started the game with the set T n fjg. Hencein this case, the player's expected cost is at mostaj+h(T nfjg) even if the adversary plays optimallyon the remaining cards.� If i 6= j, the player will never have to pay ai andagain her distribution on the remaining cards isexactly as if she had started the game with T nfig,so her cost is at most h(T n fjg).2Note that this strategy is not the same as choosing thesequence from �rst to last with probabilities proportional to ai.



On-line Choice of On-line Algorithms 5This implies thath(T ) � 1=ajPi2T 1=ai (aj + h(T n fajg))+ Pi2Tnfjg h(T n fig)=aiPi2T 1=aior h(T ) � 1 +Pi2T h(T n fig)=aiPi2T 1=aiThat is, h(T ) � f(T ).We conclude that h(T ) = f(T ) = g(T ) and thus thevalue of the game is exactly f(T ) for all three types ofplayers. 23.1 Properties of f(T ). In this subsection wediscuss some of the interesting properties of f(T ).Let's return to the weak player's strategy as de-scribed in Theorem 3.1. Let P (i; R) for i 2 R � T bethe probability that the player chooses card i the lastamong the cards in R (which means that, in the player'shiding order, card i will be the �rst among the cards inR.) We claim that P (i; R) does not depend on the val-ues of the cards in T n R. Indeed, call the cards in R,red. We can think that when the player builds her or-der, she �rst decides, with suitable probability, whetherto pick a red card from the remaining cards, and if so,she then decides, with suitable probability, which redcard to pick. Clearly the order among the red cardsdepends only on the values of the red cards.Let �1; �2; : : : ; �m be the adversary's order. As wehave already observed, for any strategy, the player paysai if and only if she hides card i before she hides anycard that comes after i in the adversary's order. Thatimplies that the probability that the weak player paysa�i is exactly, P (�i; f�i; �i+1; : : : ; �mg).But the proof of Theorem 3.1 implies that the weakplayer's strategy as described is optimal, and thereforegame theoretical considerations imply that the orderchosen by the adversary is irrelevant { the expectedvalue of the game is the same. It follows thatf([m]) = X1�i�ma�iP (�i; f�i; �i+1; : : : ; �mg)(3.3)for any permutation �! In particular,f([m]) = X1�i�maiP (i; fi; i+ 1; : : : ;mg):(3.4)In this form, it is rather hard to see that f([m]) issymmetric in the ai's, since the i'th term in the sum

depends only on ai; ai+1; : : : ; am. We also don't knowof any direct proof that shows that (3.4) is a solution of(1.1).Unfortunately, the alternate expression is not com-putationally easier, since P (i; R) does not seem to havea simple closed form. It can be computed with the for-mula P (i; R) = Pj2RnfigP (i; R n fjg)=ajPj2R 1=aj(3.5)Similar considerations lead toTheorem 3.2. Let T = [m]. Without loss ofgenerality assume that a1 � a2 � � � � � am. ThenX1�i�m aii � X1�i�m a2ia1 + � � �+ ai � f(T )andf(T ) � X1�i�m a2iai + � � �+ am � X1�i�m aim + 1� i :Proof. As above we consider the weak player'sstrategy. It su�ces to show that if a1 � a2 � � � � � amthen P (1; [m]) � a1a1 + � � �+ am ;(3.6)and P (m; [m]) � ama1 + � � �+ am :(3.7)The proof is by induction on m. Let S = a1 +� � �+ am. The base case is trivial. For the general case,by the de�nition of the weak player's strategy and theinduction hypothesis, we haveP (1; [m]) �Xj>1 1aj a1S � aj�Xj 1aj= a1Pj 1=ajXj>1 1aj 1S � aj(3.8)Observe that1aj 1S � aj = 1S � 1aj + 1S � aj� :Hence (3.8) becomesP (1; [m]) � a1S Xj>1� 1aj + 1S � aj��Xj 1aj ;



6 Y. Azar, A. Z. Broder, and M. S. Manassefor which it su�ces to show thatXj>1 1S � aj � 1a1 :Similarly, proving equation (3.7) reduces to proving thatXj<m 1S � aj � 1am :The last two inequalities follow fromXj>1 1S � aj �Xj>1 1(m � 1)a1 = 1a1 ;and Xj<m 1S � aj � Xj<m 1(m � 1)am = 1am :Now using equation (3.6) (resp. (3.7)) in equation(3.3) and the permutation �i = m� i+ 1 (resp. �i = i)completes the proof. 24 The lower boundLet r be an arbitrary positive real number. Givena1; : : : ; am, we show that an adversary can constructa disjoint-paths layered graph such that the cost ofthe o�-line (modi�ed) lgt algorithm is r while thecost of any on-line lgt is at least rv([m]), wherev([m]) is the value of the Guess game on m cardswith values a1; : : : ; am. (If the on-line lgt algorithm isdeterministic (resp. randomized) then so is the player;and the value of v([m]) changes accordingly: v([m]) =P1�i�m ai in the deterministic case and v([m]) =f([m]) in the randomized case.)The graph consists of m paths and m + 1 layers.Each path starts with an edge with �nite positive length,followed by a number of zero length edges, followed bya (practically) in�nite length edge, except for the pathto the target, which does not contain the in�nite edge.Path Pi starts with an edge with length rai and haswaste factor ai. Each path has its in�nite edge startingon a di�erent layer, and for j = 1; : : : ;m�1, every layerLj has an in�nite edge out.Thus, the on-line algorithm has no reason to visitthe same path twice, and whenever it paid the �rstedge on the path, it can be presumed that it willnot backtrack before reaching the in�nite edge, or thetarget, since it costs nothing to advance and return onthe zero length edges.Path Pi corresponds to card i in the game. The on-line algorithm starting path i corresponds to the player

hiding card i. An in�nite edge on Pi between layer jand j + 1 corresponds to the adversary guessing card iat round j in the game. With these correspondences,it can be easily veri�ed (see the example below) thata (randomized) strategy for the lgt algorithm imme-diately translates into a strategy for the (randomized)standard player in the Guess game.Given the player's strategy, the adversary starts bychoosing an order on the paths corresponding to hisoptimal order of guesses in the Guess game. Let thisorder be �1; �2; : : : ; �m. The adversary completes theconstruction as follows:� The target is on path �m at layer m.� For i = 1; : : : ;m � 1 the path �i gets its in�niteedge between layers i and i+ 1.For instance if the algorithm starts on path �3 thenit pays ra�3 but will not pay the �rst edges on �1 and�2. This corresponds exactly to the player in the Guessgame that hides �3 at the �rst turn, and hence pays a�3but does not pay a�1 or a�2 .Clearly the cost of the lgt algorithm is at least rtimes greater than the cost of the player. (\At least"because the lgt algorithm also pays on the way back tosource.) Hence we conclude that the cost of the on-linelgt algorithm is at least rv([m]) while the cost of theo�-line algorithm is only r. (The path to the target haslength ram and waste factor am.) This concludes theproof of the lower bound.5 The upper boundThe proof below makes the assumption that the algo-rithms A1; : : : ; Am are deterministic. The proof for ran-domized algorithms is similar, but requires many tech-nicalities which obscure the essential ideas. We leave itfor the full paper.We are given a disjoint-paths layered graph traver-sal problem: the graph consists of m paths P1; : : : ; Pmwith waste factors a1; : : : ; am. We show how to con-struct an lgt algorithm using a strategy for the Guessgame.Let li;j be the distance from the source to layer jon path Pi. Let sj = mini li;j=ai, that is, sj is theminimum cost that the o�-line algorithm must pay toget to layer j. Let j0 be the minimum j such that sj > 0.Let s = sj0 .We now partition the layers into strata. All layersj such that s2k�1 � sj < s2k;



On-line Choice of On-line Algorithms 7belong to stratum k. All layers j with j < j0 belong tostratum 0.Consider a layer j in stratum k. If li;j=ai > s2k callpath i blocked at j. Notice that on each layer there mustbe some path which is not blocked. (If all the paths haveli;j=ai > s2k then we just started a new stratum, andthe \blocked" notion is rede�ned.) For stratum 0 wecall a path blocked if li;j=aj > 0.Now we are ready to describe the on-line lgtalgorithm. For stratum 0, the algorithm follows a 0-length path until it blocks, then switches arbitrarily toanother 0-length path, and so on, until all paths havestrictly positive lengths and stratum 1 starts. Noticethat in general, once the algorithm has reached layerj � 1, it can compute sj at no cost.Once it gets to the �rst layer of stratum k, the on-line algorithm gets to the �rst layer of the next non-empty stratum k0 this way: it follows a path until itblocks (with respect to stratum k), then it returns tothe source and follows another path not yet blocked,and so on, until it arrives on the �rst layer of stratumk0. The crux of the algorithm is how to choose the nextpath to try.The idea is that on the �rst layer of stratum k > 0,the algorithm starts playing a Guess game. As in thelower bound proof, path Pi corresponds to card i in thegame, the on-line algorithm trying path i correspondsto the player hiding card i, and a blocked path Picorresponds to the adversary guessing card i at a certainround in the game.The di�erence is that now the adversary mightguess (and miss) some cards even before any card ishidden { this corresponds to paths that are alreadyblocked with respect to stratum k on the �rst layerof the stratum, and the adversary might guess severalcards at once, against a single hidden card { thiscorresponds to paths that block on the same layer. Ofcourse, both these maneuvers work to the advantage ofthe player.Notice that card i on stratum k costs at mosts2kai. Taking into account backtracking, the total costof the on-line algorithm on stratum k is bounded by2s2kv([m]) where v([m]) is the value of the Guess gameon m cards with values a1; : : : ; am.Assume that the target belongs to stratum t. Thenthe total cost of the o�-line algorithm is at least s2t�1while the total cost of the on-line algorithm is at most2s(1 + 2 + : : :+ 2t)v([m]) < s2t+2v([m]):

Hence the competitive ratio is at most 8v([m]): that is,8P1�i�m ai for the deterministic case, and 8f([m]) forthe randomized case.6 Application to the k server problemThe k-server algorithm of [5] is based on recursivecalls to the minS operation with i2 algorithms whosecompetitive ratio can be divided into i groups, each ofsize i. The competitive ratios of the algorithms in thesame group are about the same but the ratios di�ergreatly among groups. More precisely, the sum of thecompetitive ratios of all the algorithms is dominated bythe sum in one group. Thus the average competitiveratio is �(i) times smaller than the maximum one.The minS originally used in [5] has competitive ratioO(m � maxifaig), while our algorithm has competitiveratio O(P1�i�m ai). Hence, our algorithm saves a �(i)factor in each recursive call and this results in a k!=2O(k)overall savings factor. Unfortunately the competitiveratio of the modi�ed algorithm is still exponential in k,namely O((k!)22O(k)).A Combining o�-line algorithms.Let S be a set of k o�-line algorithms such that foreach input at least one of algorithms runs quickly.What is the fastest way to combine the execution ofthe algorithms in S to solve a particular input? Canwe �nd an algorithm which combines the elements ofS which, for every input, achieves performance withinsome constant factor of the fastest algorithm for thatinput?Again we are interested in a combining procedurethat has no speci�c knowledge of the problem domainand input. We consider two models: in the �rst onethere is no a priori bound on the running time of thealgorithms; in other words the only way to determinethe running time of a particular algorithm on a giveninput is to run it until it terminates. In the secondmodel, the running time of each algorithm Ai is knownto be either exactly ai or in�nite; this correspondsto having a known competitive ratio, or performanceguarantee.A.1 No performance guarantee. The standardsolution to this problem is the Round Robin (rr) al-gorithm which achieves a performance ratio of preciselyk in the worst case. It works by executing individualinstructions from each of the algorithm in turn untilone of them terminates. Thus, if the fastest algorithmA 2 S costs n steps, rr will cost between k(n � 1) + 1



8 Y. Azar, A. Z. Broder, and M. S. Manasseand kn, depending on where A falls in the ordering ofS. If the ordering is deterministic, the adversary canchose an input such that the last algorithm in the orderis the best, leading to a competitive ratio of exactly k.It is easy to see that rr is optimal among deterministiccombining algorithms.Can randomization help reduce the expected ratio?Consider, for example, the algorithm that �rst randomlysorts the algorithms in S, and then applies round robin.The expected cost on an input with least cost n isthen k(n � 1) + (k + 1)=2 = kn � (k � 1)=2, yieldinga competitive ratio approaching k as n becomes large.This algorithm fails to improve the competitive ratio inthe worst case.We now show that we cannot hope to do better byshowing that no algorithm can achieve a ratio betterthan k. To prove this, we apply a variation of Yao'stheorem to the competitive ratios under consideration(not to the costs themselves!), which allows us to replacerandomness in the algorithm with randomness in theinput. We will choose a distribution on the identityof the fastest algorithm among the k algorithms in Sand its termination time. Let n be a parameter to bechosen later and suppose that the other algorithms havein�nite cost on the inputs for which they are not fastest;it su�ces for these costs to be at least kn.Now, let the probability that the Aj is the fastestalgorithm, and that its termination time is i (where1 � i � n), be1k � i1 + : : :+ n = 2ikn(n+ 1)This de�nes a probability distribution. Take any com-bining algorithm C for this distribution. We will showthat it achieves a ratio no better than (kn+1)=(n+ 1).For large enough values of n, this approaches k.Why can C do no better than the ratio above? SinceC is deterministic, and has no speci�c knowledge of theproblem domain and input, it has a �xed order in whichit simulates the steps of the algorithms. (For instancestep 1-10 of algorithm A7, followed by steps 1 � 15of algorithm A5, and so on.) C stops as soon as onealgorithm �nishes. In the worst case C has to simulatekn steps.Consider step t of C. At that step, suppose Csimulates step i of algorithm j. With probability2i=(kn(n+1)), this will be the terminating step, leadingto a cost ratio of t=i. This contributes 2t=(kn(n+1)) tothe expected ratio, independently of i and j. Thus forevery order, and hence for every algorithm, the expected

ratio is X1�t�kn 2tkn(n+ 1) = kn+ 1n+ 1 :A.2 A priori performance guarantee. Let S bea set of n o�-line algorithms such that for each inputat least one of algorithms runs quickly. Suppose thatthe running time of each algorithm i is known to beeither exactly ai or in�nite. Again we are interested ina procedure which combines the algorithms such thatfor every input, it achieves a performance within someconstant factor of the fastest algorithm.First, observe that our desired algorithmneed neverinterleave the executions of di�erent algorithms. Sinceno information about the running time of algorithm i isgained until step ai, we can convert any algorithm forthis problem into one which runs the algorithms in theorder in which their decisive steps are executed.Therefore, our algorithm is determined by its order-ing of the algorithms from S. If the ordering is deter-ministic, the worst case cost is s =P1�i�n ai, achievedwhen the input is solved only by the last algorithm tried.In this case, randomization does help. The exactcomplexity for the randomized case isX1�i�j�naiaj�Xi aiLower bound: We use Yao's theorem. The adver-sary assigns probability aj=s to the outcome that j isthe correct algorithm. Consider a deterministic com-bining algorithm C that chooses an execution orderp1; p2; : : : ; pn. If pj was the correct algorithm, then Cincurs costP1�i�j api . Thus, the total expected cost isX1�j�n apjs X1�i�j api = X1�i�j�naiaj�Xi ai:Upper bound: Arrange the algorithms in someorder e.g. 1; 2; : : :; n. With probability aj=s start withalgorithm j, then j + 1, and so on in cyclic order. Let lbe the index of the correct algorithm. If the algorithmstarts with j its cost isPj�i�l ai wherePj�i�l denotesa cyclic sum. A cyclic sum is the same as a regular sumwhen j � l, but if j > l, then the sum is on the indices ithat satisfy j � i � n and 1 � i � j. Then the expectedcost is X1�j�n ajs Xj�i�l ai = X1�i�j�naiaj�Xi ai:



On-line Choice of On-line Algorithms 9References[1] R. Baeza-Yates, J. Culberson and G. Rawlins, \Search-ing in the plane," to appear in Information and Com-putation.[2] A. Borodin, N. Linial, and M. Saks. \An Optimal On-line Algorithm for Metrical Task Systems" Proceed-ings of the 19th Annual ACM Symposium on Theoryof Computing, 1987, pp. 373{382.[3] A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator,and N. Young. \Competitive paging algorithms," Jour-nal of Algorithms, 12(1991), pp. 685-699.[4] A. Fiat, D. Foster, H. Karlo�, Y. Rabani, Y. Ravidand S. Vishwanathan, \Competitive algorithms forlayered graph traversal," Proceedings of the 32nd IEEESymposium on Foundations of Computer Science, 1991,pp. 288-297.[5] A. Fiat, Y. Rabani and Y. Ravid, \Competitive k-server algorithms," Proceedings of the 31st IEEE Sym-posium on Foundations of Computer Science, 1990, pp.454-463.[6] C. Papadimitriou and M. Yanakakis, \Shortest pathswithout a map," Proceedings of the 16th ICALP, 1989,pp. 610-620.[7] H. Ramesh, \On traversing layered graphs on-line,"This proceedings, 1992.[8] D. Sleator and R. Tarjan, \Amortized e�ciency oflist update and paging rules," Communications of theACM, 23(1985), pp. 202{208.


