Chapter 1
On-line Choice of On-line Algorithms

Yossi Azar *

Abstract

Let {A1,A2,...
a problem P with input set I.

,Am} be a set of on-line algorithms for
We assume that P can
Fach A; has

a competitive ratio a; with respect to the optimum off-

be represented as a metrical task system.

line algorithm, but only for a subset of the possible inputs
such that the union of these subsets covers I. Given this
setup, we construct a generic deterministic on-line algorithm
and a generic randomized on-line algorithm for P that are
We show that their

competitive ratios are optimal up to constant factors. Our

competitive over all possible inputs.

analysis proceeds via an amusing card game.

1 Introduction

A common trick of the trade in algorithm design is to
combine several algorithms using round robin execution.
The basic idea is that, given a set of m algorithms
for a problem P, one can simulate them one at a
time in round robin fashion until the fastest of them
solves P on the given input. It is easily seen that
round robin execution is optimal among deterministic
combining algorithms that have no specific knowledge
of the problem domain and input. (As an aside, we
show in Appendix A that randomization helps very little
in this context; for any randomized combining scheme,
and any € > 0, there is an input set of algorithms, such
that the expected cost is greater than (m—e¢) times the
minimum cost, versus m times the minimum cost for
round robin execution.)

For on-line algorithms the situation is more com-
plicated: We are given a set S = {Ay, Ay, ..., Apn} of
on-line algorithms (deterministic or randomized — see
below) for a problem P with input set /. Each algo-
rithm A; has a known competitive ratio a; with respect
to the optimum off-line algorithm, but only for a sub-
set of the possible inputs, such that the union of these
subsets covers I. We assume that P can be represented
as a metrical task system (see [2] for definitions). Our

DEC Systems Research Center, 130 Lytton Ave. Palo-
Alto, CA 94301. E-mail: azar@src.dec.com, broder@src.dec.com,
msm@src.dec.com .

Andrei 7. Broder*

Mark S. Manasse*

goal i1s to construct an on-line algorithm for P that is
competitive over all possible inputs.

Again, we are interested in algorithms that have no
specific knowledge of the problem domain and input.
More precisely, let o; be the sequence of requests up
to time t. Let C;(o:) and ¢;(0¢) be the configuration
(respectively the cost) associated to A; serving o;. At
time ¢, the configuration associated to the combining
algorithm must be one of the C;(o)’s. The decision to
switch from C;(oy—1) to Cj(o¢) can be based only on
the values ¢;(oy) for 1 < i <mand 0 <# < ¢ and on
no other domain or input specific information.

If the algorithms A; and the combining construction
are deterministic, then we call the new algorithm on-
line combine and denote 1t MINg. If the construction
uses random bits, we call the algorithm randomized on-
line combine, denoted RMINg. In this later case the A;’s

might be randomized as well.

Fiat et al. [3] addressed the question of on-line com-
bine in a context restricted to paging algorithms. Fiat,
Rabani, and Ravid [5] considered the general case and
showed that constructing a MINg algorithm for an ar-
bitrary set of on-line algorithms is equivalent to the
layered graph traversal problem analyzed by Papadim-
itriou and Yanakakis [6] and Baeza-Yates, Culberson,
and Rawlins [1]. Using the results of these analyses,
they obtained a MINg algorithm with competitive ratio
O(m -max;{a;}), which is optimal up to a constant fac-
tor when all the a;’s are equal, but not in general. In
this paper we completely solve the general case, when
the a;’s are arbitrary. This immediately yields a better
competitive ratio for the k-server algorithm of [5].

In this paper, we show that the problem of combin-
ing on-line algorithms is equivalent, up to a small con-
stant factor, to finding the value of a very simple two-
player card game!. In this game, two identical decks
of cards are given to two players. Simplifying slightly,
the first player (corresponding to the on-line combining
algorithm) places a card face-down on the table. The
second player (the adversary) chooses a card from his
hand, and turns it face up on the table. The first player

TField experiments show that 5-year olds can easily play it...

then exposes the matching card, either from her hand,
in which case no score is recorded, or by showing the
card on the table, in which case the second player wins
the value of the card. The pair 1s removed from play,
and the players play another round with the reduced
decks, until both players run out of cards.

A few variations exist, all of which turn out to be
equivalent in terms of optimal strategy: the first player
can be required to pick the same card to place face
down for each round until it is matched by the second
player, or not; the second player is required to arrange
the order in which he will play cards in every round
before play commences; one can even require the first
player to select a schedule in advance for which card she
will place face down next, except for those cards that
are matched before their turn comes. It turns out that
optimal play for all these variants results in the same
total or expected score for the second player. In the
deterministic case, the total is clearly the value of all
the cards, since the second player can inspect the first
player’s strategy, and play cards in exactly the same
order.

The randomized case has the following optimal
strategy for building a schedule: let each card have a
probability proportional to the inverse of its value, and
choose a card using that distribution. That card is the
last card in the schedule. Repeat this procedure on the
remaining cards to find the schedule in reverse order.

By analyzing the card game, we obtain the following
results:

THEOREM 1.1. Let S = {41, Ao, ..., A} be a sel
of deterministic on-line algorithms for a metrical task
system P with input set 1. Assume that each A; has a
competitive ratio a; with respect to the optimum off-line
algorithm for a subset of the possible inputs such that
the union of these subsets covers I. Then there exists
a deterministic MINg algorithm with competitive ratio
O cicm @i), and no deterministic on-line algorithm
can do better in general, except for a constant factor.

The improvement with respect to the previous
bounds is relevant when the average of the a;’s 1s sub-
stantially smaller than their maximum. In particular,
our MINg algorithm reduces the competitive ratio of the
k-server algorithm of [5] by a factor of k!/200F). (See
section 6.)

For the randomized case we need first to discuss a
function that will play an important role in what follows.
Let ay,as,... be a sequence of positive numbers. For
any set T of natural numbers we define f(T) by the

Y. Azar, A. Z. Broder, and M. S. Manasse

recurrence
J0)=0
(L) L+ ier (TN {i})/ai
™ = , T+ 0.
f() ZiET 1/ai 7
Let [m] stand for the set {1,2 ...,m}. Note that

f([m]) is a symmetric rational function of ay, ...
In particular

s Ay -

f{1}) = a1,

a? + a2 + ai1a»
1,2}y =+t—2——=
f({1,2)) = ===

but the numbers of terms grows very fast: f({1,2,3})
has 19 terms, and f({1,2,3,4}) has 390. Nevertheless,
we can crudely bound f(7) by

L2 Hpmina; < T)< Hn)

(1.2) minag; < f(T) < Hr maxa

where m = |T'|, and H,, is the m’th harmonic number.
Better but more complex bounds will be presented in
Section 3.1.

Now we can state our result for randomized on-line
combine.

THEOREM 1.2. Let S = {A1, Aa, ..., A} be a sel
of deterministic or randomized on-line algorithms for a
metrical task system P with input set I. Assume that
each A; has a competitive ratio a; with respect to the
optimum off-line algorithm for a subset of the possible
mputs such that the union of these subsets covers I.
Then there exists a randomized RMINg algorithm with
competitive ratio O(f([m])), and no randomized on-line
algorithm can do better in general, except for a constant
factor.

Plugging equation (1.2) into the theorem yields the
weak upper bound O(log n-max; a;) which was obtained

in [4].

2 The layered graph traversal problem

This problem was introduced and analyzed in [1] and
[6].

A layered graph is an undirected graph with the
property that its vertices can be divided into layers
Lo, L1, La, ..., such that all edges run between consec-
utive layers. Fach edge e, has a certain non-negative
length {(e). A disjoint-paths layered graph consists ex-
actly of m paths with a common first vertex s, called the
source, but otherwise vertex disjoint. Thus, the graph
can be divided into layers Ly = {s}, L1, Lo, ..., such
that layer ¢ for ¢ > 0 consists of the m vertices that are
t edges away from the source on each path.

On-line Choice of On-line Algorithms

An on-line layered graph traversal (LGT) algorithm
starts at the source and moves along the edges of the
graph. FEach time it moves along an edge (in any
direction), it pays a cost which is the length of the edge.
Its goal is to reach a target which is a vertex in the last
layer. The lengths of the edges between layer L;_; to
L; are revealed to the algorithm only when a vertex in
L;_1 is reached for the first time. (The lengths do not
change over time.) The target vertex becomes known
only when the algorithm reaches a vertex in the next-
to-last layer.

The competitive ratio of the on-line traversal al-
gorithm is the worst case ratio between the distance
traveled by the on-line algorithm and the length of the
shortest path from the source to the target. (For disjoint
paths graphs, this path is unique. Also in this case any
LGT algorithm must advance one layer at a time either
by continuing on its current path, or by backtracking to
the source and choosing a different path.)

For general layered graphs, the competitive ratio
is exponential for deterministic algorithms, but poly-
nomial for randomized ones [4, 7]. For disjoint-paths
layered graphs the optimal deterministic algorithm has
competitive ratio 1 + 2m(1 + ﬁ)m_l r 2em (see
[6] and [1]). For randomized algorithms Fiat et al. [4]

showed that the competitive ratio is ©(logm).

For the remainder of this paper we will consider
only disjoint-paths layered graphs. We need a slight
generalization of the model above: we assume that each
path P; has a known associated waste factor a;. For
each edge e on P;, the off-line algorithm pays {(e)/a;,
while the on-line algorithm pays {(e) as before. Thus the
competitive ratio becomes a function of ay, ..., a,,, and
the preceding model corresponds to a; = as = -+ =
am = 1.

Following [5] we show now that constructing a MINg
algorithm is equivalent to an algorithm for the modified
LGT with the same competitive ratio.

First assume that a (modified) LGT algorithm is
given. To construct a MINg algorithm, we construct
a disjoint-paths layered graph which associates a path
P; with each algorithm A;. We set the waste factors
to be the competitive ratios ay,...,a, and simulate
Ay, ..., A, on the sequence of requests as follows.

When a request is made, the MINg algorithm com-
putes the costs of the edges to the next layer; the cost
of the edge on P; is the cost of serving the request by
A;, as if A; had been continually simulated from the
beginning.

Then, the MINg algorithm applies the LGT algo-

rithm in order to decide how to serve the request. If
the LGT algorithm continues with the current path F;,
then MINg continues to simulate the current algorithm,
A;. On the other hand, if the LGT algorithm backtracks
and moves to a vertex v (in the next layer) via another
path, P;, then the MINg algorithm switches to the con-
figuration corresponding to v, and A; becomes the cur-
rent algorithm. Since we assumed that the underlying
problem is a metrical task system, the triangle inequal-
ity holds for the cost of switching between configura-
tions; thus the cost of MINg 1s bounded by the cost of
LGT. Clearly then, a competitive LGT algorithm yields
a MINg algorithm with the same competitive ratio, or
better.

Conversely, one can easily use a MINg algorithm to
construct an LGT algorithm with the same competitive
ratio: Let the metrical task system P be the disjoint-
paths layered graph traversal, where the states cor-
respond to vertices in the graph, with the transition
cost between states equal to the total distance in the
graph. (It is readily seen that P is well defined.) Let
Ay, As, ..., Ay be the m algorithms that correspond to
sticking to path P; and let ay, ..., a, be the waste fac-
tors. Clearly, the LGT algorithm that follows MINg in
the obvious manner has the same competitive ratio.

3 The Guess Game

In this section we define and analyze a certain two player
zero-sum game, called the Guess Game. Later we will
use this analysis to derive upper and lower bounds for
the disjoint-paths layered graph traversal problem.

One participant is called the player and the other
is called the adversary. Both start with the same set
of cards T'= [m] = {1,...,m}. The value of card i is
a; > 0.

The game starts with the adversary putting all his
cards face-down on the table in a certain order, that
he will be unable to change during the game. Then
the player chooses one of her cards and puts it face-
down on the table. We call this the hidden card. The
adversary then turns up the first of his cards and the
player has to match 1t. If the card matches the hidden
card (a hit) then the adversary wins the value of the
card, the matched pair is discarded, and the player must
pick a new card face down. If not (a miss), then the
player matches the adversary’s card with a card from
her hand and the matched pair is discarded without
further ado.Hence, there are m rounds. The value of
the game is the sum of the values of the cards that the
adversary wins.

Observe that the player pays a; if and only if she

hides card ¢ before she hides any card that comes after ¢
in the adversary’s order. In particular the player always
pays for the last card in the adversary’s order.

Let’s assume that that the player selects her algo-
rithm first, and that the adversary is aware of the se-
lection made. If the player’s algorithm is deterministic,
then the adversary’s best strategy is obvious: he chooses
the order of his guesses to be the same order as the hid-
den cards of the player and thus he wins at every round.
Hence, the value of the game is exactly > cicpn @i

In the randomized case the situation is more compli-
cated. The player can choose her hidden cards according
to distributions that might depend on the history of the
game. On the other hand, basic game theory implies
that, given the probability distribution on the player
strategies, there is a deterministic strategy for the ad-
versary, that is, a fixed order of guesses, that maximizes
his profit.

In order to analyze the value of the game we define
two other models for players. A strong player is a player
which, after each miss, 1s allowed to replace the hidden
card by a card which is still in her hand. This, of
course, can only help the player and does not increase
her expected cost with respect to a standard player. A
weak player is one that chooses the order of her hidden
cards in advance (using random bits) and is not allowed
to change this order later in the game. More precisely,
the weak player chooses an order for her cards at the
beginning of the game and then, whenever there is a hit,
she replaces the hidden card by the lowest ordered card
which has not been discarded yet. Clearly the expected
cost for a weak player is no lower than the expected cost
for a standard player.

Let f(T) be defined by equation (1.1). Our main
result in this section is

THEOREM 3.1. The value of the game with a set of
cards T is at least f(T), even against a strong player,
and is at most f(T) even against a weak player. Thus
the game value is exactly f(T) for all three types of
players.

Proof. We start with the lower bound and assume
a strong player. Let ¢(7T) be the value of the game.
We have to show that ¢(T)) > f(T) for any set T.
We use induction on the size of T. If T = {i}, then
¢(T) = a; = f(T) and we are done. For the general case,
let p; be the probability that the player chooses card j
as her first hidden card. Now, if the adversary chooses
card ¢ to be his first guess, and then chooses the best
order for the remaining cards as if the game started with
T\ {i}, he can clearly guarantee, even against a strong

Y. Azar, A. Z. Broder, and M. S. Manasse

player, an expected cost of at least p;a; + ¢(T \ {i}).
The adversary can choose the ¢ which maximizes this
expression. That implies that for all ¢

9(T) > pia; + g(T'\ {}),

. o) =g\

But >, p; = 1, and therefore

7.

T 9(T) - i(»T \ i) > 1

2= Zig gﬁ/\a.{i})/
1€ g
Thus ¢(7) > f(T).

We now turn to the upper bound and assume a
weak player. Again the proof is by induction on the
size of T. The case T' = {i} is trivial. For the general
case, recall that a weak player hides her cards in a
fixed order. Assume that the player constructs her
order as follows: Among all cards she picks a card with
probability inversely proportional to its value. Let the
card so chosen be the last card in her order. From the
remaining cards she picks again a card with probability
inversely proportional to its value. Let it be the next-
to-last card in her order. And so on. (That is, if after
k choices the set of remaining cards is 7" and ¢ € T, the
probability that ¢ becomes the m — &k card in the order
is (1/a:)/ Xyer 1/a;.)°

Let h(T) be the value of the game when the adver-
sary knows that the player has chosen this particular
strategy. Let j be the card chosen by the adversary to
be last in his order. Let ¢ be the last card of the player.
Note that j is fixed, but ¢ is a random variable.

e If i = j, an event whose probability is proportional
to 1/a;, then the player has to pay a; in the last
round. Furthermore, the distribution used by the
weak player with respect to the set of remaining
cards (that is, 7'\ {j}) is exactly the same as if
she started the game with the set T'\ {j}. Hence
in this case, the player’s expected cost is at most
a; +h(T\{j}) even if the adversary plays optimally
on the remaining cards.

o If i #£ j, the player will never have to pay a; and
again her distribution on the remaining cards is
exactly as if she had started the game with T\ {i},
so her cost is at most h(T'\ {j}).

ZNote that this strategy is not the same as choosing the

sequence from first to last with probabilities proportional to a;.

On-line Choice of On-line Algorithms

This implies that

1/a]'
hT) < S i (aj + M(T\ {a;}))

i ZieT\{j} T\ A{i})/a;
ZiET 1/a;

L3 iep MO\ A}/ ai
M) < Yier L/ai
That is, h(T) < f(T).
We conclude that h(T) = f(T) = ¢(T) and thus the

value of the game is exactly f(T') for all three types of
players. 0O

or

3.1 Properties of f(T). In this subsection we
discuss some of the interesting properties of f(7').

Let’s return to the weak player’s strategy as de-
scribed in Theorem 3.1. Let P(é, R) for i € R C T be
the probability that the player chooses card i the last
among the cards in R (which means that, in the player’s
hiding order, card ¢ will be the first among the cards in
R.) We claim that P(¢, R) does not depend on the val-
ues of the cards in 7'\ R. Indeed, call the cards in R,
red. We can think that when the player builds her or-
der, she first decides, with suitable probability, whether
to pick a red card from the remaining cards, and if so,
she then decides, with suitable probability, which red
card to pick. Clearly the order among the red cards
depends only on the values of the red cards.

Let w1, 7, ..., 7T be the adversary’s order. As we
have already observed, for any strategy, the player pays
a; 1f and only if she hides card ¢ before she hides any
card that comes after ¢ in the adversary’s order. That
implies that the probability that the weak player pays
ar, is exactly, P(m;, {mi, Tip1, ..., Tm }).

But the proof of Theorem 3.1 implies that the weak
player’s strategy as described is optimal, and therefore
game theoretical considerations imply that the order
chosen by the adversary is irrelevant — the expected
value of the game is the same. It follows that

(3.3) f(Im]) = Y an, P(zi,{mi, Tig1, . Tm})

1<i<m

for any permutation 7! In particular,

fm) = > aP(i{ii+1,...,m}).

1<i<m

(3.4)

In this form, it is rather hard to see that f([m]) is
symmetric in the a;’s, since the ¢’th term in the sum

depends only on a;, a;41,...,am. We also don’t know
of any direct proof that shows that (3.4) is a solution of

(1.1).
Unfortunately, the alternate expression is not com-
putationally easier, since P(7, R) does not seem to have

a simple closed form. It can be computed with the for-
mula

Z]’ER\{z’} P, R\ {j})/a;
Z]’eR 1/a;

(3.5) P(i,R) =
Similar considerations lead to

THEOREM 3.2. Let T = [m]. Without loss of
generality assume that a1 < as < --- < ay,. Then

DAY L ST
1<em b 1<iem @ Tt
and
e Y ey
1<i<m 1<i<m

Proof. As above we consider the weak player’s
strategy. It suffices to show that if a; < ay <-- - <ay,
then

(3.6) P(1,[m]) < ar o Ta
and "
(3.7) P(m, [m]) > ot Tan

The proof is by induction on m. Let S = a; +
-« 4+ apy. The base case 1s trivial. For the general case,
by the definition of the weak player’s strategy and the
induction hypothesis, we have

1 ay 1
55/
ay 1 1

- E]» 1/a]' i>1 a]' S—a]'

P(L[m]) <)

i>1

(3.8)

Observe that

1t
a]'S—a]'_S a]' S—a]"

Hence (3.8) becomes

ram=3E (L sty /o

i>1

for which 1t suffices to show that

1 1
ZS—a]' Sa

j>1

Similarly, proving equation (3.7) reduces to proving that

2.

j<m

1 1
> —.
S—a; ~ ap

The last two inequalities follow from

1 1 1
ZS—a' S;(m—l)alza’

i>1 J

and

1 1
>y -
: S—aj_Z(m—l)am QA
Jj<m j<m
Now using equation (3.6) (resp. (3.7)) in equation
(3.3) and the permutation 7; = m — i+ 1 (resp. m; =)
completes the proof. O

4 The lower bound

Let r be an arbitrary positive real number. Given
ai,...,ay,, we show that an adversary can construct
a disjoint-paths layered graph such that the cost of
the off-line (modified) LGT algorithm is r while the
cost of any on-line LGT is at least rv([m]), where
v([m]) is the value of the Guess game on m cards
with values ay, ..., ap. (If the on-line LGT algorithm is
deterministic (resp. randomized) then so is the player;
and the value of v([m]) changes accordingly: v([m]) =
Y 1<icm @ in the deterministic case and wv([m]) =
f([m]) in the randomized case.)

The graph consists of m paths and m + 1 layers.
Each path starts with an edge with finite positive length,
followed by a number of zero length edges, followed by
a (practically) infinite length edge, except for the path
to the target, which does not contain the infinite edge.
Path P; starts with an edge with length ra; and has
waste factor a;. Each path has its infinite edge starting
on a different layer, and for j = 1,...,m—1, every layer
L; has an infinite edge out.

Thus, the on-line algorithm has no reason to visit
the same path twice, and whenever 1t paid the first
edge on the path, it can be presumed that it will
not backtrack before reaching the infinite edge, or the
target, since it costs nothing to advance and return on
the zero length edges.

Path P; corresponds to card ¢ in the game. The on-
line algorithm starting path ¢ corresponds to the player

Y. Azar, A. Z. Broder, and M. S. Manasse

hiding card ¢. An infinite edge on P; between layer j
and j 4+ 1 corresponds to the adversary guessing card ¢
at round j in the game. With these correspondences,
it can be easily verified (see the example below) that
a (randomized) strategy for the LGT algorithm imme-
diately translates into a strategy for the (randomized)
standard player in the Guess game.

Given the player’s strategy, the adversary starts by
choosing an order on the paths corresponding to his
optimal order of guesses in the Guess game. Let this
order be 7y, ma,...,my. The adversary completes the
construction as follows:

e The target 1s on path 7, at layer m.

e For i = 1,...,m — 1 the path @; gets its infinite
edge between layers ¢ and ¢ + 1.

For instance if the algorithm starts on path 73 then
it pays rar, but will not pay the first edges on m and
5. This corresponds exactly to the player in the Guess
game that hides 73 at the first turn, and hence pays a,,
but does not pay ar, or d,.

Clearly the cost of the LGT algorithm is at least r
times greater than the cost of the player. (“At least”
because the LGT algorithm also pays on the way back to
source.) Hence we conclude that the cost of the on-line
LGT algorithm is at least rv([m]) while the cost of the
off-line algorithm is only r. (The path to the target has
length ra,, and waste factor a,,.) This concludes the
proof of the lower bound.

5 The upper bound

The proof below makes the assumption that the algo-
rithms Ay, ..., A, are deterministic. The proof for ran-
domized algorithms is similar, but requires many tech-
nicalities which obscure the essential ideas. We leave it
for the full paper.

We are given a disjoint-paths layered graph traver-
sal problem: the graph consists of m paths Py, ..., Py,
with waste factors ay,...,a,. We show how to con-
struct an LGT algorithm using a strategy for the Guess
game.

Let [; ; be the distance from the source to layer j
on path P;. Let s; = min;(; j/a;, that is, s; is the
minimum cost that the off-line algorithm must pay to
get to layer j. Let j/ be the minimum j such that s; > 0.
Let 5 = s;/.

We now partition the layers into strata. All layers
j such that
52kt < 55 < 52k

On-line Choice of On-line Algorithms

belong to stratum k. All layers j with j < j/ belong to
stratum 0.

Consider a layer j in stratum k. If [; ; /a; > s2F call
path ¢ blocked at j. Notice that on each layer there must
be some path which is not blocked. (If all the paths have
lij/a; > 52F then we just started a new stratum, and
the “blocked” notion is redefined.) For stratum 0 we

call a path blocked if [; ; /a; > 0.

Now we are ready to describe the on-line LGT
algorithm. For stratum 0, the algorithm follows a 0-
length path until it blocks, then switches arbitrarily to
another O-length path, and so on, until all paths have
strictly positive lengths and stratum 1 starts. Notice
that in general, once the algorithm has reached layer
J— 1,1t can compute s; at no cost.

Once 1t gets to the first layer of stratum %k, the on-
line algorithm gets to the first layer of the next non-
empty stratum k' this way: it follows a path until it
blocks (with respect to stratum k), then it returns to
the source and follows another path not yet blocked,
and so on, until it arrives on the first layer of stratum
k’. The crux of the algorithm is how to choose the next
path to try.

The 1dea 1s that on the first layer of stratum k& > 0,
the algorithm starts playing a Guess game. As in the
lower bound proof, path P; corresponds to card 7 in the
game, the on-line algorithm trying path ¢ corresponds
to the player hiding card i, and a blocked path F;
corresponds to the adversary guessing card ¢ at a certain
round in the game.

The difference is that now the adversary might
guess (and miss) some cards even before any card is
hidden — this corresponds to paths that are already
blocked with respect to stratum k on the first layer
of the stratum, and the adversary might guess several
cards at once, against a single hidden card — this
corresponds to paths that block on the same layer. Of
course, both these maneuvers work to the advantage of
the player.

Notice that card 2 on stratum k costs at most
s2Fa;. Taking into account backtracking, the total cost
of the on-line algorithm on stratum & i1s bounded by
2528 v([m]) where v([m]) is the value of the Guess game

on m cards with values ay, ..., a;,.

Assume that the target belongs to stratum ¢. Then
the total cost of the off-line algorithm is at least s27~1
while the total cost of the on-line algorithm is at most

25(1 42+ ...+ 2Yo([m]) < s2'T20([m]).

Hence the competitive ratio is at most 8v([m]): that is,
8 1 <i<m @ for the deterministic case, and 8 f([m]) for
the randomized case.

6 Application to the k server problem

The k-server algorithm of [5] is based on recursive
calls to the MINg operation with % algorithms whose
competitive ratio can be divided into ¢ groups, each of
size i. The competitive ratios of the algorithms in the
same group are about the same but the ratios differ
greatly among groups. More precisely, the sum of the
competitive ratios of all the algorithms is dominated by
the sum in one group. Thus the average competitive
ratio is ©(7) times smaller than the maximum one.
The MINg originally used in [5] has competitive ratio
O(m - max;{a;}), while our algorithm has competitive
ratio O3 ;<< @i). Hence, our algorithm saves a ©(7)
factor in each recursive call and this results in a k!/2°(*)
overall savings factor. Unfortunately the competitive
ratio of the modified algorithm is still exponential in &,

namely O((k!)220(0)).

A Combining off-line algorithms.

Let S be a set of k ofl-line algorithms such that for
each input at least one of algorithms runs quickly.
What is the fastest way to combine the execution of
the algorithms in S to solve a particular input? Can
we find an algorithm which combines the elements of
S which, for every input, achieves performance within
some constant factor of the fastest algorithm for that
input?

Again we are interested in a combining procedure
that has no specific knowledge of the problem domain
and input. We consider two models: in the first one
there is no a priori bound on the running time of the
algorithms; in other words the only way to determine
the running time of a particular algorithm on a given
input is to run it until it terminates. In the second
model, the running time of each algorithm A; i1s known
to be either exactly a; or infinite; this corresponds
to having a known competitive ratio, or performance
guarantee.

A.1 No performance guarantee. The standard
solution to this problem is the Round Robin (RR) al-
gorithm which achieves a performance ratio of precisely
k in the worst case. It works by executing individual
instructions from each of the algorithm in turn until
one of them terminates. Thus, if the fastest algorithm
A € S costs n steps, RR will cost between k(n — 1)+ 1

and kn, depending on where A falls in the ordering of
S. If the ordering is deterministic, the adversary can
chose an input such that the last algorithm in the order
is the best, leading to a competitive ratio of exactly k.
It is easy to see that RR is optimal among deterministic
combining algorithms.

Can randomization help reduce the expected ratio?
Consider, for example, the algorithm that first randomly
sorts the algorithmsin S, and then applies round robin.
The expected cost on an input with least cost n is
then k(n — 1)+ (k+ 1)/2 = kn — (k — 1)/2, yielding
a competitive ratio approaching k as n becomes large.
This algorithm fails to improve the competitive ratio in
the worst case.

We now show that we cannot hope to do better by
showing that no algorithm can achieve a ratio better
than k. To prove this, we apply a variation of Yao’s
theorem to the competitive ratios under consideration
(not to the costs themselves!), which allows us to replace
randomness in the algorithm with randomness in the
input. We will choose a distribution on the identity
of the fastest algorithm among the k£ algorithms in S
and its termination time. Let n be a parameter to be
chosen later and suppose that the other algorithms have
infinite cost on the inputs for which they are not fastest;
it suffices for these costs to be at least kn.

Now, let the probability that the A; is the fastest
algorithm, and that its termination time is ¢ (where
1<i<n), be

? 2t

1—|—...—|—n:kn(n—|—1)

el

This defines a probability distribution. Take any com-
bining algorithm C' for this distribution. We will show
that it achieves a ratio no better than (kn+1)/(n+ 1).
For large enough values of n, this approaches k.

Why can C'do no better than the ratio above? Since
C'is deterministic, and has no specific knowledge of the
problem domain and input, it has a fixed order in which
it simulates the steps of the algorithms. (For instance
step 1-10 of algorithm A7, followed by steps 1 — 15
of algorithm As, and so on.) C stops as soon as one
algorithm finishes. In the worst case C' has to simulate
kn steps.

Consider step ¢t of C'. At that step, suppose C
simulates step ¢ of algorithm j. With probability
2i/(kn(n+1)), this will be the terminating step, leading
to a cost ratio of ¢/¢. This contributes 2¢/(kn(n+1)) to
the expected ratio, independently of ¢ and 5. Thus for
every order, and hence for every algorithm, the expected

Y. Azar, A. Z. Broder, and M. S. Manasse

ratio 1s

_kn—l—l
T on417

2t
Z kn(n+1)

1<t<kn

A.2 A priori performance guarantee. Let S be
a set of n off-line algorithms such that for each input
at least one of algorithms runs quickly. Suppose that
the running time of each algorithm ¢ is known to be
either exactly a; or infinite. Again we are interested in
a procedure which combines the algorithms such that
for every input, it achieves a performance within some
constant factor of the fastest algorithm.

First, observe that our desired algorithm need never
interleave the executions of different algorithms. Since
no information about the running time of algorithm ¢ is
gained until step a;, we can convert any algorithm for
this problem into one which runs the algorithms in the
order in which their decisive steps are executed.

Therefore, our algorithm is determined by its order-
ing of the algorithms from S. If the ordering is deter-
ministic, the worst case cost is s =)", ., ., @;, achieved
when the input is solved only by the last algorithm tried.

In this case, randomization does help. The exact
complexity for the randomized case is

1<i<j<n

Lower bound: We use Yao’s theorem. The adver-
sary assigns probability a;/s to the outcome that j is
the correct algorithm. Consider a deterministic com-
bining algorithm C' that chooses an execution order
P1,P2,...,pn. If p; was the correct algorithm, then C'
incurs cost Zl<i<j ap,. Thus, the total expected cost is

> azj dap= > Cliaj/zi:ai.

1<j<n © 1<) 1<i<j<n

Upper bound: Arrange the algorithms in some
order e.g. 1,2, ..., n. With probability «; /s start with
algorithm j, then j + 1, and so on in cyclic order. Let {
be the index of the correct algorithm. If the algorithm
starts with j its cost is o, ; a; where), ; denotes
a cyclic sum. A cyclic sum is the same as a regular sum
when j <[, but if j > [, then the sum is on the indices ¢
that satisfy j <7 < nand 1 <17 <j. Then the expected
cost 1s

DD IS

1<jsn =izl

1<i<j<n

On-line Choice of On-line Algorithms

References

(1]

(2]

R. Baeza-Yates, J. Culberson and G. Rawlins, “Search-
ing in the plane,” to appear in Information and Com-
putation.

A. Borodin, N. Linial, and M. Saks. “An Optimal On-
line Algorithm for Metrical Task Systems” Proceed-
ings of the 19th Annual ACM Symposium on Theory
of Computing, 1987, pp. 373-382.

A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator,
and N. Young. “Competitive paging algorithms,” Jour-
nal of Algorithms, 12(1991), pp. 685-699.

A. Fiat, D. Foster, H. Karloff, Y. Rabani, Y. Ravid
and S. Vishwanathan, “Competitive algorithms for
layered graph traversal,” Proceedings of the 32nd IEEE
Symposium on Foundations of Computer Science, 1991,
pp. 288-297.

A. Fiat, Y. Rabani and Y. Ravid, “Competitive k-
server algorithms,” Proceedings of the 31st IFEE Sym-
posium on Foundations of Computer Science, 1990, pp.
454-463.

C. Papadimitriou and M. Yanakakis, “Shortest paths
without a map,” Proceedings of the 16th ICALP, 1989,
pp. 610-620.

H. Ramesh, “On traversing layered graphs on-line,”
This proceedings, 1992.

D. Sleator and R. Tarjan, “Amortized efficiency of
list update and paging rules,” Communications of the
ACM, 23(1985), pp. 202-208.

